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Abstract

While the spectral theory of compact operators is known to many, knowledge re-
garding the relationship between eigenvalues and approximation numbers might be
less known. By examining these numbers in tandem, one may develop a link between
eigenvalues and `p spaces. In this paper, we develop the background of this connection
with in-depth examples.

ii



Contents

1 Preliminaries 1

2 Compact Operators 7

3 Schmidt Representation and Singular Values 12

4 Approximation Numbers 14

5 Approximations of Adjoint Operators 17

6 Eigenvalues of Compact and Adjoint Operators 19

7 H-Operators 20

8 Eigenvalues of Compact H-Operators 22

9 Q-Compactness 26

10 Further Questions 28

iii



Acknowledgements

I would like to express my gratitude to Professor Asuman Aksoy, my research advisor, for
her guidance and encouragement of this thesis. I would also like to thank my parents and
sister, Stephanie, Paul, and Kathryn Chakmak, for their support throughout my college
experience. Finally, I would like to thank my girlfriend, Katie O’Neill for accompanying me
on nights where work would go later than usual.

iv



1 Preliminaries

Spectral theory is a famously studied field in mathematics. Its applications are so broad
that it is used in various applied fields. However, spectral theory is far from solved. While
we know much about the spectral theory of compact operators, there is still much to explore
regarding the relationship between eigenvalues and approximation numbers.

The aim of this paper is to explore the theory relating approximation numbers to eigenval-
ues. The paper proceeds as follows. We begin by establishing preliminaries, before discussing
compact operators and their various representations. Next, we introduce approximation
numbers and explore their properties, before discussing H-operators. Once we understand
H-operators, we can prove our desired result connecting approximation numbers to eigenval-
ues. We finish by discussing a few open problems.

We begin our discussion by introducing Hilbert spaces. These spaces are of interest for
their inner products: an analogue for orthogonality. For instance, given a basis of a Hilbert
space, we can orthogonalize and normalize it. Many of the theorems defined on Hilbert
spaces will rely on the use of this “orthonormal basis.”

Definition 1. A Hilbert space is a complete inner product space.

Note that when we say completeness, we mean the following:

Definition 2. Let {xn}∞n=1 be a sequence of numbers. This sequence is Cauchy if and only
if ∀ε > 0, there exists N ∈ N that for n,m > N ,

|xn − xm| < ε.

A space X is complete if and only if every Cauchy sequence in it converges within it.

We will assume that the reader is familiar with the basic properties of inner products
and vector spaces. While we will not focus on these properties, they serve as building blocks
to important definitions. For example, to know what a “right angle” is in a non-Euclidean
setting, an understanding of inner products is necessary.

In this paper, when we refer to a vector space, we will assume that it is infinite-
dimensional. Two common examples of these spaces follow:

Example 1. The space `2(X) consists of all complex-valued sequences {xi}∞i=1 such that

`2(X) =

x ∈ X : ||x|| =

(
∞∑
i=1

|xi|2
)1/2

<∞


with inner product

〈x, y〉 =
∞∑
i=1

|xiyi|.

Similarly, the space L2(X) consists of all complex-valued functions f such that

L2(X) =

{
f ∈ X : ||f || =

(∫
X

|f(x)|2dx
)1/2

<∞

}
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with inner product

〈f, g〉 =

∫
X

|f(x)g(x)|dx.

However, inner products are the exception, not the norm. It is then useful to study these
spaces which lack orthogonality. We define them as follows.

Definition 3. A Banach space is a complete normed space.

It is clear that every Hilbert space is a Banach space, as an inner product induces a norm.
In other words, if H is a Hilbert space, and x ∈ H, then

||x|| =
√
〈x, x〉.

One can easily verify that the above satisfies the properties of a norm. One consequence
of the above result is that a Banach space is a generalized Hilbert space. In the following,
we provide a common examples of Banach spaces. Notice how both `2(X) and L2(X) are
included.

Example 2. If 1 ≤ p <∞, the space `p(X) consists of all complex-valued sequences {xi}∞i=1

such that

`p(X) =

x ∈ X : ||x|| =

(
∞∑
i=1

|xi|p
)1/p

<∞

 .

Similarly, the space Lp(X) consists of all complex-valued functions f such that

Lp(X) =

{
f ∈ X : ||f || =

(∫
X

|f |pdx
)1/p

<∞

}
.

There are many different types of Hilbert and Banach spaces. Consider what we call
“separability.” This property is very powerful; many mathematicians exclusively work with
separable spaces.

Definition 4. [16] A Banach space X is separable if there exists a countable collection
{fi}∞i=1 of elements in X such that their linear combinations are dense in X.

In effect, separability allows us to assume a countable basis. `p and Lp for 1 ≤ p < ∞
are examples of separable spaces [16]. We will omit an example of a non-separable space as
we will not work with them in this paper and they are challenging to construct. Another
example of this type of space follows.

Example 3. [5] c0 is the separable Banach space of all real sequences {un}∞n=1 such that
lim
n→∞

un = 0. This space is equipped with the essential supremum norm,

||{un}∞n=1||∞ = sup{|un| : n ≥ 1}.

It is clear from the above definition that c0 is the space of bounded null sequences. We
find c0 particularly interesting due to its relationship with the following space.
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Example 4. The separable space `∞(X) consists of all real sequences {un}∞n=1 such that

||{un}∞n=1||∞ = sup{|un| : n ≥ 1} <∞.

In other words, `∞ is the space of bounded sequences. Note that c0 ⊂ `∞. After we
introduce a few more definitions, we will return to these spaces to show that they have even
more in common.

We will now discuss operators on these spaces.

Definition 5. Suppose we have a Banach space X and Y . The operator T : X → Y is
linear if for all x, y ∈ X and α ∈ F,

T (x+ y) = Tx+ Ty and T (αx) = αTx,

where F is a scalar field.

Let L(X, Y ) denote the space of such operators. One can show that it is then a normed
linear space under the following norm.

Definition 6. The operator norm of T : X → Y is defined as

||T || = sup{||Tx||Y : x ∈ X, ||x|| ≤ 1}.

Or equivalently,

||T || = sup

{
|T (x)|
||x||

: x 6= 0

}
.

This norm has a variety of interesting properties. We will focus on one we will use
throughout this paper. Suppose X, Y , and Z are Banach spaces. Let T : X → Y and
G : Y → Z. Let GT denote the operation of composition, such that GT : X → Z. Their
relationship is shown by the following diagram:

X
T−→ Y

G−→ Z︸ ︷︷ ︸
GT

.

Then we have that ||GT || ≤ ||G||||T ||. This result is achieved by iteratively applying the
definition of the operator norm.

We have used the operator norm to construct the normed linear space L(X, Y ). A
natural question that arises is if there are other spaces we can define with the operator
norm. Consider the following:

Definition 7. Let T : X → Y such that for all x ∈ X

||Tx||Y ≤M ||x||X ,

where M is a real number. These functions are called bounded and their space is denoted as
B(X, Y ) under the operator norm.

3



B(X, Y ) is also a normed linear space. In the next section, we will continue to use the
operator norm to define spaces for useful operators. Not all operators act between two
Banach spaces. Let F denote either R or C. We call all linear operators T : X → F linear
functionals. It is not hard to show that a linear functional is bounded if and only if its
continuous. Due to this equivalence, we are interested in looking at their Banach space.

Definition 8. The dual space of X is the space of all linear functionals on X. It is commonly
denoted as X∗.

In the remainder of this section, we will need the Hahn-Banach theorem to extend linear
functionals.

Theorem 1. Let V be a vector space. Suppose V0 is a linear subspace of V , and that we are
given a linear functional `0 on V0 that satisfies

`0(v) ≤ p(v)

for all v ∈ V0, where p is a real-valued sublinear function on V . Then `0 can be extended to
a linear functional ` on V that satisfies

`(v) ≤ p(v)

for all v ∈ V .

