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Abstract

In this thesis, we analyze various types of Latin squares, their solvability
and embeddings. We examine the results by M. Hall, P. Hall, Ryser and
Evans first, and apply our understandings to develop an algorithm that the
determines the minimum possible embedding of an unsolvable Latin square.
We also study Latin squares with missing diagonals in detail.
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Chapter 1

Introduction

1.1 The Topic

Sudoku, a puzzle invented in the year 1979, is a 9x9 grid divided into
nine 3x3 sections [Meng and Lu (2011)]. The goal of the game is to fill the
grid such that every row, column, and 3x3 section contains every number
between 1 and 9 exactly once. In a classic Sudoku game, solutions have both
properties of existence and uniqueness. However, it is not obvious how we
may guarantee that a partially filled Sudoku grid can be uniquely solved. In
order to understand properties of solvability and uniqueness, we address
Sudoku’s parent grid, the Latin square.

A Latin square of order 𝑛 is an 𝑛 by 𝑛 grid filled with entries from the
element list [1, 2, . . . 𝑛] such that each element from 1 through 𝑛 appears
in every column and every row exactly once. Thus, every Sudoku grid is
a Latin square of order 9. However, not every Latin square of order 9 is a
Sudoku grid. That is because, unlike Sudoku, Latin squares do not have the
extra sectioning of the grid into 3x3 squares. So one might say a Latin square
is an arbitrarily sized, simplified Sudoku. Or, if we consider the timeline of
which grid existed first, Sudoku is more complicated, size-restricted Latin
square.

Given a partially filled Latin square, the grid may either be solvable, or
not.
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1
2

Figure 1.1 A 2x2 Latin square that cannot be completed.

For example, if we consider the simple 2x2 Latin square in figure 1.1, we
see that, while it is currently adhering to the properties of Latin squares,
where no number between 1 and 2 is repeated in a row or column, there is
no way to continue filling the grid while still adhering to these rules. So the
square in figure 1.1 is not solvable. We define partially filled Latin squares
that are not solvable as incomplete Latin squares.

However, if we simply extend the 2x2 grid into a 3x3, by adding a column
to the right and a row on the bottom, we would need to fill this new grid
with elements from 1 to 3. In the new extended grid, we ask ourselves again
whether or not the grid can be solved. As shown in figure 1.2, the Latin
square does indeed become solvable when extended to a 3x3.

1 1
2

1 3 2
3 2 1
2 1 3

Figure 1.2 Extension of the unsolvable 2x2 to a solvable 3x3

So we have seen that a partially filled Latin square may or may not be
solvable. This raises the question, which partially filled Latin squares can
be solved? For those that cannot be solved, how much must we extend the
Latin square by in order for it to be solvable? Or in other words, if we have
an unsolvable Latin square 𝐿 of order 𝑛, can we embed 𝐿 into a larger grid 𝑇

of order 𝑡 such that it becomes solvable? If so what is the minimum value 𝑡

can be?
Our goal for this thesis is to understand already proven conditions for

a Latin square to be embedded and completed, and to develop our own
conditions for specific outcomes of the grid.

1.2 Literature Review

Key work conducted on understanding partially filled Latin Squares was
primarily conducted between mid 20th century until the beginning of the
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21st century. Before delving into Latin squares, we first address P. Hall’s
Marriage theorem [Hall (1935)] as an important theorem used in future
results. Then, M. Hall wrote a paper on the completion of Latin squares
made up of complete rows and empty rows, which we will address and
prove in chapter 3 [Hall (1945)]. In 1951, Ryser then used the results of
both Halls to develop a criterion necessary and sufficient to guarantee
that a rectangular grid filled with elements from 1 to 𝑡 can successfully be
embedded in a Latin square of order 𝑡 [Ryser (1951)]. Following Ryser’s work,
Evans continued the line of thinking regarding partially filled Latin squares.
Evans proved that for an arbitrary partially filled Latin square of order 𝑛,
the minimum embedding needed to guarantee completion is to a grid of
order exactly 2𝑛 [Evans (1960)]. Of course there exist Latin squares that
can be embedded into squares of order less than 2𝑛. However, what Evans
proves is that 2𝑛 will always be sufficiently large enough, and that there do
indeed exist Latin squares that need to be extended to an order of 2𝑛, in other
words, the upper bound of 2𝑛 is sharp. Following this paper, Evans made a
conjecture that any partially filled Latin square of order 𝑛 with at most 𝑛 − 1
elements in it will always be solvable. This conjecture was approached by
various mathematicians, each working to improve the results of those before
them until the conjecture was finally proved by both Andersen and Hilton
[Andersen and Hilton (1983)] as well as by B. Smetaniuk [Smetaniuk (1981)].
These are the primary works and results we will be analysing and building
on in this thesis.

1.3 Guide to the Thesis

We begin the thesis with a preliminary chapter that goes over properties of
bipartite graphs that will prove useful to us when attempting to decipher
the proofs of Ryser and Evans works. We also look at permutation matrices
and a way we can utilize them to decompose other matrices. We continue
by considering a very specific case of Latin squares where each row is either
entirely filled or completely empty, and we consider the solvability of such
grids according to M. Hall. These types of grids will come up again in future
chapters, and so we choose to address them earlier on to be easily referenced
later. Once we have developed a complete understanding of these chapters
we can move on to stating and proving Ryser’s theorem, which gives us the
conditions needed to solve grids with specific properties. While Ryser’s
conditions do not directly answer the question of which partially filled Latin
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squares can be solved, his work does offer a very strong foundation on
which many other mathematicians have built, and on which we intend to
develop our own work. Following Ryser, we will study Evans’ work which
is a direct application of Ryser’s results. That will conclude our examination
of other mathematician’s works in our own words and we will continue by
presenting our own findings. Since Evans merely gives an upper bound
for embedding partially filled Latin squares, we created an algorithm to
determine the smallest embedding needed to solve a given Latin square and
develop a code to implement said algorithm. Following that, we studied
a specific case of Latin squares where only the diagonal is missing and
considered the range of embedding sized such Latin squares would need.



Chapter 2

Bipartites and Permutation
Matrices

We use this chapter as a preliminary one to state important theorems and
lemmas that will be relevant in our work moving forward. The statements in
this chapter are not explicitly about Latin squares, but rather about bipartite
graphs and permutation matrices, which is why we are including them here
in the preliminary chapter, rather than introducing them in the chapters
where they will be used. We will only provide proofs for some statements,
but the reader can feel free to refer to the citations if they wish to explore
any particular statement further.

2.1 Properties of Bipartite Graphs

In this section, we state the Marriage theorem along with an important
corollary of the theorem. We begin by first addressing some definitions and
notations. First, we notate a bipartite graph 𝐺 as 𝐺 = (𝑋,Δ, 𝑌) where 𝑋 and
𝑌 are the two sets of vertices that make up a bipartite graph, and Δ is the
edges set. The use of absolute values, such as |𝑋 | denotes the size of a set,
in this case, |𝑋 | is the number of vertices in the set 𝑋. Next we also have
the notation 𝑁(𝑆), where if 𝑆 is a subset of vertices in 𝑋, then 𝑁(𝑆) is the set
of vertices in 𝑌 that are adjacent to the vertices in 𝑆. A matching is defined
as an independent edge set, or in other words, an edge set where no two
edges are adjacent. A matching can be thought of as a one-to-one pairing of
some vertices. A matching is perfect if all the vertices in 𝐺 are incident to the
edge set in the matching (so it is a one-to-one pairing of all the vertices in
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the bipartite graph). Lastly, a regular bipartite graph is a graph where all the
vertices have the same degree. Similarly, a graph is 𝑘-regular if every vertex
in the graph has degree exactly 𝑘.

Theorem 2.1. [The Marriage Theorem] [Hall (1935)] Let 𝐺 = (𝑋,Δ, 𝑌) be a
bipartite graph with |𝑋 | ≤ |𝑌 |. Then 𝐺 has a matching of size |𝑋 | if and only if,
for every 𝑆 ⊆ 𝑋, we have |𝑁(𝑆)| ≥ |𝑆 |.
Corollary 2.1. A regular bipartite graph always has a perfect matching.