A proof of the Hahn-Banach theorem may be found in [16]. We can use the above theorem
to show that the dual space of a non-trivial space X is also non-trivial.

Theorem 2. If X 6= {0}, then X∗ 6= {0}.

Proof. By assumption, we know that there exists a non-zero element x ∈ X. We then have
some subspace Y ⊂ X such that Y = span(x). Define ϕ(x) = 1. Therefore, ϕ : Y → R and
ϕ ∈ Y ∗. As this is a bounded linear functional, by the Hahn-Banach theorem there exists a
linear functional ϕ̃ ∈ X∗ that extends ϕ. This linear functional is non-zero, so X∗ 6= {0}.

There is a large amount of literature dedicated to identifying these spaces. For instance,
let q be a positive number such that 1/p+ 1/q = 1, i.e. they are conjugate exponents. Then
the dual space of Lp is Lq and vice versa [16]. One interesting consequence of this theorem
is that L2 is its own dual space. Recall from the earlier examples that only when p = 2, Lp

is a Hilbert space. It can be shown in general that every Hilbert space is its own dual space.
One might be curious as to whether the double dual of a space is the same as the original

space. A common counter-example is as follows: (c0)
∗ = `1, but (`1)∗ = `∞. In the following,

we provide an example of how to construct a dual basis in the vector space of polynomials
of degree at most 2:

Example 5. Suppose we want to find the dual space for P2, that is the space of second degree
or less polynomials spanned by v1 = 1, v2 = x, and v3 = x2. By definition, this basis is φj
for 1 ≤ j ≤ 3 such that φj(vk) = 1 if j = k and 0 otherwise. Define φj to be the linear

4



functional which selects the (j − 1)th coefficient of a polynomial in P2(R). In other words, if
p(x) = a0 + a1x+ a2x

2, then φ(p(x)) = aj−1. It follows immediately that

φ1(1) = 1, φ2(1) = 0, φ3(1) = 0,

φ1(x) = 0, φ2(x) = 1, φ3(x) = 0,

φ1(x
2) = 0, φ2(x

2) = 0, φ3(x
2) = 1,

so φ1, φ2, φ3 is the dual basis to P2.

Now that we have seen how to construct X∗ from X, we will shift our attention to
operators defined on dual spaces. A question we may ask is if we have an operator T : X → Y ,
is it always possible to find an operator T ∗ : Y ∗ → X∗? The answer is yes, and we call this
operator the adjoint of T .

Definition 9. Let X and Y be Banach spaces and let T ∈ L(X, Y ). Its adjoint T ∗ is defined
as

T ∗(f) = f ◦ T.
For a Hilbert space, it follows that

〈Tx, y〉 = 〈x, T ∗y〉.

We proceed by proving elementary properties of T ∗.

Theorem 3. Let X and Y be Banach spaces and T : X → Y such that T ∈ B(X, Y ). Then
the following is true:

1. T ∗ is a map with domain Y ∗ and codomain X∗.

2. T ∗ is a linear operator.

3. ||T ∗|| = ||T || under the operator norm.

Proof. 1. Note that for all f ∗ ∈ Y ∗, the map

X
T−→ Y

f−→ R︸ ︷︷ ︸
f◦T

.

We see then that f ◦ T is a linear functional on X. Since for all x ∈ X, we have

|(f ◦ T )(x)| = |f(Tx)| ≤ ||f ||||T (x)|| ≤ ||f ||||T ||||x||,

we also have that (f ◦ T ) ∈ X∗ and (f ◦ T ) is bounded. Therefore, T ∗ : Y ∗ → X∗ is a
bounded operator with the desired domain and codomain.

2. Let f, g ∈ Y ∗ and α, β ∈ C. Since f and g are linear operators, we have that

T ∗(αf + βg) = (αf + βg) ◦ T = α(f ◦ T ) + β(g ◦ T ) = αT ∗(f) + βT ∗(g).

Therefore, T ∗ is a linear operator.
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3. By the Hahn-Banach theorem, there exists a linear functional f with ||f || ≤ 1 such
that

||T || = sup{||f(Tx)|| : ||x|| ≤ 1, ||f || ≤ 1}

= sup{||(T ∗f)x|| : ||f || ≤ 1, ||x|| ≤ 1} = sup{||T ∗f || : ||f || ≤ 1} = ||T ∗||.

Adjoints typically are not too hard to compute. In the case of matrix operators, this
computation is trivial.

Example 6. Suppose we have the matrix operator1 2 3
4 5 6
7 8 9

 .
Its adjoint is then 1 4 7

2 5 8
3 6 9

 .
In general, the adjoint of a matrix operator is its conjugate transpose.

There is one more class of operators we must familiarize ourselves with: self-adjoint
operators. These operators are exclusively defined on Hilbert spaces.

Definition 10. An operator T is self-adjoint if T = T ∗.

We note that T is self-adjoint if and only if its matrix representation is real-valued and
symmetric. Self-adjoint operators are incredibly powerful for proving specific theorems. For
instance, we have the following on Hilbert spaces:

Theorem 4. Suppose that H is a real Hilbert space and let T ∈ L(H,H). Let T be a
self-adjoint operator. Then T has real eigenvalues.

Proof. Let λ be an eigenvalue of T with corresponding eigenvector x. Then

λ||x||2 = λ〈x, x〉 = 〈λx, x〉 = 〈Tx, x〉 = 〈x, Tx〉 = 〈x, λx〉 = λ̄〈x, x〉 = λ̄||x||2.

Dividing both sides by ||x||2, we get that λ = λ̄. This is true if and only if λ is real. Therefore,
every eigenvalue of T is real.

This spectral theorem for self-adjoint operators is incredibly powerful as it classifies what
kind of operators have real eigenvalues and eigenvectors. In the case of matrix operators,
these are real symmetric matrices. Later in this paper, we will investigate operators on
Banach spaces which share similar properties to self-adjoint operators.
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2 Compact Operators

In this section, we will focus on an important class of operators we call “compact.” These
operators will allow us to connect important results which hold on Hilbert spaces to the
more general Banach spaces. For instance, they provide a unifying force in spectral theory.
We begin by defining what we mean by compactness.

Definition 11. A set A ⊂ X if compact if for every open cover of A, there exists a finite
subcover.

For example, fix A ⊂ X. Let {Oi}∞i=1 be a sequence of open sets such that

A ⊂
∞⋃
i=1

Oi.

A is compact if and only if there exists some subsequence {Oij}Nj=1 with N ∈ N such that

A ⊂
N⋃
j=1

Oij .

Note that there could be an infinite number of elements in A, but A would still be
compact. Intuitively speaking, compactness makes the infinite finite. For any compact set,
we can find a finite number of sets to cover it. For Rn or Cn a set is compact if and only if
it is closed and bounded.

While not all sets are compact, some sets are more compact than others. We find it
useful to define a measure of non-compactness in the following way.

Definition 12. Let A ⊂ X. Then

γ(A) = inf

{
r > 0 : A ⊂

n⋃
i=1

B(xi, r)

}

is a measure of non-compactness.

The following theorem explains how to use the above definition to characterize the com-
pactness of sets, their subsets, their closures, and their unions.

Theorem 5. Let A,B be bounded subsets of X. Then

1. γ(A) = 0 ⇐⇒ A is compact.

2. A ⊂ B =⇒ γ(A) ≤ γ(B).

3. γ(Ā) = γ(A).

4. γ(A ∪B) = max(γ(A), γ(B)).
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Proof. 1. Suppose γ(A) = 0. Then for all r > 0, there exists a finite set of open balls
{B(xi, r)}ni=i such that

A ⊂
n⋃
i=1

B(xi, r).