The reader may find a proof of the corollary in Shahriari (2022) on page
596 under problem 11.3.13

2.2 Permutation Matrices

In this section, we will state and prove a lemma that is used in the proof of
Ryser’s theorem in chapter 4. The reader can feel free to skip this section for
now, and return to it once they reach Ryser’s theorem, which is when this
lemma becomes relevant.

Before we get into the lemma, we first set up some definitions and
notations.

We define a 0-1 matrix to be any 𝑚 × 𝑛 matrix with entries of only 0 or 1.
A permutation matrix, much like its name suggests, is a 0-1 matrix that acts
on a matrix 𝐴 by permuting its rows or columns (depending on whether
it is being left or right multiplied). A matrix 𝐿 is said to be a permutation
matrix if it satisfies the condition that 𝐿𝐿𝑇 = 𝐼𝑚 .

We note that a permutation matrix must have exactly one non-zero entry
in every row and no more than one non-zero element in any column. So for a
permutation matrix of size 𝑟 × 𝑐 (for 𝑟 ≤ 𝑐), the matrix 𝐿 would have exactly
𝑟 1s, one in each row, and 𝑟 of the columns have a 1 in them. Consider figure
2.1 as an example of a permutation matrix.

0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

Figure 2.1 Example of a 3 × 6 permutation matrix.

We now move on to the lemma itself, which states the conditions necessary
to write a 0 − 1 matrix as the sum of permutation matrices.
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Lemma 2.1. [Decomposition Lemma] Consider a 0− 1 matrix 𝐴 with dimensions
𝑟 × 𝑐 with 1 ≤ 𝑟 < 𝑐. Let there be exactly 𝑘 1s in every row. Let 𝑀(𝑖) be the
number of 1s in the 𝑖𝑡ℎ column of 𝐴. Then if for each 𝑖 ∈ 1, 2, . . . 𝑐, if we have the
condition that

𝑘 − (𝑐 − 𝑟) ≤ 𝑀(𝑖) ≤ 𝑘,

then we we can write 𝐴 as the sum of 𝑘 permutation matrices 𝐿1 + 𝐿2 + . . . 𝐿𝑘 .

We wish to show that we can write our matrix 𝐴 in the lemma as the sum
of 𝑘 permutation matrices. We do that by first representing 𝐴 as a bipartite
graph, and then letting each permutation matrix 𝐿𝑖 be a matching in our
graph. We claim that that is the equivalent to the desired result of writing 𝐴

as 𝐿1 + 𝐿2 + . . . 𝐿𝑘 .

Proof. First we represent 𝐴 as a bipartite graph:
Let 𝐺(𝑋,𝑌) be a bipartite graph where 𝑋 represents the rows of 𝐴 and 𝑌

represents the columns of 𝐴. We note that |𝑋 | = 𝑟 and |𝑌 | = 𝑐, as that is
the number of rows and columns in 𝐴. We denote the elements of 𝑋 and 𝑌

as 𝑥1 , 𝑥2 , . . . 𝑥𝑟 for the 𝑟 rows and 𝑦1 , 𝑦2 , . . . 𝑦𝑐 for the 𝑐 columns of 𝐴. Then
for every non-zero entry 𝑎𝑖 , 𝑗 in the matrix 𝐴, we add an edge between the
vertices 𝑥𝑖 and 𝑦 𝑗 . So for example if we have a matrix 𝐴 with 𝑎2,4 = 1, then we
would add an edge between the vertices of 𝑥2 and 𝑦4. The number of edges
added is therefore equal to the number of 1s in the matrix. Subsequently,
the degree of a vertex, denoted 𝑑(𝑥𝑖) or 𝑑(𝑦 𝑗), is equal to the number of 1s in
that row or column.

1 0 0 0 0 1
0 0 1 1 0 0
0 1 0 0 1 0

Figure 2.2 A 0 − 1 matrix 𝐴 and its bipartite representation.

Given the conditions of this lemma, we know the following bits of
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information:

1 ≤ 𝑟 < 𝑐 ⇒ 1 ≤ |𝑋 | < |𝑌 |
𝑘 1s in a row ⇒ 𝑑(𝑥𝑖) = 𝑘

𝑘 − (𝑐 − 𝑟) ≤ 𝑀(𝑖) ≤ 𝑘 ⇒ 𝑘 − (𝑐 − 𝑟) ≤ 𝑑(𝑐𝑖) ≤ 𝑘

Our goal is to find 𝑘 disjoint matchings of size |𝑋 |, where each matching
will represent one of the 𝑘 permutation matrices 𝐿𝑖 .

Strategy
First: We will add 𝑐 − 𝑟 vertices to 𝑋, call them 𝑧1 , 𝑧2 , . . . 𝑧𝑐−𝑟 so that we have
|𝑋 | = |𝑌 |.
Second: We will add 𝑘 edges to each of these vertices in a manner to make
our graph 𝐺 becomes a regular graph. We will denote the extended graph
with the additional edges and vertices as 𝐺′(𝑋′, 𝑌). We will need to prove
that we can actually create 𝐺′(𝑋′, 𝑌) so that it is regular.
Third: Once we have a regular bipartite graph 𝐺′(𝑋′, 𝑌), we use corollary 2.1
which allows us to find 𝑘 perfect matchings.
Fourth: We then get rid of the new vertices that we added (𝑧1 , . . . 𝑧𝑐−𝑟), and
their respective edges. We now have 𝑘 matchings from |𝑋 | to |𝑌 | which we
will use to represent the 𝑘 permutation matrices 𝐿1 , 𝐿2 . . . 𝐿𝑘 .

The only thing we need to prove is step 2. We need to show that we
can add 𝑐 − 𝑟 vertices to 𝑋 and (𝑐 − 𝑟)𝑘 edges to said vertices in such a way
that we can turn our graph 𝐺 into a 𝑘−regular graph 𝐺′.

The goal is to add one vertex at a time, and add 𝑘 edges while maintaining
the property that 𝑘 − (𝑐 − 𝑟) ≤ 𝑑(𝑦𝑖) ≤ 𝑘. We first show that we can add 𝑘

edges without exceeding the upper bound 𝑑(𝑐𝑖) ≤ 𝑘. Second, we note that
when we add a vertex, we are really increasing the value of 𝑟 by one (as a
vertex in 𝑋 represents a row in 𝐴, and 𝑟 is the number of rows in 𝐴). Thus,
we need to check that all the vertices in 𝑌 have degrees that meet the new
lower bound 𝑘 − (𝑐 − (𝑟 + 1)).

Claim 2.1. We can add a vertex in 𝑋 and 𝑘 edges to said vertex in such a way that
we maintain the upper bound 𝑑(𝑦𝑖) ≤ 𝑘.

Proof. Let 𝑎 represent the number of vertices in 𝑌 with degree less than 𝑘.
We recall that |𝑌 | = 𝑐, so there are 𝑐 − 𝑎 vertices in 𝑌 with the maximum
degree 𝑘. Counting the number of edges we have from 𝑋, we know that
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each 𝑥𝑖 has degree 𝑘, so there are 𝑘 ∗ |𝑋 | = 𝑘 ∗ 𝑟 edges coming out of 𝑋.
Counting the number of edges coming out of 𝑌, we know there are (𝑐 − 𝑎)
vertices of degree exactly 𝑘, and 𝑎 vertices with degree at least 𝑘 − (𝑐 − 𝑟). So
the number of edges coming out of 𝑌 is at least (𝑐 − 𝑎)(𝑘) + (𝑎)(𝑘 − (𝑐 − 𝑟)).
Therefore we have the following inequality:

𝑘𝑟 ≥ (𝑐 − 𝑎)(𝑘) + (𝑎)(𝑘 − (𝑐 − 𝑟))
𝑘𝑟 ≥ 𝑘𝑐 − 𝑘𝑎 + 𝑘𝑎 − 𝑎(𝑐 − 𝑟)

𝑎(𝑐 − 𝑟) ≥ 𝑘(𝑐 − 𝑟)

And since we know that 𝑟 < 𝑐, that tells us that 𝑐− 𝑟 > 0 and we can conclude
that

𝑎 ≥ 𝑘.

So the number of vertices in 𝑌 with incomplete degree (a degree less than 𝑘)
is greater than the number of edges we are adding to our new vertex. That
means that we can add the 𝑘 edges without exceeding the maximum degree
𝑑(𝑦𝑖) ≤ 𝑘. □

Now we check that the lower bound still holds. Once we have added
the new vertex, the value of 𝑟 increased by one, and so our lower bound on
𝑑(𝑦𝑖) has changed from 𝑘 − (𝑐 − 𝑟) to 𝑘 − (𝑐 − (𝑟 + 1)), and we need to check
that we can add the edges while maintaining this new lower bound.

Claim 2.2. We can add a vertex in 𝑋 and 𝑘 edges to it in such a way that we
maintain the new lower bound 𝑘 − (𝑐 − (𝑟 + 1)).

Proof. Let 𝑏 denote the number of vertices in 𝑌 with minimum degree
𝑘 − (𝑐 − 𝑟). Then 𝑐 − 𝑏 is the number of vertices with degree greater than the
minimum. We again count the number of edges coming out of 𝑋 and then
from 𝑌. From 𝑋 we have 𝑘𝑟 edges again, and from 𝑌 we have 𝑏 vertices with
minimum degree 𝑘 − (𝑐 − 𝑟), and the remaining 𝑐 − 𝑏 vertices have degree
less than or equal to 𝑘. So the number of edges total must be less than or
equal to (𝑏)(𝑘 − (𝑐 − 𝑟)) + (𝑐 − 𝑏)(𝑘). We again set up an inequality:

𝑘𝑟 ≤ (𝑏)(𝑘 − (𝑐 − 𝑟)) + (𝑐 − 𝑏)(𝑘)
𝑘𝑟 ≤ 𝑏𝑘 − 𝑏(𝑐 − 𝑟) + 𝑐𝑘 − 𝑏𝑘

𝑏(𝑐 − 𝑟) ≤ 𝑘(𝑐 − 𝑟)
𝑏 ≤ 𝑘.
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So the number of vertices with minimum degree is less than or equal to
the number of edges we add, so we know that we can add our 𝑘 edges and
increase the degree of all the vertices that had a minimum degree 𝑘 − (𝑐 − 𝑟),
so that their degree is now at least 𝑘 − (𝑐 − (𝑟 + 1)). □

We can now extend our bipartite graph 𝐺 such that |𝑋 | = 𝑟 + 1 with
𝑑(𝑥𝑖) = 𝑘 and 𝑘 − (𝑐 − (𝑟 + 1)) ≤ 𝑑(𝑦𝑖) ≤ 𝑘. By repeating this process until
|𝑋 | = |𝑌 |, we successfully extend 𝐺 into a 𝑘−regular graph 𝐺′, and that
completes step 2. The extension of 𝐺 to a regular bipartite graph 𝐺′ can be
seen in figure 2.3

Figure 2.3 The original graph 𝐺(𝑋,𝑌) and its extension to a 2-regular graph
𝐺′(𝑋′, 𝑌) (with the added vertices and edges in red).

We know that 𝑘-regular graphs have perfect matchings by corollary 2.1,
therefore we have exactly 𝑘 distinct perfect matchings in 𝐺′. This is step 3,
and can be seen in figure 2.4 on the left. after finding the matchings in 𝐺′,
we consider the matchings restricted to only the elements in our original
graphs 𝐺. This is step 4, and can be seen in the figure on the right in figure
2.4.

Figure 2.4 Two perfect matchings of 𝐺′(𝑋′, 𝑌) in blue and green, and the
corresponding matchings in 𝐺(𝑋,𝑌).

We convert each matching into an 𝑟 × 𝑐 permutation matrix 𝐿𝑖 . In a
matching 𝑀𝑖 , we have 𝑘 edges connecting each of the 𝑟 vertices in 𝑋 to a
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subset of size 𝑟 of 𝑌. For each edge in the matching connecting 𝑥𝑖 to 𝑦 𝑗 ,
we add a 1 in the 𝑖 , 𝑗 entry of our permutation matrix, with the remaining
entries being 0. We can see how this is done in figure 2.5, where the two
matchings are in blue and green

0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

Figure 2.5 The matchings in𝐺 and their corresponding permutation matrices.

Each permutation matrix then has exactly one 1 in each row, and at
most one 1 in every column. The 𝑘 matchings cover all the edges in our
graph, therefore when reverting to matrix representation, the 𝑘 permutation
matrices add up to become our matrix 𝐴.

1 0 0 0 0 1
0 0 1 1 0 0
0 1 0 0 1 0

=
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

+
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

Figure 2.6 𝐴 written as the sum of permutation matrices.

Thus the proof of the lemma is complete. □

This lemma will serve useful in proving Ryser’s condition which we
discuss in chapter 4. But first we wish to take the time to elaborate on why
we used the strategy that we did to prove this lemma. Given our bipartite
graph 𝐺(𝑋,𝑌), one can check that we have all the conditions necessary to
use the marriage theorem to find a matching of size |𝑋 |, so the question
becomes, why did we bother adding new vertices to 𝑋 and creating a regular
graph in order to find the matchings? We ask the reader to consider the
following example in figure 2.7.
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Figure 2.7 A bipartite graph 𝐺(𝑋,𝑌), and one selected matching such that
no more matchings can be made.

The reason behind the extra steps taken in our proof is because if we
jump straight into the marriage theorem, we are guaranteed to find one
matching of size |𝑋 | = 4 (shown in blue in figure 2.7) But depending on the
matching we select, we cannot guarantee being able to find another one,
which ends up being the case in the above example. Of the remaining eight
edges in grey, there is no way to select a matching of size |𝑋 | = 4. However,
if we began by extending our graph to be a regular graph, we are forced into
picking from a set of matchings that allows us to find all 𝑘 matchings.

Figure 2.8 The graph 𝐺(𝑋,𝑌) from figure 2.7 extended to a regular bipartite
graph 𝐺′(𝑋′, 𝑌), with the 3 perfect matchings in red, blue, and green

Figure 2.9 The 3 matchings of size |𝑋 | from figure 2.7, extracted from the
extended graph 𝐺′(𝑋′, 𝑌) from figure 2.8



Chapter 3

Completing Empty Rows

A simple case of a partially filled Latin squares is that in which our 𝑛×𝑛 grid
has 𝑘 complete rows and 𝑛 − 𝑘 empty rows. Take for example the square
in figure 3.1, which is a square of order 4 with 2 filled and 2 empty rows.
The question this chapter aims to answer is: are grids of this form solvable?
The results of this chapter will be used in the proof of Ryser’s theorem in
chapter 4.

1 3 4 2
3 2 1 4

Figure 3.1 A partially filled Latin square with complete and empty rows

Theorem 3.1. [Row Completion Theorem][Hall (1945)] Given a Latin square 𝐿 of
order 𝑛 with 𝑘 rows completely filled in, and the remaining 𝑛 − 𝑘 rows completely
empty, we can always complete the Latin square.

Proof. We create a bipartite graph 𝐺(𝑋,𝑌) that represents our Latin square
𝐿 of order 𝑛. We let |𝑋 | = |𝑌 | = 𝑛. Each element of 𝑋 represents a column
of 𝐿, and we denote the vertices in 𝑋 as 𝑐1 , 𝑐2 , . . . 𝑐𝑛 . The elements of 𝑌
represent the values 1 through 𝑛, and we denote those vertices 𝑝1 , 𝑝2 , . . . 𝑝𝑛 .
We add an edge 𝑒 between the vertices 𝑐𝑖 and 𝑝 𝑗 if 𝑝 𝑗 is not in the column
𝑐𝑖 . So in the example of figure 3.1, the first column 𝑐1 is missing values 2
and 4, thus we add an edge between 𝑐1 and 𝑝2, and another edge between
𝑐1 and 𝑝4. Because each column has exactly 𝑘 filled rows and 𝑛 − 𝑘 empty
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rows, that means that every column is missing 𝑛 − 𝑘 numbers, and hence the
degree of each vertex in |𝑋 | is equal to 𝑛 − 𝑘. Similarly, each element from
1 through 𝑛 is missing exactly 𝑛 − 𝑘 times, so the degree of every 𝑝𝑖 ∈ 𝑌 is
also exactly 𝑛 − 𝑘. Thus 𝐺 is an (𝑛 − 𝑘)-regular graph. Since our graph is
regular, that implies that we have a perfect matching by the corollary of the
marriage theorem [2.1]

Figure 3.2 The bipartite graph 𝐺(𝑋,𝑌) representing figure 3.1 and its two
perfect matchings that represent the added rows.