Then for any open covering of balls of any size, we can find a finite subcover of A.
However, from analysis we know that for any open set, we can write it as a union of
open balls. Let r denote the maximum radius of these balls. Then our open cover is a
subset of this union of open balls with radius r. This set has a finite subcover, so the
open cover has a finite subcover. Therefore, A is compact.

Suppose A is compact. Then for all r > 0, we have that if

A ⊂
∞⋃
i=1

B(xi, r)

then

A ⊂
n⋃
j=1

B(xij , r).

As this is true for all balls with r > 0, the infinum of r is 0. Therefore, γ(A) = 0.

2. Let A ⊂ B. Note that then

B ⊂
n⋃
i=1

B(xi, r) =⇒ A ⊂
n⋃
i=1

B(xi, r).

It follows immediately that γ(A) ≤ γ(B) because any radius that works for B works
for A.

3. Consider the sequence {xi}ni=1 in A such that

γ(A) = inf

{
r > 0 : A ⊂

n⋃
i=1

B(xi, r)

}
.

Note that we have x ∈ Ā and x 6∈ A only if x is a limit point of some sequence of

numbers in A. Therefore, there is a sequence of numbers {yj}∞j=1 in
n⋃
i=1

B(xi, r) such

that for all ε > 0, there exists a natural number N such that when j > N , we have
|yj − x| < ε. Therefore, there exists an ε such that

Ā ⊂
n⋃
i=1

B(xi, r + ε).

By the properties of the infinum, we have that

γ(A) = inf

{
r > 0 : A ⊂

n⋃
i=1

B(xi, r)

}
= inf

{
r > 0 : A ⊂ Ā ⊂

n⋃
i=1

B(xi, r + ε)

}
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= inf

{
r > 0 : Ā ⊂

n⋃
i=1

B(xi, r + ε)

}
= inf

{
r > 0 : Ā ⊂

n⋃
i=1

B(xi, r)

}
= γ(Ā).

4. Let γ(A) = r1 and γ(B) = r2. Without loss of generality, assume that r2 > r1. Then

A ⊂
n⋃
i=1

B(xi, r1) ⊂
n⋃
i=1

B(xi, r) and B ⊂
m⋃
i=1

B(xi, r2)

for n,m <∞. Then

A ∪B ⊂
n⋃
i=1

B(xi, r2) ∪
m⋃
i=1

B(xi, r2) =
m′⋃
i=1

B(xi, r2).

This implies that γ(A ∪B) ≤ r2.

Suppose γ(A ∪B) < r2. Then there exists an r2 > r > 0 such that

B ⊂ A ∪B ⊂
p⋃
i=1

B(xi, r) =⇒ γ(B) = r < r2.

This is a contradiction. Therefore, γ(A ∪B) ≥ r2.

These two inequalities can only be true if γ(A ∪ B) = r2. Note that if r1 > r2,
repeating the same proof we end up with γ(A ∪ B) = r1. Therefore, γ(A ∪ B) =
max(r1, r2) = max(γ(A), γ(B)).

In a later section, we will return to γ to explore more of its properties. However, for now,
we shift our attention to compact operators.

Definition 13. An operator T : X → Y is compact if and only if the closure of T (B)
is compact, where B is the closed unit ball in X. Alternatively, it is compact if for every
bounded sequence {fn}∞n=1 in X, there exists a subsequence {fnk

}∞k=1 such that {Tfnk
}∞k=1

converges.

Much like we observed for linear and bounded operators, compact operators under the
operator norm form a normed linear space. We will denote this space throughout this thesis
as K(X, Y ).

Development of the theory of compact operators was initiated by research into what are
known as integral operators. Before we delve into this further, we provide a theorem useful
to this field of study.

Theorem 6. [6] Let {fn}∞n=1 be a uniformly bounded and uniformly continuous sequence of
functions on the closed interval [a, b]. There exists a subsequence {fnk

}∞k=1 which converges
uniformly on [a, b].
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The above is known at the Arzela-Ascoli theorem. Note that a uniformly bounded
sequence is a sequence which shares a common bound and a uniformly continuous sequence
is a sequence of functions whose ε in the ε− δ definition of continuity does not depend on x
and y. With this theorem, we can prove the following theorem about integral operators.

Theorem 7. Let a, b ∈ R with b > a and let I = [a, b]. Suppose k : I×I → C is a continuous
function. Define

(Kx)(s) =

∫ b

a

k(s, t)x(t)dt

for all s ∈ I and all x ∈ C(I), where C(I) denotes the continous functions x : I → I. Then
K is compact.

Proof. Let {fk}∞k=1 be a bounded sequence of functions in L2[a, b] such that ||fk|| ≤ M for
some M ∈ R. Since k is continuous, for every ε > 0, we can find a δ > 0 such that when
|x1 − x2| < δ, then |k(x1, t)− k(x2, t)| < ε. It follows that

|Kfk(x1)−Kfk(x2)| = |
∫ b

a

k(x1, t)fk(t)dt−
∫ b

a

k(x2, t)fk(t)dt|

= |
∫ b

a

(k(x1, t)− k(x2, t))fk(t)dt| ≤
∫ b

a

|k(x1, t)− k(x2, t)||fk(t)|dt

≤ ε

∫ b

a

|fk(t)|dt ≤M(a− b)ε.

Therefore, we have that {Kfk}∞k=1 is equicontinuous. Moreover, this sequence is also uni-
formly bounded. Recall that the Arzela-Ascoli theorem states that given an uniformly
bounded and equicontinuous sequence of real-valued functions {fk}∞k=1 defined on the in-
terval [a, b], then there exists a subsequence {fkj}∞j=1 which converges uniformly. Therefore,
there exists a convergent subsequence of {Kfk}∞k=1. This is the definition of compactness of
K.

Due to the usefulness of integral operators, compact operators surged in popularity. The
nicest part about compact operators are the simple forms with which we may represent them.
For instance, consider the following class of operators:

Definition 14. An operator T is called finite-rank if its bounded and the dimension of its
range is finite-dimensional.

From the above definition, we can arrive at the following theorem:

Theorem 8. Let {Tn} be a sequence of finite rank operators and let ||T −Tn|| → 0 as →∞
in the operator norm. Then T ∈ K(X, Y ).

Proof. We begin by showing that if {Tk}∞i=1 is a sequence of compact operators which con-
verges to T in the operator norm, then T is compact. Let {xi}∞n=1 be a sequence of numbers
which converges to x. Since Tk is compact for all k ∈ N, then we have that ||Tkxij−Tkx|| < ε

2
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when j is large enough. We also know by assumption that ||Tx− Tkx|| < ε
2

when k is large
enough. Putting these together with the triangle inequality, we get that

||Tx− Txij || ≤ ||Tx− Tkx||+ ||Tkx− Txij || < ε.

Therefore, there exists a subsequence of {xi}∞j=1 such that Txij converges to Tx. There-
fore, T is compact.

Now that we have proven that the limit of compact operators is compact, all that is
left to show is that finite-rank operators are compact. Let T denote a finite-rank operator.
Since T is bounded, given a sequence {xi}∞i=1, {Txi}∞i=1 is also bounded. Moreover, since T is
finite-dimensional, its range is finite-dimensional, and therefore its range is isomorphic to Rd.
We may then apply the Bolzano-Weierstrass theorem; there exists a convergent subsequences
of {Txi}∞i=1. So T is compact, completing the proof.

Note that the converse of this theorem is not always true. We say that spaces where the
converse hold have the approximation property. The above theorem allows us to construct
an example of a compact operators.

Theorem 9. Let x = {xi}∞i=1, y = {yi}∞i=1 ∈ `2 with T : `2 → `2 defined as T (x) = y where
yi = xi

i
. Then T is a compact operator.

Proof. Define Tn : `2 → `2 such that

Tn(x) = (x1,
x2
2
, . . . ,

xn
n
, 0, . . . ).