We claim that a perfect matching represents a row that can be added to
the square. For every edge 𝑒 connecting 𝑐𝑖 to 𝑝 𝑗 , we add the element 𝑝 𝑗 to
the 𝑖𝑡ℎ column of 𝐿. We know that we wont be adding the same element
to the row twice because in a perfect matching all edges are non-adjacent.
Therefore our perfect matching adds a whole new row to our square. In
order to complete all the rows we simply remove the edges that were in
the perfect matching (that represented our new row). The graph will still
be regular because each vertex lost exactly one edge, and thus we can find
another perfect matching in the remaining graph (by the corollary of the
marriage theorem) and use it to add another row. The process continues
until we find all the perfect matchings and fill in all the rows. This can
be seen in figure 3.2 where the first matching is highlighted in red, and
the second matching is highlighted in blue. Figure 3.3 below depicts the
completed square using the matchings above. □

1 3 4 2
3 2 1 4
2 4 3 1
4 1 2 3

Figure 3.3 The matchings of figure 3.2 as complete rows added to the incom-
plete square in figure 3.1
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Example 3.1. Consider the following partially filled Latin square 𝐿 of order
7 in figure 3.4:

6 4 7 5 2 3 1
3 5 1 2 6 7 4
2 1 6 7 4 5 3
1 3 2 6 7 4 5
7 2 3 4 5 1 6

Figure 3.4 Partially filled Latin square 𝐿.

We represent the information in the Latin square with a bipartite graph
𝐺(𝑋,𝑌) where the 𝑐𝑖 points represent the columns of 𝐿, and the points
𝑝𝑖 represent the elements 1 through 7. This bipartite graph has a perfect
matching shown in figure 3.6.

Figure 3.5 A bipartite represen-
tation of 𝐿

Figure 3.6 A perfect matching
found in the graph of 𝐿

We use this perfect matching to add a new row onto 𝐿. For example,
in the perfect matching, the column 𝑐1 is matched to 𝑝4, thus we add the
value 4 into the first column. We continue in this manner and fill out the
remaining row to give us the red row shown in figure 3.8

Figure 3.7 The next matching in the graph of 𝐿
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We also note that if we consider the graph 𝐺 with the edges of the perfect
matching removed, there is another perfect matching to be found as shown
in figure 3.7, which again represents another row to be added to the Latin
square 𝐿, as depicted in blue in figure 3.8.

6 4 7 5 2 3 1
3 5 1 2 6 7 4
2 1 6 7 4 5 3
1 3 2 6 7 4 5
7 2 3 4 5 1 6
4 6 5 1 3 2 7
5 7 4 3 1 6 2

Figure 3.8 Latin square 𝐿 with added rows from perfect matchings



Chapter 4

Ryser’s Conditions

Consider a Latin square 𝐿 of order 𝑛, and some value 𝑡 ≥ 𝑛. If we fill
𝐿 entirely with elements from 1 to 𝑡 under the assumption that we will
eventually embed it in a square of order 𝑡, how can we guarantee that the
embedding will be solvable? We recall the definition of solvability as the
ability to complete a grid while adhering to the rules of Latin squares. Take
figure 4.1 for example. Given the 2x2 square on the left filled with elements
from 1 to 3, how do we know if the 3x3 square on the right can be solved?

1 3
2 1

1 3
2 1

1

Figure 4.1 Can a filled 2x2 with elements from 1 to 3 be embedded and solved
in a 3x3?

4.1 What is the Theorem?

Ryser’s theorem provides the condition necessary to embed a rectangle filled
with the elements 1 to 𝑡 into a complete Latin square of order 𝑡. He does
this by utilizing the decomposition lemma 2.1. The goal of this chapter is
to understand Ryser’s condition and provide a proof of Ryser’s theorem in
terms of bipartite graphs and perfect matchings.

We begin by stating the theorem and some useful definitions and nota-
tions. An incomplete Latin rectangle is one is which no number is repeated in
any row or column, however it cannot be solved in its current size (especially
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since the number of rows and columns aren’t equal!). An incomplete Latin
rectangle needs to be embedded into a Latin square in order to be solvable.

We denote 𝑁(𝑖) as the number of times the element 𝑖 appears in a Latin
square 𝐴.

Theorem 4.1. [Ryser’s Condition] [Ryser (1951)] An incomplete 𝑟 × 𝑐 Latin
rectangle 𝐴 filled with elements from 1 to 𝑡 can be embedded in a Latin square of
order 𝑡 if and only if 𝑁(𝑖) ≥ 𝑟 + 𝑐 − 𝑡 for all 1 ≤ 𝑖 ≤ 𝑡.

Ryser’s condition rely on counting the number of times each element
from 1 to 𝑡 appears in a Latin square 𝐴. The theorem states that we can
embed 𝐴 into a square 𝑇 of order 𝑡 if and only if every element from 1 to 𝑡

appears in 𝐴 at least 2𝑛 − 𝑡 times. Before we begin the proof of the theorem,
we attempt to understand how it works by using it on some examples.
Consider the following 4 × 4 square filled on the elements from 1 to 6 in
figure 4.2. We wish to check if it can be embedded into a square of size 6, 7
and 8.

𝐴 =

4 2 5 3
1 3 6 2
6 1 3 4
5 4 2 1

𝑁(1) = 3
𝑁(2) = 3
𝑁(3) = 3
𝑁(4) = 3
𝑁(5) = 2
𝑁(6) = 2

𝑇 =

4 2 5 3 1
1 3 6 2 1
6 1 3 4
5 4 2 1

Figure 4.2 𝑛 = 4 𝑡 = 6

Ryser’s theorem states that if every element from 1 to 6 appears in 𝐴 at
least 2𝑛 − 𝑡 = 2 ∗ 4 − 6 = 2 times, then we can successfully embed 𝐴 into 𝑇.
Since we do indeed have 𝑁(𝑖) ≥ 2, by Ryser’s theorem we can successfully
do this embedding. The reader may feel free to try and complete the square
to convince themselves that it is indeed solvable in a 6 × 6.

If, however, we alter 𝐴 in figure 4.2 by replacing the 6 in the second row
with a 4 instead, then we would have 𝑁(6) = 1, and by Ryser’s condition, we
would not be able to embed 𝐴 into a 6 × 6.

Going back to the original example in figure 4.2 on the left, since we
know we can put 𝐴 in a 6× 6, it seems intuitive to think we can therefore put
𝐴 in a 7 × 7, since that is just a bigger square, however, that is not the case.
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𝐴 =

4 2 5 3
1 3 6 2
6 1 3 4
5 4 2 1

𝑁(1) = 3
𝑁(2) = 3
𝑁(3) = 3
𝑁(4) = 3
𝑁(5) = 2
𝑁(6) = 2
𝑁(7)= 0

𝑇 =

4 2 5 3 1
1 3 6 2 1
6 1 3 4 1
5 4 2 1

Figure 4.3 𝑛 = 4, 𝑡 = 7

We note here that since we are attempting to embed 𝐴 into a 7 × 7, Ryser
requires that every element from 1 to 7 appears in 𝐴 a certain number of
times (2 ∗ 4 − 7 = 1 time). However we see that the element 7 appears
zero times in 𝐴, and thus by Ryser we cannot complete this embedding.
Intuitively speaking, we need the element 7 to appear exactly 7 times, once
in every row and every column, but once we start placing the 7s it is clear to
see in figure 4.4 that we cannot add 7 more than 6 times without breaking
the rules of Latin squares. By understanding why we can’t embed 𝐴 into
a 7 × 7, we are also starting to develop an understanding of what exactly
Ryser’s condition is checking, and why it works.

4 2 5 3 7
1 3 6 2 7
6 1 3 4 7
5 4 2 1
7

7
7

Figure 4.4 Attempting to fill 𝑇 with the element 7.

Now what if we attempt to embed 𝐴 into an 8 × 8?
It may seem like we will run into the same problem as above, where the
elements of 7 and 8 do not appear in 𝐴, however, if we refer back to
Ryser’s condition, he requires that all 𝑖 between 1 and 8 appear at least
2𝑛 − 𝑡 = 2 ∗ 4 − 8 = 0 times. So technically even if 7 and 8 dont appear here,
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𝐴 =

4 2 5 3
1 3 6 2
6 1 3 4
5 4 2 1

𝑁(1) = 3
𝑁(2) = 3
𝑁(3) = 3
𝑁(4) = 3
𝑁(5) = 2
𝑁(6) = 2
𝑁(7)= 0
𝑁(8)= 0

𝑇 =

4 2 5 3 1
1 3 6 2 1
6 1 3 4 1
5 4 2 1 1

Figure 4.5 𝑛 = 4 𝑡 = 8

Ryser’s condition hold and the embedding is possible. We encourage the
reader to try and place the elements of 7 and 8 a total of eight times each in
the remaining empty spaces in 𝑇. They will find that it is possible, and they
will not run into the same issue that we ran into in figure 4.4. The reader
may then challenge themselves to filling 𝑇 completely, knowing that it is in
fact possible.

4.2 Proving the Theorem

Now that we understand what Ryser’s theorem says, we aim to prove it.
In order to do this we must use the decomposition lemma 2.1. The lemma
claims that we can write a 0-1 matrix that follows certain properties as the
sum of permutation matrices. We restate both the lemma and the theorem
here for the benefit of the reader, and then we tackle the proof.

Lemma 2.1 [Decomposition Lemma] Consider a 0 − 1 matrix 𝐴 with dimensions
𝑟 × 𝑐 with 1 ≤ 𝑟 < 𝑐. Let there be exactly 𝑘 1s in every row. Let 𝑀(𝑖) be the number
of 1s in the 𝑖𝑡ℎ column of 𝐴. Then if for each 𝑖 ∈ 1, 2, . . . 𝑐, if we have the condition
that

𝑘 − (𝑐 − 𝑟) ≤ 𝑀(𝑖) ≤ 𝑘,

then we we can write 𝐴 as the sum of 𝑘 permutation matrices 𝐿1 + 𝐿2 + . . . 𝐿𝑘 .

Theorem 4.1 [Ryser’s Condition] [Ryser (1951)] An incomplete 𝑟×𝑐 Latin rectangle
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𝐴 filled with elements from 1 to 𝑡 can be embedded in a Latin square of order 𝑡 if
and only if 𝑁(𝑖) ≥ 𝑟 + 𝑐 − 𝑡 for all 1 ≤ 𝑖 ≤ 𝑡.

Strategy
Given an 𝑟 × 𝑐 incomplete Latin rectangle 𝐴 made up of elements 1, 2, . . . 𝑡,
we wish to show that we can embed 𝐴 into a square matrix 𝑇 of size 𝑡 × 𝑡

(such that 𝑇 is a solvable Latin square) if and only if 𝑁(𝑖) ≥ 𝑟 + 𝑐 − 𝑡 for all 𝑖
between 1 and 𝑡.

The general strategy for this proof is twofold. First, we extend our 𝑟 × 𝑐

rectangle to be 𝑟 × 𝑡 such that every row has every element from 1 to 𝑡.
Second, we can add 𝑡 − 𝑟 empty rows to our matrix to make it a square. We
then have a partially filled Latin square with exactly 𝑡 − 𝑟 empty rows, which
we know can be completed by the row completion theorem 3.1.

Notation
We will provide some notation and follow it with an example Latin square
𝐴, along with examples of each notation being used.

𝑁(𝑖) = the number of times 𝑖 appears in 𝐴

𝑇𝑖 = the set of elements that appear in the 𝑖𝑡ℎ row of 𝐴
𝑆𝑖 = [𝑡] \ 𝑇𝑖 the set of elements that do not appear in the 𝑖𝑡ℎ row of 𝐴

𝑀(𝑖) = 𝑟 − 𝑁(𝑖) the number of times 𝑖 appears in the union of the 𝑆𝑖 sets
𝑘 = 𝑡 − 𝑐 the number of columns we need to extend 𝐴 by

A =
4 2 5 3
1 5 6 2
6 1 3 4

In 𝐴, the number of rows is 𝑟 = 3, and the number or columns is 𝑐 = 4.
We let 𝑡 = 6, which means we want to extend 𝐴 to be 6 × 6.

The number of times the element 1 appears in 𝐴 is 𝑁(1) = 2. The set
of elements that appear in the second row is 𝑇2 = {1, 2, 5, 6}. The set of
elements that do not appear in the second row is 𝑆2 = {3, 4}. The number of
times the element 1 appears in the union of the sets 𝑆𝑖 is just 𝑀(1) = 1. This
is also the number of times the number 1 must be added so that it appears
once in every row once, so 𝑀(1) = 𝑟 − 𝑁(1) = 3 − 2 = 1. Lastly, we let 𝑘 be
the difference between 𝑐 and 𝑡, thus 𝑘 = 6 − 4 = 2, which is the number of



22 Ryser’s Conditions

columns we need to add to 𝐴 to make it have dimensions 𝑟 × 𝑡.

Proof. (⇒)
We prove the first direction, that if 𝐴 can be embedded into 𝑇, then the Ryser
condition holds.

We note that if the embedding is possible, then 𝑀(𝑖) must be at most
𝑘, as if 𝑀(𝑖) ≥ 𝑘 then we need to add the element 𝑖 more times than the
number of columns we are extending 𝐴 by. This would force us to add 𝑖 to
the same column more than once which breaks the rules of Latin squares.
So we know that 𝑀(𝑖) ≤ 𝑘. We also know that 𝑀(𝑖) + 𝑁(𝑖) = 𝑟. We conduct
the following computation:

𝑁(𝑖) = 𝑟 − 𝑀(𝑖)
≥ 𝑟 − 𝑘

= 𝑟 − (𝑡 − 𝑐),
hence, 𝑁(𝑖) ≥ 𝑟 + 𝑐 − 𝑡

Thus we proved the first direction of the theorem, that if 𝐴 can be embedded
into a Latin square 𝑇 of order 𝑡, then we have 𝑁(𝑖) ≥ 𝑟 + 𝑐 − 𝑡.

(⇐)
We now prove the other direction of this theorem: if Ryser’s condition holds
for each 𝑖, then 𝐴 can be embedded into 𝑇.

We construct a new matrix 𝐴01 ∈ 𝑀𝑟×𝑡 made up of 0s and 1s. The construc-
tion goes as follows: for a row 𝑖 in 𝐴, we consider the set of numbers that
do not appear in that row, which we denoted 𝑆𝑖 . First we acknowledge that
the size of 𝑆𝑖 is equal to 𝑘, as a row 𝑖 already has 𝑐 distinct elements out of a
total of 𝑡 elements, and 𝑘 = 𝑡 − 𝑐. Say 𝑆𝑖 = {𝑠1 , 𝑠2 , . . . 𝑠𝑘}, then we add a 1
in the 𝑠1 , 𝑠2 , . . . , 𝑠𝑘 columns of the 𝑖𝑡ℎ row of 𝐴01. So for example, say the
5th row of 𝐴 is missing the numbers 2, 3 and 8, then we add the element 1
in the 2nd, 3rd, and 8th columns of the 5th row of 𝐴01. We fill in the rest
of the row with the element 0. We note two facts: the first is that there will
be exactly 𝑘 1s in each row of 𝐴01. The second fact is that the number of 1s
that appear in the 𝑗𝑡ℎ column of 𝐴01 is equal to the number of times that the
number 𝑗 is missing from our matrix 𝐴. Hence the number of 1s in the 𝑗𝑡ℎ

column is equal to 𝑀(𝑗). We preform one last counting argument and show
that 𝑘 − (𝑡 − 𝑟) ≤ 𝑀(𝑖) ≤ 𝑘.
We prove the right side of this inequality.
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We know that 𝑁(𝑖) = 𝑟 − 𝑀(𝑖) and by assumption 𝑁(𝑖) ≥ 𝑟 + 𝑐 − 𝑡

𝑁(𝑖) ≥ 𝑟 + 𝑐 − 𝑡

𝑟 − 𝑀(𝑖) ≥ 𝑟 + 𝑐 − 𝑡

𝑀(𝑖) ≥ 𝑡 − 𝑐

𝑀(𝑖) ≤ 𝑘

Next we wish to prove that 𝑘 − (𝑡 − 𝑟) ≤ 𝑀(𝑖).
First we note that the number of times a number 𝑖 appears in a row cannot
be more than the number of columns in 𝐴. Thus 𝑁(𝑖) ≤ 𝑐. And again we
use the fact that 𝑁(𝑖) = 𝑟 − 𝑀(𝑖).