We then have that

||(T − Tn)x||2 = 〈(T − Tn)x, (T − Tn)x〉 = (0, . . . , 0,
xn+1

n+ 1
, . . . ) · (0, . . . , 0, xn+1

n+ 1
, . . . )

=
x2n+1

(n+ 1)2
+

x2n+2

(n+ 2)2
+ · · · ≤

x2n+1

(n+ 1)2
+

x2n+2

(n+ 1)2
+ · · · =

≤ x21
(n+ 1)2

+ · · ·+ x2n
(n+ 1)2

+ · · · = 1

(n+ 1)2
(x21 + · · ·+ x2n + . . . ) =

||x||2

(n+ 1)2
.

Taking the square root of both sides, we arrive at

||(T − Tn)x|| ≤ ||x||
n+ 1

=⇒ ||T − Tn|| <
1

n+ 1
.

As n→∞, we see that Tn → T . As Tn is always rank n, {Tn}∞n=1 is a sequence of finite-rank
operators, so T is compact.
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3 Schmidt Representation and Singular Values

Now that we have defined compact operators, we can start to look into some of their prop-
erties. It is often useful to find alternative representations and decompositions of a function
if possible. This kind of result is achievable on a Hilbert space for compact operators.

Theorem 10. [13] Let H and G be Hilbert spaces. For each T ∈ K(H,G), there exists
a decreasing null sequence {sn}∞n=1 in [0,∞) and orthonormal systems {en}∞n=1 in H and
{fn}∞n=1 in G, such that

T =
∞∑
n=0

sn〈·, en〉fn,

where the series converges in the operator norm.

Proof. T ∗T is compact and self-adjoint. Take λ to be a non-zero element in the spectrum
of this operator and x to be a corresponding eigenvector normalized such that ||x|| = 1. We
have that

λ = 〈λx, x〉 = 〈T ∗Tx, x〉 = 〈Tx, Tx〉 ≥ 0.

The above condition is equivalent to the spectrum of T ∗T being contained in the interval
[0, ||A||2]. For compact self-adjoint operators, we have that there exists an orthonormal
sequence {en}n∈N corresponding to a null sequence of real eigenvalues {λn}n∈N such that
A =

∑∞
n=0 λ〈·, en〉en, where the series converges in the operator norm. Therefore, we have

that

T ∗T =
∞∑
n=1

s2n〈·, en〉en.

For n ∈ N with sn > 0, define fn = s−1n Ten. Then we have that

〈fn, fm〉 = s−1n sm−1〈Ten, T em〉 =
1

snsm
〈T ∗Ten, em〉 =

s2n
snsm

〈en, em〉 =

{
s2n
snsm

if m = n,

0 else.

If N = {n ∈ N : sn > 0} is a finite set, then we extend the orthonormal system {fn}n∈N to
{fn}n∈N. For y ∈ H with y ⊥ en for all n ∈ N, we have that

||Ty||2 = 〈Ty, Ty〉 = 〈T ∗Ty, y〉 = 0.

Thus from the definition of {fn}n∈N we have

Tx = T

(
x−

∞∑
n=0

〈x, en〉en

)
+ T

(
∞∑
n=0

〈x, en〉en

)
=
∞∑
n=0

〈x, en〉Ten =
∞∑
n=0

sn〈x, en〉fn.

12



The above form of a linear operator is known as its Schmidt representation. Since each
sn〈·, en〉fn is finite-dimensional, we thereby have that every compact operator is the limit of
finite-dimensional operators. To see this directly, consider the partial sum

Tk =
k∑

n=0

sn〈·, en〉fn.

Clearly, Tk → T . Therefore, every Hilbert space has the approximation property. Note that
while the sequences {en}∞n=1 and {fn}∞n=1 are not unique, as there are many orthonormal
systems in a Hilbert space, the sequence {sn}∞n=1 is. These numbers are known as singular
values.

Definition 15. The singular values {sn}∞n=1 of an operator T are given by the eigenvalues
of
√
T ∗T . We will denote these as sn(T ).

We provide an example on how to compute the singular values of a matrix operator. This
process is not difficult, but sometimes tedious, so we employ the assistance of a calculator.

Example 7. Let the matrix operator A be given by

A =

[
1 2
3 4

]
=⇒ A∗A =

[
1 2
3 4

] [
1 3
2 4

]
=

[
5 11
11 25

]
.

The eigenvalues of this matrix are 15±
√

221, so its singular values are
√

15±
√

221.

Singular values see a wide array of applications in a variety of fields, from functional
analysis to image processing. These tools, such as other decomposition similar to those
above, are commonly used in both pure and applied contexts. This usefulness has led to
a considerable development of theory around these values and some of their properties are
explored below.

Definition 16. [15] A map s : X →
(
sn(X)

)
from a Banach space X into the set of

sequences of non-negative numbers is called an s-number function if the following conditions
are satisfied (n = 1, 2, . . . ):

1. ||S|| = s1(S) ≥ s2(S) ≥ · · · ≥ 0 for S ∈ L(E,F ).

2. sn(S + T ) ≤ sn(S) + ||T || for S, T ∈ L(E,F )

3. sn(RST ) ≤ ||R||sn(S)||T || for T ∈ L(E0, E), S ∈ L(E,F ), R ∈ L(F, F0)

4. If dimS > n and S ∈ L(E,F ), then sn(S) = 0.

5. If dimE ≥ n, then sn(IE) = 1,

where E0, E, F, F0 are all Banach spaces.

13



4 Approximation Numbers

On Hilbert spaces, the singular values are the only s-number [3]. However, this is not
necessarily true on an arbitrary Banach space. In attempt to generalize s-numbers to Banach
spaces, we start by looking at an equivalence of singular values on Hilbert spaces. Consider
the following definition:

Definition 17. Let X, Y be Banach spaces and T ∈ B(X, Y ). Then

αn(T ) = inf{||T − A|| : A ∈ L(X, Y ) with rank(A) < n}

be the nth approximation number of T .

Theorem 11. [14] For every A ∈ K(H,G) and all n ∈ N,

sn(A) = αn(A).

Proof. Since A is a compact operator, it has some Schmidt representation

A =
∞∑
n=0

sn〈·, en〉fn.

By considering the partial sum of this series, we have an approximation for A that includes
singular values, allowing us to connect αn(A) and sn. We see that

α2
n(A) ≤ ||Ax−

n−1∑
j=0

sj〈x, ej〉fj||2 = ||
∞∑
j=n

sj〈x, ej〉fj||2.

By the definition of the operator norm and the fact that ||fj|| = 1, we have that the above
is less than

∞∑
j=n

||sj||2||〈x, ej〉||||fj||2 =
∞∑
j=n

s2j |〈x, ej〉|2.

By Bessel’s inequality and the fact that ||x|| ≤ 1, the above is less than

s2n||x||2 ≤ s2n =⇒ αn(A) ≤ sn.

To show the other direction, take A ∈ L(E,F ) with rank(A) < n. As this operator is
finite-dimensional, if we restrict it to the span of {ej}nj=0 must have a non-trivial kernel. Let
y =

∑
ajej be in this kernel and normalize it so ||y|| = 1. It follows by the definition of the

operator norm that
||A−B||2 ≥ ||(A−B)y||2.

Since y is in the kernel of B and due to the Schmidt representation of A, we have that the
above is equal to

||Ay||2 = ||
n∑
j=0

sjajfj|| ≥ ||
n∑
j=0

s2j |aj|2|| ≥ s2n =⇒ αn(A) ≥ sn.

Thus, we must have that αn(A) = sn(A).

14



At the beginning of this section, we discussed a measure of non-compactness γ. Through
the use of approximation numbers, we can compute an upperbound on its value.

Theorem 12. Suppose X and Y are normed linear spaces and T ∈ B(X, Y ). Define
γ(T (BX)) = γ(T ), where Bx denotes the unit ball in X. Then

γ(T ) ≤ ||T ||K ≤ αn(T ),

where ||T ||K = d(T,K(X, Y )).