𝑁(𝑖) ≤ 𝑐

𝑟 − 𝑀(𝑖) ≤ 𝑐

𝑟 − 𝑀(𝑖) ≤ 𝑡 − (𝑡 − 𝑐)
𝑟 − 𝑀(𝑖) ≤ 𝑡 − 𝑘

𝑀(𝑖) ≥ 𝑘 − (𝑡 − 𝑟).

To summarize the conditions we have proven so far: we have a matrix 𝐴01
made up of 0s and 1s such that every row has exactly 𝑘 1s. We denoted 𝑀(𝑖)
as the number of 1s that appear in the 𝑖𝑡ℎ column of 𝐴01 and we proved that
𝑘 − (𝑡 − 𝑟) ≤ 𝑀(𝑖) ≤ 𝑘. We therefore have all the conditions necessary to use
the decomposition lemma 2.1. So we know that we can write 𝐴01 as the sum
of 𝑘 permutation matrices 𝐴01 = 𝐿1 + 𝐿2 + . . . 𝐿𝑘 . Each of these permutation
matrices represent a column that can be adjoined to 𝐴. Consider 𝐿1 which
has exactly one 1 in every row, let us denote {𝑏1 , 𝑏2 , . . . 𝑏𝑟} be the 𝑟 columns
in which the 1s occur in rows 1, 2, . . . 𝑟 respectively. Then we can add the
numbers 𝑏1 , 𝑏2 , . . . 𝑏𝑟 in that order as a new column of 𝐴. We do this again
with the matrices 𝐿2 , 𝐿3 , . . . 𝐿𝑘 . Thus we can adjoin 𝑘 columns to 𝐴 to create
a Latin rectangle of size 𝑟 × 𝑡 with every element in [𝑡] appearing exactly
once in every row. Then as mentioned earlier, we can then easily extend this
to a Latin square using our method from the previous chapter. □
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4.3 Applying Ryser’s condition

With a thorough understanding of the theorem and its uses, we present an
examples of the proof’s construction.

Example 4.1. Here is the example we have been teasing throughout this
chapter in figure 4.6. We begin by first checking Ryser’s conditions for 𝑡 = 6.
Since each 𝑁(𝑖) ≥ 3 + 4 − 6 = 1, by Ryser, the embedding is possible. We
will show how he constructs the embedding.

𝐴 =

4 2 5 3
1 5 6 2
6 1 3 4

𝑁(1) = 2
𝑁(2) = 2
𝑁(3) = 2
𝑁(4) = 2
𝑁(5) = 2
𝑁(6) = 2

Figure 4.6 A Latin rectangle 𝐴 which we wish to extend to 𝑇 of order 6.

We first create the 0 − 1 matrix 𝐴01, which is shown in figure 4.7.

𝐴01 =
1 0 0 0 0 1
0 0 1 1 0 0
0 1 0 0 1 0

Figure 4.7 The 0-1 matrix 𝐴01 of 𝐴.

We then use the decomposition lemma to write 𝐴01 as the sum of
permutation matrices. We note that the 0 − 1 matrix of 𝐴 is in fact the one
we used in the example of the decomposition lemma 2.1, and we see its
decomposition in figure 4.8.

1 0 0 0 0 1
0 0 1 1 0 0
0 1 0 0 1 0

=
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

+
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

Figure 4.8 The 0 − 1 matrix of 𝐴 and its permutation matrix decomposition.
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So we have these two permutation matrices that correspond to the
following two columns which we will adjoin to our matrix 𝐴.

4 2 5 3 1
1 5 6 2 1
6 1 3 4

6
4
2

1
3
5

By adding these two columns we get the following

4 2 5 3 6 1
1 5 6 2 4 3
6 1 3 4 2 5

Figure 4.9 The complete Latin rectangle that can now be solved

And from this stage we can fill in the remaining rows using the row
completion theorem 3.1.

4 2 5 3 6 1
1 5 6 2 4 3
6 1 3 4 2 5
2 3 4 1 5 6
3 6 2 5 1 4
5 4 1 6 3 2

Figure 4.10 The Latin rectangle embedded and solved in a Latin square.





Chapter 5

Evans Paper

Following Ryser, Evans works on further understanding the embeddings of
incomplete Latin squares, whose definition we recall to be partially filled
Latin squares that are not solvable. We emphasize that while Ryser worked
with the more general Latin rectangle of size 𝑟 × 𝑐, Evans’ work is in fact
strictly for squares, where 𝑟 = 𝑐. Evans proved that any incomplete Latin
square of order 𝑛 can be extended to a Latin square of any order 𝑡 ≥ 2𝑛, and
he also proved that that bound is sharp. We will go over his proof and its
sharpness in this chapter.

Theorem 5.1 (Evans (1960)). Given an incomplete Latin square 𝐿 of order 𝑛, the
square 𝐿 can be embedded into a Latin square 𝑇 of order 𝑡, given that 𝑡 ≥ 2𝑛.

Proof. Let 𝐿 be an incomplete 𝑛 × 𝑛 Latin square on the elements of [𝑛].
Construct 𝑆 to be a Latin square of order 𝑡 − 𝑛 with elements from the set
{𝑛 + 1, 𝑛 + 2, . . . 𝑡}. We know that the order of 𝑆 is at least 𝑛 since 𝑡 ≥ 2𝑛
so 𝑡 − 𝑛 ≥ 𝑛. We can make the construction of 𝑆 using our methods from
chapter 3. Then for every blank space 𝐿[𝑖 , 𝑗] in our matrix 𝐿, we fill that
blank spot using the element in 𝑆[𝑖 , 𝑗]. In doing so we now filled in all the
blank spaces in 𝐿 with elements from 1 to 𝑡, and we call the newly filled
Latin square 𝐿̂. See an example of this in figure 5.1.

We can now apply Ryser’s theorem, which states that we can embed our
matrix 𝐿 into a matrix 𝑇 of order 𝑡 if and only if 𝑁(𝑖) ≥ 𝑛 + 𝑛 − 𝑡. But since
𝑡 ≥ 2𝑛, Ryser’s condition say that the embedding is possible if and only if
𝑁(𝑖) ≥ 0 for all 𝑖, which is definitely true. Hence the proof is complete. □
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𝐿

2 1 4
1 3 4 2
3 1
4 2 3

+

𝑆

6 7 8 5
7 8 5 6
5 6 7 8
8 5 6 7

⇒

𝐿̂

6 2 1 4
1 3 4 2
3 1 7 8
4 5 2 3

Figure 5.1 Filling 𝐿 with elements of new construction 𝑆.

Next we wish to prove that Evans’ bound of 2𝑛 is sharp. That is not to
say that an incomplete Latin square cannot be embedded in any square of
order less than 2𝑛. Rather, if we are given an arbitrary Latin square 𝐿 of
order 𝑛, we cannot guarantee that 𝐿 can be embedded in a square of order
less that 2𝑛. Another way of saying this is that there exists a incomplete
Latin square that needs to be extended to an order of 2𝑛.

Theorem 5.2 (Evans (1960)). For any 𝑛 ≥ 4, there exists a Latin square 𝐿 of order
𝑛 that cannot be embedded in a Latin square 𝑇 of order 𝑡 < 2𝑛.

Proof. We prove by construction. Let 𝐿 be a square matrix of order 𝑛. We let
𝐿[𝑛− 1, 2] = 1 and we leave the spaces 𝐿[𝑛− 1, 3] and 𝐿[𝑛, 2] as blank entries.
Then for every other entry excluding the three that we have just prescribed,
we let 𝐿[𝑖 , 𝑗] = 𝑖 + 𝑗 − 1 (mod 𝑛). See examples of such constructions in
figure 5.2 .

1 2 3 4
2 3 4 1
3 1 2
4 2 3

1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2
4 5 6 7 1 2 3
5 6 7 1 2 3 4
6 1 2 3 4 5
7 2 3 4 5 6

Figure 5.2 Examples of Evan’s constructions with 𝑛 = 4 and 𝑛 = 7.

We claim that such constructions cannot be embedded in a Latin square of
order less than 2𝑛. First we know that we cannot complete the Latin square
without extending it, as the element missing from the 𝑛𝑡ℎ row is the number
1, but the unnocupied cell in the 𝑛𝑡ℎ row is in the second column, which
already has a 1 in it. So the blank 𝐿[𝑛, 2] cannot be filled with an element
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in [𝑛]. Similarly, the element missing from the 3𝑟𝑑 column is the number
1. But the blank space is in the 𝑛 − 1 row, which already has a 1 in it, so
that space is also not fillable with any element from 1 to 𝑛. So we know that
we need to extend 𝐿 by at least 1, or in other words 𝑡 ≥ 𝑛 + 1. That implies
that the element 𝑛 + 1 needs to be in our matrix 𝑛 + 1 times. However, we
can only put that element in twice in our original matrix 𝐿, as we only have
two blank spaces in 𝐿. So we still need the element 𝑛 + 1 to appear 𝑛 − 1
more times, and in order to do that without putting it in the same row or
column twice, we need to extend 𝐿 by at least 𝑛 − 1. Therefore we now have
𝑡 ≥ 2𝑛 − 1. However we decide to fill the two unoccupied cells in 𝐿 with the
elements from {𝑛 + 1, . . . 2𝑛 − 1}, we will still have elements from [𝑡] that
never appears in 𝐿. Therefore there will be an 𝑁(𝑖) = 0, and by Ryser, that
implies that the minimum 𝑡 can be is 2𝑛, and the proof is complete. □





Chapter 6

Minimum Embedding

We know that any partially filled Latin square 𝐿 of order 𝑛 can be embedded
in a Latin square 𝑇 of order 𝑡 ≥ 2𝑛. However, the question now becomes,
what is the minimum 𝑡 needs to be in order to successfully embed and
complete 𝐿?

The limitation of Ryser’s condition is that he assumes the size of 𝑡 before
constructing 𝐿, and in order to apply his theorem, we need to begin with
a filled square on the elements from 1 to 𝑡. However, if we begin with
a partially filled square on only the elements in [𝑛], we have no way of
using Ryser’s condition unless we already have a value for 𝑡 and fill in any
unoccupied cells in 𝐿.

The goal of this chapter is to develop an algorithm that aims to find the
minimum value 𝑡 needs to be to embed a given a maximal Latin square 𝐿. A
partially filled Latin square 𝐿 of order 𝑛 is maximal if it is filled with elements
from 1 to 𝑛, and no new elements can be added to the blank spaces of the
square without breaking the rules of Latin squares. In other words, all the
unoccupied cells in 𝐿 must be filled with elements from the set {𝑛 + 1, . . . 𝑡}.
Take for example figure 6.1. The incomplete Latin square 𝐿 on the left is
indeed maximal (we ask the reader to check this if they would like). We
know by Evans that we can embed 𝐿 into any 𝑇 of order greater than or
equal to 8, but in this specific example we were able to embed 𝐿 into a 𝑇 of
order 6. So extending 𝐿 to an order of 8 is not necessary. And if we tried to
extend 𝐿 to 𝑇 of order only 5, we will find that it fails. So 𝐿 must be extended
to at least order 6. The goal of this chapter is to develop an algorithm that
tells us the smallest order a given 𝐿 can be embedded into.
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𝐿

1 4 2
3 2

2 1 4
4 2 3 1

𝑇

1 5 4 2 3 6
5 3 2 6 1 4
2 6 1 4 5 3
4 2 3 1 6 5
6 1 5 3 4 2
3 4 6 5 2 1

Figure 6.1 In incomplete Latin square 𝐿 of order 4 that can be embedded into
a 𝑇 of order less than 8

6.1 The Algorithm

The idea behind the algorithm, which we will name the MWAA Minimizing
Algorithm, is to find what 𝑁(𝑖) is for all 𝑖 between 1 and 𝑛, and find the
minimum occurrence. That will tell us the minimum 𝑡 can be since by Ryser,
we know that 𝑁(𝑖) ≥ 2𝑛 − 𝑡 or in other words 𝑡 ≥ 2𝑛 − 𝑁(𝑖). Once we know
the minimum 𝑡 can be, the goal is to add the new elements from 𝑛 + 1 to 𝑡

as many times as possible each into the remaining blank spaces in 𝐿. That
is because in order for us to minimize 𝑡, we must maximize 𝑁(𝑖) for all
1 ≤ 𝑖 ≤ 𝑡. Thus the goal of the whole algorithm is based on maximizing 𝑁(𝑖).

Algorithm sketch:

1. Begin by letting 𝑡 = 𝑡0 = 𝑛.

2. Find the minimum occurrence of the elements in the set [𝑡] in 𝐿, denote
that 𝑚0. In other words, find min{𝑁(1), 𝑁(2), . . . 𝑁(𝑛)}

3. Determine the first lower bound that 𝑡 must be using Ryser’s condition,
denote that 𝑡1.

4. Consider the number of unoccupied cells in 𝐿, denote that 𝑑, and
the minimum number of times an element from {𝑛 + 1, . . . , 𝑡1} must
appear in 𝐿, denote this 𝑚1.

5. If 𝑚1 < 𝑚0 we return to step 1 and this time we let 𝑡 = 𝑡1. We keep
going until 𝑚𝑘 ≥ 𝑚𝑘+1, in which case 𝑡 = 𝑡𝑘 .
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Algorithm [The MWAA Minimizing Algorithm]:

Theorem 6.1. Given a maximal Latin square 𝐿 of order 𝑛, the MWAA minimizing
algorithm provides a lower bound for what 𝑡 needs to be in order to embed 𝐿 into a
Latin square of order 𝑡.

Proof. We are assuming that we have maximized the number of times the
elements {1, . . . , 𝑛} appear in 𝐿, so we consider the element that appears
the minimum number of times. Let

𝑚0 = min(𝑁𝐿(1), 𝑁𝐿(2), . . . , 𝑁𝐿(𝑛)).

We rewrite Ryser’s condition to be in terms of 𝑡. For every 𝑖 ∈ [𝑡] we know
that 𝐿 can be embedded in a square 𝑇 of order 𝑡, if and only if

𝑡 ≥ 2𝑛 − 𝑁(𝑖).

Ryser’s condition applies to a grid that is entirely filled, however, we note
that regardless of what happens in the unoccupied cells of 𝐿, we know that
we have at least one element in [𝑡] that appears only 𝑚0 times. Thus the
minimum 𝑡 can possibly be is 𝑡 ≥ 2𝑛 − 𝑚0.

Let 𝑡1 = 2𝑛 − 𝑚0. We now know that we need to add at least 𝑡1 − 𝑛 new
elements to our square 𝐿. Again, the aim is to utilize Ryser’s condition, so
what we care about most is the number of times all these new elements
can fit into 𝐿. Let 𝑑 denote the number of empty entries in our square 𝐿. If
we distribute the 𝑡1 − 𝑛 new values (𝑛 + 1, 𝑛 + 2, . . . 𝑡1) as evenly as we can
amongst the 𝑑 blank spaces in 𝐿, then each of these elements appears 𝑑

𝑡1−𝑛
times. This fraction is not always an integer, and so we use the floor function
to find the number of times each element can be added (assuming we are
trying to add each element as many times as we can to maximize all the 𝑁(𝑖)
values.) Then regardless of how we fill in the new elements of 𝑛 + 1 through
𝑡1 into 𝐿, we know that at least one of these elements can appear at most⌊

𝑑
𝑡1−𝑛

⌋
times in 𝐿. We denote this value as the new minimum 𝑚1 =

⌊
𝑑

𝑡1−𝑛

⌋
.