Proof. First, note that

γ(T ) = inf

{
r > 0 : BX ⊂

n⋃
i=1

B(xi, r)

}
.

Recall that γ denotes the smallest positive radius such that we can find a finite subcover
of a covering of open balls of radius γ. Then there exists an open cover O that cannot be
written as a union of open balls of radius γ(T ) or greater. Let K denote the closest compact
operator to T in the sense of ||T ||K. We know that for any open cover of K’s unit ball, there
exists a finite subcover as its unit ball is compact. As such, there must exists x ∈ X with
||x|| ≤ 1 such that

Kx ∈
n⋃
i=1

B(xi, r) ⊂ O,

but

Tx 6∈
n⋃
i=1

B(xi, r),

where xi = x for some x. This implies that

||Tx−Kx|| ≥ r =⇒ ||T −K|| ≥ γ(T )

under the operator norm as Tx must exist outside of B(x, r). However, this is equivalent to

γ(T ) ≤ ||T −K|| = inf {||T −K|| : K ∈ K(X, Y )} = ||T ||K

.
Next, recall that

||T ||K = inf {||T −K|| : K ∈ K(X, Y )} .

Therefore, it is the best approximation of T by a compact operator. Since all finite-rank
operators are compact, we know that ||T ||K is always at least as good as αn(T ). Therefore,
we have the bound

||T ||K ≤ αn(T ).

Putting these two inequalities together, we arrive at the desired result.
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We will take some time to dive into the properties of approximation numbers in the next
section. We will find that they will be invaluable tools for developing a spectral theory for
Banach spaces .

We observed in the preceding section that on a Hilbert space, singular values are equiva-
lent to approximation numbers. We will spend some time now exploring some applications of
approximation numbers. We are most interested in how they differ between Hilbert spaces
and Banach spaces. We begin by showing the approximation numbers are indeed still s-
numbers on a Banach space.

Theorem 13. The approximation numbers are s-numbers.

Proof. We proceed by proving that αn satisfies all 5 necessary conditions of an s-number
function.

1. Let S ∈ L(E,F ). We first want to show that α1(S) = ||S||. There is exactly one
operator with rank less than 1: the zero operator 0(x) = 0. It follows immediately
that α1(S) = ||S − 0|| = ||S||.
We will now show that αi(S) ≥ αi+1(S). Let A ∈ L(E,F ) with rank(A) < i such that
αi(S) = ||S − A||. Then we also know that rank(A) < i+ 1. It is clear then that

αi+1(S) = inf
rank(B)<i+1

||S −B|| ≤ ||S − A|| = αi(S).

Of course, for any n, αn(S) ≥ 0 as the operator norm is non-negative.

2. Let S, T ∈ L(E,F ). Let A ∈ L(E,F ) with rank(A) ≤ n such that αn(S) = ||S − A||.
By the first property of s-numbers and the triangle inequality,

αn(S + T ) ≤ ||S + T − A|| ≤ ||S − A||+ ||T || = αn(S) + ||T ||.

3. Let T ∈ L(E0, E), S ∈ L(E,F ), and R ∈ L(F, F0). Let A ∈ L(E,F ) with rank(A) ≤ n
such that αn(S) = ||S − A||. Note that rank(RAT ) ≤ n due to A’s own rank. By
applying the definition of the operator norm twice, we get

αn(RST ) ≤ ||RST −RAT || = ||R(S − A)T || ≤ ||R||||S − A||||T || = ||R||αn(S)||T ||.

4. Let rank(S) < n. Then the best approximation of S with rank less than n is S itself,
i.e. αn(S) = ||S − S|| = 0.

5. The proof for this 5th property was taken from [15]. Let dim(E) ≥ n. Assume that
αn(IE) ≤ 1. Then there exists an A ∈ L(E,E) and rank(A) ≤ n such that ||IE−A|| ≤
1. Since we can write A = IE − (IE − A), A is invertible by the Neumann series and
thusly rank(A) ≥ n. This is a contradiction.

We are now confident that there are some equivalences between approximation num-
bers and singular values between the two spaces. One might be interested precisely in the
relationship between s-numbers and approximation numbers. This may be easily computed.
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Theorem 14. [15] For any s-number sn and S ∈ L(E,F ), sn(S) ≤ αn(S).

Proof. Let S ∈ L(E,F ). Then for each s-number function and A ∈ L(E,F ) with dim(A) <
n, we have

sn(S) = sn(A+ (S − A)) ≤ sn(A) + ||S − A|| = ||S − A||

by the (2) and (4) axioms of s-numbers. Since the above inequality is true for an arbitrary
A ∈ L(E,F ) with dim(A) < n, it follows that

sn(S) ≤ inf
A∈L(E,F )

||S − A|| = αn(S)

for all S ∈ L(E,F ).

Approximation numbers serve as a tight upper-bound to s-numbers. Having such a
special relationship to generalized singular values, we should expect theorems on Banach
spaces and Hilbert spaces to be at least somewhat similar. In fact, this trend will continue
for some time, where only minor changes to the hypotheses of theorems will be required to
achieve similar results. The proofs, however, are typically more involved.

5 Approximations of Adjoint Operators

The previous discussion leads to the first property we will investigate:

Theorem 15. Let E and F be Banach spaces and T ∈ L(E,F ). Then

αn(T ) = αn(T ∗).

A proof of the above result is easy when E and F are Hilbert spaces. The approximation
numbers of T are found by computing the eigenvalues of

√
T ∗T . Likewise, the approximation

numbers of T ∗ are found by finding the eigenvalues of
√
TT ∗. Note that the eigenvalues of

T ∗T and TT ∗ differ only by the multiplicity of 0 eigenvalues. As matrix operators are square
in Hilbert spaces, the eigenvalues of T ∗T and TT ∗ are the same.

On a Banach space, we can achieve a similar result if we restrict T ∈ K(X, Y ). However,
we must first build tools. We introduce the following:

Theorem 16. [12] Let E ⊂ X∗∗ and F ⊂ X∗ be finite dimensional subspaces. Given ε > 0,
there exists an ε-isometry T : E → X such that T |E∩X = id|E∩X and f(Te) = e(f) for all
f ∈ E and all e ∈ E.

While the statement itself is esoteric, the result has an intuitive explanation. Every
finite-dimensional subspace of X∗∗ has to also be in X. In other words, X and its double
dual only disagree in infinite dimensions. Even then, they only disagree by a distance of
ε, due to the existence of an ε-isometry. We may now prove the desired result on Banach
spaces.

Theorem 17. [7] If T is compact, αn(T ) = αn(T ∗).
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Proof. Let T ∈ K(X, Y ), where X and Y are Banach spaces. First, note that it is easy to
observe that an(T ∗) ≤ αn(T ). Let A be the best rank n approximation of T . Then

an(T ) = ||T − A|| = ||(T − A)∗|| = ||T ∗ − A∗|| ≥ αn(T ∗).

All that is left is to show that an(T ) ≤ αn(T ∗). Let E ⊂ Y ∗∗ and F ⊂ Y ∗ be finite-
dimensional subspaces. Since T is compact, both T ∗ and T ∗∗ are also compact. Let BX∗∗

denote the unit ball in X∗∗. Then by the compactness of T ∗∗, T ∗∗(BX∗∗) is a totally bounded
set. Since T ∗∗(BX∗∗) is totally bounded, for any ε > 0 we can find

T ∗∗(BX∗∗) ⊂
N⋃
i=1

B(xi, ε),

where xi ∈ T ∗∗(BX∗∗) for all i.
Let {εj}∞j=1 be a sequence of positive numbers converging to 0. We then have a family

of finite coverings of T ∗∗(BX∗∗) which depend on j, that is

T ∗∗(BX∗∗) ⊂
N(j)⋃
i=1

B(xi,j, εj).

Let Gj denote the space spanned by the sequence {T ∗∗xi,j}N(j)
i=1 . By the principle of local

reflextivity, there exists an εj-isometry φj : Gj → Y such that φj|Gj∩Y = id|Gj∩Y , where id
is the canonical injection from Gj to Y . We will define

ϕ :
∞⋃
j=1

Gj → Y such that ϕ(x) = φj(x) when x ∈ Gj.

This function is well defined as if x ∈ Gi and x ∈ Gj, then

φi(x) = id|Gi∩Y (x) = x = id|Gj∩Y (x) = φj(x)

as Gi is a subset of Y by the compactness of T ∗∗. Naturally, we may extend ϕ to the closure
of its domain and call this G. Therefore, ϕ : G→ Y .

Let A : X∗∗ → Y ∗∗ be of rank at most n such that ||T − A|| ≤ αn(T ) + ε. As A is
of finite rank, A(X∗∗) is of finite-dimensional. We can then apply the principle of local
reflextivity to find an ε-isometry ψ : A(X∗∗)→ Y such that ψ|A(X∗∗)∩Y = id|A(X∗∗)∩Y . Define
Ψ : G ∪ A(X∗∗) such that if x ∈ G, Ψ(x) = ϕ(x), and if x ∈ A(X∗∗), Ψ(x) = ψ(x). This
function is well-defined as

G ∩ A(X∗∗) ⊆ G ⊂ Y,

so if x ∈ G ∩ A(X∗∗), Ψ(x) = id(x) = x.
Let I : X → X∗∗ be the canonical map and consider ΨAI : X → Y . This function

can have at most rank n due to the presence of A. Let J : Y → Y ∗∗ denote the canonical
injection on these spaces. We see that when ||x|| ≤ 1,

αn(T ) ≤ ||T −ΨAI|| ≤ ||Tx−ΨAIx||Y = ||JTx− JΨAIx||Y ∗∗ = ||T ∗∗Ix− JΨAIx||Y ∗∗ .
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Since T ∗∗Ix ∈ G as x is in the unit ball, we have that JΨT ∗∗Ix = T ∗∗Ix as each operates
like the identity in this domain. Therefore, the above is equal to

||JΨT ∗∗Ix− JΨAIx||Y ∗∗ ≤ ||J ||||Ψ||||T ∗∗Ix− AIx|| ≤ ||T ∗∗Ix− AIx|| ≤ αn(T ∗∗).

This implies that an(T ) ≤ αn(T ∗) for all n, so the proof is complete.

Having now shown that the statement is true for compact operators, one might be curious
if we could extend it to a more generalized group of operators. However, it turns out that
this fact is not true. The counter-example follows:

Example 8. [7] Let I : `1 → c0 be the natural injection. Then αk(I) = 1 for each k ∈ N. Let
I∗ : `1 → `∞ be its adjoint. Then αk(I

∗) = 1/2 for each k ∈ N. Therefore, αk(I) 6= αk(I
∗).

6 Eigenvalues of Compact and Adjoint Operators

There are other properties of approximation numbers which have slightly different require-
ments between Hilbert and Banach spaces. As approximation numbers represent the error of
the best approximation of an operator, it makes sense to consider whether or not a sequence
of functions converges to the same error. If this is true, then we can possibly find the best
approximation of a computationally easier class of operators and get accurate estimates for
what they converge to.

Theorem 18. [2] Let H be a separable complex Hilbert space, T ∈ B(H,H) and Pn be the
orthogonal projection onto the span of {ej}nj=1, where this sequence denotes an orthonormal
basis of H.Let Tn = PnTPn. Then for each k ∈ N,

lim
n→∞

sk(Tn) = sk(T ).

In other words, the truncations of T converge to T .

In [2], work is done to find an equivalent theorem on Banach spaces. While the theorem
is quite cumbersome, a brief description of it will be included here. The author finds that
for bounded operators, under specific kinds of convergence for Tn → T and if Tn is compact
for every n ∈ N, we have

sk(T ) = sk(T
∗) ⇐⇒ lim

n→∞
sk(Tn) = sk(T ).

Moreover, if T is compact,
lim
n→∞

sk(Tn) = sk(T ).

Suppose now we require T to be self-adjoint. We can then approximate the spectrum of
an operator from its singular values. This may be of particular interest if T ∗T is an easier
function to compute the eigenvalues for than T .

19



Theorem 19. [4] Let H be a Hilbert space. If T ∈ B(H,H) is self-adjoint and the essential
spectrum of T is connected, then

lim inf sn(T ) = lim sup sn(T ) = s(T ).

Through the use of approximation numbers, we can find a similar theorem on Banach
spaces for approximating only the spectral radius. While this is weaker than the above
theorem, it is still useful as the spectral radius is the largest element of the spectrum of an
operator.

Theorem 20. [3] Let A be a complex n× n matrix and || · || be a norm in Cd. Then

ρ(A) = lim
m→∞

||An||1/n = lim sup
n→∞

||An||1/n = lim inf
n→∞

||An||1/n,

where ρ(A) denotes the spectral radius of A.

Now that we have developed a theory of approximation numbers, we may proceed to dive
into more generalized results on Banach spaces. We mentioned earlier in this thesis that self-
adjoint operators are extremely powerful for proving theorems. What would happen if we
loosen the conditions on theses operators?

7 H-Operators

Let H be a separable Hilbert space. Hilbert and Schmidt proved a powerful decomposition
theorem for all self-adjoint compact operators T : H → H. This is known as the spectral
decomposition. This theory amplified to a set of results which we call nowadays Riesz-
Theory; this field is dedicated to the study of operators S : X → X, where X is a complex
Banach space, that can be expressed as S = λIX − T with λ 6= 0 and T ∈ K(X,X). In
such study, one may find that the spectral properties of the operator T is essential and
these properties are related to the approximation quantities. However, on Banach spaces,
the definition of self-adjoint operators is quite limited. As this property is still useful, this
motivates the development of the concept of H-operators.

Definition 18. [8] Let X denote a Banach space. The linear operator T acting on X is an
H-operator if and only if its spectrum is real and its resolvent satisfies

||(T − λI)−1|| ≤ C|Im λ|−1,

where Im λ 6= 0.

H-operators are the needed generalization of self-adjoint operators to Banach spaces. In
fact, C = 1 if and only if it is self-adjoint [11]. Below, we provide an example of this fact.

Example 9. Consider the matrix operator

T =

[
3 0
0 3

]
.
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Note that the above operator is self-adjoint, because it is diagonal. Then its resolvent is given
by

T − λI =

[
3− λ 0

0 3− λ

]
=⇒ (T − λI)−1 =

[
1

3−λ 0

0 1
3−λ

]
.

The operator norm of this matrix is given by its largest singular value, which means that

||(T − λI)−1|| =
∣∣∣∣ 1

3− λ

∣∣∣∣ .
Since λ ∈ C, we have that λ = a+ bi for a, b ∈ R. Then

1

3− λ
=

1

(3− a)− bi
=

3− a+ bi

(3− a)2 + b2

=⇒
∣∣∣∣ 1

3− λ

∣∣∣∣ =

√
(3− a)2 + b2

(3− a)2 + b2
=

1√
(3− a)2 + b2

≤ 1

b2
= |Imλ|−2 ≤ |Imλ|−1

because b2 <
√

(3− a)2 + b2. Therefore, T is an H-operator with C = 1. Note that the above
bound does not work if we take C < 1.

It is useful when defining a new class of operators to determine how to construct them
specific classes of them. The following example provides a criteria for which closed linear
operators are H-operators.

Theorem 21. [11] Let T be a closed linear operator acting on X which has a monotonic
sequence {λi} of real eigenvalues, and let the corresponding sequence of eigenvectors {φ}
form a basis of X. Then T is an H-operator.

Proof. Define

σ =
∞∑
i=1

∣∣∣∣ 1

λi − λ
− 1

λi+1 − λ

∣∣∣∣ ,
where Imλ 6= 0. By looking at the triangle defined by λ, λi, and λi+1, we can see that∣∣∣∣ 1

λi − λ
− 1λi+1 − λ

∣∣∣∣ =
|λi+1 − λi|

|λi − λ||λi+1 − λ|
=
| sinαi|

Imλ
≤ |αi|

Imαi

where αi = arg(λ−λi+1)−arg(λ−λi). Since we assumed that {λi} is a monotonic sequence,
for all i, αi has the same sign. As a result,

σ ≤ |Imλ|−1
∞∑
i=1

|αi| = |Imλ|−1| arg(λ− λ1)− lim
i→∞

arg(λ− λi)| < π|Imλ|−1

because the series is telescoping. Let {Fi}∞i=1 be a sequence of functionals biorthogonal to
{φi}∞i=1 and define

Pn =
∞∑
i=1

Fi(·)φi.
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Since {φi}∞i=1 is a basis of X, the sum converges and the operator norm of Pn is bounded,
say by some real number a. This implies that

∞∑
i=1

∣∣∣∣ 1

λi − λ
− 1

λi+1 − λ

∣∣∣∣ ||Pi|| ≤ aσ ≤ aπ|Imλ|−1.

Because of this bound, the series

I

λ0 − λ
+
∞∑
i=1

(
1

λi − λ
− 1

λi+1 − λ

)
Pi

converges in the operator norm where λ0 = lim
i→∞

λi. Note that this is the resolvant of T . We

showed earlier its operator norm was bounded by aπ|Imλ|−1, so it is a H-operator and we
are done.

Recall the spectral theorem for self-adjoint operators. We know that their eigenvalues
are always real. The above example serves as a close reverse to the spectral theorem; closed
operators with real eigenvalues are H-operators.

8 Eigenvalues of Compact H-Operators

H-operators have their own unique spectral properties. For instance, we can make strong
statements regarding the multiplicity of their eigenvalues.

Theorem 22. [11] Every generalized eigenvector of an H-operator is an eigenvector.

While these properties are interesting in and of themselves, they are more valuable for
how they connect to our main topic: approximation numbers. When we have compact
H-operators, we can upper-bound the approximation numbers of an operator with their
eigenvalues.

Theorem 23. [11] If T is a compact H-operator, then

αn(T ) ≤ 2
√

2C|λn(T )|.

Proof. Let ρ > |λn(A)|. Then no point in the spectrum of T lies on the path γ = ρeit for
0 ≤ t < 2π. Define Rλ = (T −λI)−1, i.e. the resolvent of T . Consider the following integral,

P = − 1

2πi

∫
γ

Rλdλ.

P is a projection, so P = P 2. Therefore,

− 1

2πi

∫
γ

Rλdλ = − P

2πi

∫
γ

Rλdλ.
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If z ∈ γ∗, i.e. the image of γ, we know that I/(λ − z) is a holomorphic function over γ, so
its integral is zero. Therefore,

− P

2πi

∫
γ

Rλdλ = − P

2πi

∫
γ

Rλ +
I

λ− z
dλ = 0

because Rλ is also holomorphic over γ. Combining the fractions, we find that

0 =
P

2πi

∫
γ

Rλ +
I

λ− z
dλ = −(T − zI)

P

2πi

∫
γ

Rλ

λ− z
dλ.

Since z ∈ γ∗, and γ∗ contains no eigenvalues of T , (A− zI)−1 exists. This gives us

ρ2 − z2

2πi
P

∫
γ

Rλ

λ− z
dλ = 0.

It is a fact in matrix computation that

(T + zI)P = − P

2πi

∫
γ

(λ+ z)Rλdλ.

Combining this with the earlier equality, we have that

(T + zI)P = − P

2πi

∫
γ

λ2 − ρ2

λ− z
Rλdλ.

Define Q = 1− P . Plugging this into the previous equality, we find that

T −QBz = −zI − 1

2πi

∫
γ

λ2 − ρ2

λ− z
Rλdλ

where Bz is a linear operator. Evaluating the right integral with the fact that |λ−z| ≥ p−|z|,
we arrive at

||T −QBz|| ≤ |z|+ 2
√

2Cρ2(ρ− |z|)−1.

Since dimQ ≤ n− 1, we get that

sn(A) ≤ |z|+ 2
√

2C(ρ− z)−1.

Letting ρ→ |λn(T )| and |z| → 0, we arrive at the desired result.

Recall that in Hilbert spaces, we can strictly equate the approximation numbers of an
operator with its singular values. The above theorem then is a generalization of this result
to Banach spaces, where we can only provide a bound. Even though its not a strict equality,
we will find it useful later.

Note that without compactness, we cannot find any relationship between αn(T ) and
|λn(T )|. An example of this is below.
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Example 10. Take T ∈ B(C2) such that its matrix representation is[
2 0
1 1

]
.

As this is a lower triangular matrix, we see that its eigenvalues are λ1(T ) = 2 and λ2(T ) = 1.
We can further find that the matrix representation of T ∗T is[

5 1
1 1

]
with eigenvalues 3±

√
5. Since we are on a Hilbert space, we know that αn(T ) = λn

[
(T ∗T )1/2

]
.

Therefore, a1(T ) =
√

3 +
√

5 ≈ 2.29 > 2 = λ1(T ), but a2(T ) =
√

3−
√

5 ≈ 0.87 < 1 =
λ2(T ). Therefore, there is not regular relationship between αn(T ) and λn(T ).

H-operators are also nice because we have some information regarding the conditions for
which they can be perfectly approximated by operators of finite rank.

Theorem 24. If T is an H-operator whose spectrum consists of zero and a sequence of
eigenvalues of finite multiplicity which converges to 0, then T is compact and αn(T )→ 0 as
n→ 0.

The above theorem restates a fact we proved earlier about compact operators; if an
operator can be approximated by a finite rank operator, then it is also compact. The
difference now is that its extended to particular types of H-operators.

We will define a new kind of distance similar to the approximation numbers in order to
strengthen the bounds found earlier.

Definition 19. Let L be a Banach space and Ln be a subspace of L for all n ∈ N. The
Kolmogorov distance of an operator dn(T ) is given by

dn(T ) = inf
Ln

sup
||x||≤1

ρ(Tx, Ln),

where ρ(y, L) = inf
z∈L
||y − z||.

Theorem 25. [11] If T is a compact H-operator,

|λn(T )| ≤ 2
√

2(C + 1)dn−1(T )

Proof. The statement is clearly true when |λn(T )| = 0, as dn−1(T ) ≥ 0. Therefore, suppose
|λn(T )| 6= 0. Let en denote the eigenvector corresponding to λn(T ) and E be the space
spanned by these eigenvectors. Let T̃ be a contraction of T onto E and let G = (T̃ )−1. In
[11], it is shown that under these conditions, G is also an H-operator with a constant less
than or equal to C + 1. By Theorem 23, we have that

||G|| = α1(G) ≤ 2
√

2(C + 1)|λ1(G)| = 2
√

2(C + 1)|λn(T )|−1.
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If T : X → Y , let A ⊂ X such that dim(A) = n − 1. Since dim(E) = n, by the extension
theorem in [10], there exists a non-zero vector y ∈ E such that ρ(y, A) = ||y||. We define
x = Gy. Therefore, Tx = y and

ρ(y, A) = ||y|| = ||G−1x|| ≥ ||G||−1||x|| ≥ |2
√

2(C + 1)|−1|n(T )|.

Supposing ||x|| = 1 and the fact that A is arbitrary gives us

dn−1(A) ≥ (2
√

2(C + 1))−1|λn(A)|.

Multiplying both sides by 2
√

2(C + 1) completes the proof.

With this new distance metric, we can find even more bounds for our approximation
numbers.

Theorem 26. T is a compact H-operator implies that

dn−1(T ) ≤ αn(T ) ≤ 2
√

2C|λn(T )| ≤ 8C(C + 1)dn−1(T )

Proof. In [15], Pietsch shows that dn(T ) ≤ αn+1(T ) for an operator T . Combining this with
Theorems 23 and 25, we get

dn−1(T ) ≤ αn(T ) ≤ 2
√

2C|λn(T )| ≤ 8C(C + 1)dn−1(T ).

One important consequence of the above theorem follows:

Corollary 1. If T is a compact H-operator and p > 0, then the convergence of any of the
series

∞∑
n=1

|λn(T )|p,
∞∑
n=1

αpn(T ),
∞∑
n=1

dpn(T )

implies the convergence of the others.

Proof. Suppose converges. Then by Theorem 26,

∞∑
n=1

(dn−1(T ))p ≤
∞∑
n=1

αn(T )p ≤ 2
√

2C
∞∑
n=1

|λn(T )|p <∞.

So the other two converge.

Suppose
∞∑
n=1

|λn(T )|p converges. Then by Theorem 26, we have that

∞∑
n=1

αn(T )p ≤ 2
√

2C
∞∑
n=1

|λn(T )|p ≤ 8C(C + 1)
∞∑
n=1

dn−1(T )p <∞.
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So the other two converge.

Suppose
∞∑
n=1

αn(T )p converges. Then by Theorem 26,

∞∑
n=1

dn−1(T )p ≤
∞∑
n=1

αn(T )p <∞,

so
∞∑
n=1

|λn(T )|p converges. However, we have already showed that if this converges, then

∞∑
n=1

|λn(T )|p converges. We are done.

In other words, the above corollary states that if any of the sequences {αn(T )}∞n=1,
{dn(T )}∞n=1, or {|λn(T )|}∞n=1 are in `p, then they are all in `p. This result is especially
powerful because each of the sums of these sequences as defined in the above corollary define
a norm. Therefore, each space must also contain the same elements.

9 Q-Compactness

Over the course of this paper, we have seen how compactness serves as an invaluable tool
in our analysis. The purpose of this section is to loosen the conditions on compactness and
see which results generalize. However, to figure out how to loosen these conditions, we first
have to view a different characterization of compactness. We begin with a definition.

Definition 20. The convex hull of a set A is defined as

co(A) =

{
n∑
i=1

λixi : n ∈ N, x1, . . . , xn ∈ A, λ1, . . . , λn ≥ 0,
∞∑
i=1

λi = 1

}
.

The convex hull of a set typically creates a polyhedra. In the case of our current problem,
we will use it to define a new flavor of compactness. Before we get to this definition however,
we want to explore a few more properties of the convex hull.

Theorem 27. The closure of the convex hull, that is c̄o(A), is the smallest closed convex set
containing A. Moreover, c̄o(A) = co(Ā).

Proof. Let B be a closed convex set containing A. Then every convex combination of points
in B is still in B. Since A ⊂ B, every convex combination of points of A is in B. However,
this is precisely the definition of the convex hull. The limit points of this set must also be
in B, as B is closed, so

c̄o(A) ⊆ B.

Thus, c̄o(A) is a subset of every closed convex set containing A, so it is the smallest closed
convex set containing A.
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Consider x ∈ c̄o(A). Note that x is a limit point of elements in co(A) if and only if there
exists the following sequence:

lim
j→∞

{
n∑
i=1

λijxij

}
→

n∑
i=1

λixi.

However, then for every i we have a family of sequences {xij}∞j=1 which converges to some
xi ∈ Ā. x is the convex combination of points in Ā. Therefore, a point is a limit point in
c̄o(A) if and only if it is in co(Ā).

Now let x ∈ c̄o(A), but not be a limit point. This is true if and only if x ∈ co(A). Since
A ⊂ Ā, it follows that the previous statement is equivalent to saying that co(A) ⊂ co(Ā)
and x ∈ co(Ā). Therefore, a point is not a limit point in c̄o(A) if and only if it is in co(Ā).
As all points must either be limit points or not limit points, we have shown c̄o(A) = co(Ā).

As one may see above, the convex hull has a multitude of useful properties. One may
naturally try to find more. Investigations of the convex hull have led to an equivalent
definition of compact sets, as follows:

Theorem 28. [1] A subset of a Banach space is compact if and only if it is included in the
convex hull of a sequence that converges in norm to zero.

Compactness of sets is now linked to c0 spaces and convexity. We can extend this defini-
tion to work for compact operators as well.

Theorem 29. [1] An operator T : X → Y between two Banach spaces is compact if and
only if there exists a sequence {un} of linear functionals in X∗ with ||un|| → 0 such that
inequality

||Tx|| ≤ sup
n
|〈un, x〉|

holds for all x ∈ X.

In this paper, we have shown that compact operators and approximation numbers are
intrinsically linked. As we have just seen an equivalent definition to compact operators
above, one may ask if there are approximation theorems which use it. These approximation
theorems will deal with Q-compactness. When we say Q, we mean an approximation scheme.

Definition 21. [1] Let X be a Banach space and {Qn} be a sequence of subsets of X
satisfying

1. Q1 ⊆ · · · ⊆ Qn ⊆ · · · ⊆ X

2. λQn ⊂ Qn for all scalars λ and n = 1, 2, . . .

3. Qm +Qn ⊂ Qm+n for m,n = 1, 2, . . .

Then {Qn} is an approximation scheme of X.
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With this definition of approximation schemes, we continue on to the definition of Q-
compactness.

Definition 22. [1] We say D is Q-compact if

lim
n→∞

δn(D,Q) = 0,

and similarly T ∈ L(Y,X) is a Q-compact map if

lim
n→∞

(T,Q) = 0

where
δn(D,Q) = inf{r > 0 : D ⊂ rUX + A for some A ∈ Qn(X)}.

Earlier in this section, we presented an alternative definition for compact sets and com-
pact operators. Using these definitions, we arrive at similar equivalencies for Q-compact sets
and Q-compact operators.

Theorem 30. [1] Let X be a Banach space with an approximation scheme with sets An ∈ Qn

satisfying the condition |λ|An ⊂ An for |λ| ≤ 1. A bounded set D of X is Q-compact if and
only if there is a c0 sequence {xn,k}k ⊂ An such that

D ⊂

{
∞∑
n=1

λnxn,k(n) : xn,k(n) ∈ (xn,k),
∞∑
n=1

|λn| ≤ 1

}
.

Theorem 31. [1] Let X and Y be Banach spaces, T ∈ L(X, Y ), and assume that both T
and T ∗ are both Q-compact maps. Then there exists a sequence {un,k} ∈ Qn with ||un,k|| → 0
as n→∞ uniformly in k, such that the inequality

||Tx|| ≤ sup |〈un,k(n), x〉|

holds for every x ∈ X. Here Qn is a class of subsets of X∗ with the property that un,k(n) ∈
{un,k}.

10 Further Questions

We finish this paper by exploring a few open questions. In Approximation theory it is well
known that the error of the best approximation is related to the smoothness of functions.
The approximation numbers αn are the error of the best approximation in the space of
bounded linear operators. We showed earlier in this paper that compactness is related to the
approximation numbers through the measure of non-compactness Γ. Therefore, many open
questions center around investigating the relationship between smoothness, compactness,
and approximation numbers.

Let Apα be an approximation space, that is, the space of sequences of approximation
numbers being in a `p space. We know from Corollary 1 that for compact H-operators,
approximation spaces can be defined by sequences of eigenvalues being in `p spaces. One
open question is that can one have inclusion, embedding iteration properties for these spaces?
For example, is it true that Ap1α ⊆ Ap2α when p1 ≤ p2? In addition to this question, we are
also interested in the speed of convergence for these sequences of approximation numbers
and eigenvalues.
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