If 𝑚1 ≥ 𝑚0, we terminate the algorithm and claim that 𝐿 can be embedded
in 𝑇 of order 𝑡 = 𝑡1. If, however, 𝑚1 < 𝑚0, then we need to re-evaluate
the smallest value 𝑡 can be. So we repeat the process with the values of 𝑡1
and 𝑚1. We know that there exists an element 𝑖 in the set {1, . . . , 𝑡1} that
appears at most 𝑚1 times in 𝐿, and thus regardless of how the remaining
empty spaces in 𝐿 get filled, Ryser’s condition give us a lower bound for 𝑡,
which is 𝑡 ≥ 2𝑛 − 𝑚1. So we let 𝑡2 = 2𝑛 − 𝑚1. We again check the minimum
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occurrence of the new elements from 𝑛 + 1 to 𝑡2, and we get a new minimum
value 𝑚2 =

⌊
𝑑

𝑡2−𝑛

⌋
. We check if 𝑚2 ≥ 𝑚1, in which case we are done, and we

claim that 𝑡 = 𝑡2 is sufficient for the embedding. However, if 𝑚2 < 𝑚1, then
we reiterate the algorithm. We repeat until we get 𝑚𝑘 ≥ 𝑚𝑘+1. We know
that we can eventually get to such a case, and the algorithm will terminate,
because as the value of 𝑡𝑘 is strictly increasing, and soon as 𝑡𝑘 − 𝑛 > 𝑑, then
we have 𝑚𝑘 =

⌊
𝑑

𝑡𝑘−𝑛

⌋
= 0 and in this case the minimum values fix at 0 and

the algorithm terminates.
Now all that’s left to prove is that when the algorithm terminates, we can

in fact embed our square successfully. Intuitively speaking, if the algorithm
terminates at 𝑡𝑘 and 𝑚𝑘 , that implies that every element in [𝑛] appears at least
𝑚𝑘 times in 𝐿, as 𝑚0 ≥ 𝑚𝑘 , and recall that 𝑚0 was the minimum occurrence
of the elements in [𝑛]. Similarly, we have that

⌊
𝑑

𝑡𝑘−𝑛

⌋
= 𝑚𝑘+1 ≥ 𝑚𝑘 , which

means that if we have enough blank spaces in 𝐿 to add each element from
𝑛 + 1 to 𝑡𝑘 at least 𝑚𝑘 times each. Therefore, this algothirm provides us with
a lower bound of what 𝑡 must be in order to embed a given Latin square 𝐿.

□

The only remaining concern however is that having enough space to add
the new elements does not imply that we can indeed add these elements in a
way that adheres to the rules of Latin squares. We will address this concern
in section 6.3.

6.2 Examples

Example 6.1. We begin with an easier example where the algorithm termi-
nates after merely one step. Consider the following example, in figure 6.2

1 3
2

3 1

Figure 6.2 A maximal Latin square 𝐿 of order 3

We ask the reader to first confirm that this Latin square is indeed
maximal before proceeding. Once we assure it is in fact maximal we begin
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the algorithm. We know the following bits of information:

𝑁(1) = 2 𝑁(2) = 1 𝑁(3) = 2.

Therefore the minimum occurrence value 𝑚0 is equal to 1. According to
Ryser, regardless of how the remaining 4 empty spaces are filled with
elements from 1 to 𝑡, since we have one 𝑁(𝑖) value that is equal to 1, thus we
know that the minimum 𝑡 must be is 𝑡 ≥ 2𝑛 − 1 = 5. We set 𝑡1 = 5.

This informs us that we need to add the values of both 4 and 5 to our
grid. We know that we have 4 empty spaces and so if we distribute our new
values of 4 and 5 to our empty spaces then we can fit each value at least
𝑚1 =

⌊
𝑑

𝑡1−𝑛

⌋
=
⌊ 4

2
⌋
= 2 times. So we can fit both values 4 and 5 twice in our

original grid 𝐿, and this is clear to see when just looking at the square. So
assuming we put in the values of 4 and 5 twice each, we get 𝑁(4) = 𝑁(5) = 2
and since 𝑚1 = 2 ≥ 1 = 𝑚0, our new minimum value is not less than our old
minimum, and the 𝑡 value we currently have, which is 𝑡 = 5 will be sufficient
to solve this Latin square. The reader may see how this is done in figure 6.3

1 4 3
5 2 4
3 5 1

1 4 3 2 5
5 2 4 3 1
3 5 1 4 2
2 3 5 1 4
4 1 2 5 3

Figure 6.3 The Latin square 𝐿 embedded in a square of order 5

We emphasize that the Latin square on the left in figure 6.3 is one that
we can apply Ryser’s condition to, which is all we needed to know in order
to guarantee that we can extend it to the 5 × 5 square on the right.

Example 6.2. The second example we will explore is one we saw in a previous
chapter. We will test the algorithm on the Evans’ construction of grids that
need to be embedded into squares of order 2𝑛. Specifically, we will be
working with the grid of order 4 in figure 5.2 which we will print again for
the convenience of the reader in figure 6.4
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1 2 3 4
2 3 4 1
3 1 2
4 2 3

Figure 6.4 A maximal Latin square of order 4 (Evans’ construction)

We know before we begin that this square must be embedded into a
square of order 8 as in accordance with Evans (detailed in chapter 5).

We begin by counting the occurrences of each element

𝑁(1) = 3 𝑁(2) = 4 𝑁(3) = 4 𝑁(4) = 3

So we have the minimum occurrence 𝑚0 = 3. By Ryser the minimum 𝑡 can
be is 𝑡 ≥ 2𝑛 − 𝑚0 = 5.

We have one new element to add, and since 𝑑 = 2 we use 𝑚1 =

⌊
𝑑

𝑡1−𝑛

⌋
= 2,

so the new element can be added at most twice. Therefore the new min-
imum is 𝑚1 = 2 which is less than the old minimum, and we repeat the
process. According to Ryser, the minimum 𝑡 can be now is 𝑡2 = 2𝑛 − 𝑚1 = 6.
That implies that there are two new element that can be added at most⌊

𝑑
𝑡2−𝑛

⌋
= 1 time each. This makes sense, as there are two remaining spaces

and 2 new numbers to add, so one of them must appear at most once.
Therefore our new minimum is 𝑚2 = 1. We repeat, 𝑡3 = 2𝑛 − 𝑚2 = 7, and
𝑚3 =

⌊
𝑑

𝑡3−𝑛

⌋
= 0. And since 𝑚3 = 0 < 1 = 𝑚2, we see that our current 𝑡

value is still not large enough. We try again, now we have 𝑡4 = 2𝑛 − 𝑚3 = 8,
and we have 𝑚4 =

⌊
𝑑

𝑡4−𝑛

⌋
= 0. Now we have 𝑚4 = 𝑚3 = 0, and since the

minimum occurrence of a value is larger than or equal to the previous mini-
mum, that tells us that the 𝑡 value of 8 will in fact suffice by Ryser’s condition.

We developed a code to conduct this algorithm for any given Latin square
𝐿. The source code can be found in Appendix A in section A.

6.3 Where the Algorithm Might Fail

In order to better understand where the algorithm might fail, we attempt to
construct counter-examples (emphasis on the word attempt). The simplest
case of a counter-example is if the Latin square 𝐿 of order 𝑛 has only 2
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unoccupied cells that are in the same row or column, and if the value of 𝑡1 is
𝑛 + 1. If we attempt to use the algorithm on such a scenario, we would be
led to assume that the only new element we need to add (that is the element
𝑛 + 1) can appear in our grid at least twice, and thus our new minimum has
a value of 2. However, this would not be the case as if our two unoccupied
cells are in the same row or column, then the new element 𝑛 + 1 can only be
added at most once in the original square 𝐿, and that would alter the value of
the minimum occurrences that our algorithm is built on. In such a scenario
our algorithm does not work as is intended. Upon further investigation we
found that this specific scenario is never possible, which we can prove using
straightforward combinatorial work.

Theorem 6.2. There does not exist a maximal Latin square 𝐿 of order 𝑛 with
exactly two empty cells in the same row.

Before we dive into the proof, we address some generalizations we
need to make in order to complete the proof. We note that the theorem
specifies that there is no maximal Latin square with 2 blank spaces in the
same row. The reader might ask, what if the two blank spaces were in the
same column? To which we respond, that is the exact same question. If
we could construct a maximal Latin square with two blank spaces in the
same column, then its transpose will have two blank spaces in the same
row. And the transpose of a Latin square is also a Latin square. Thus, it
is not important for us to distinguish whether the property pertains to the
row or the column, because one is merely a reflection of the other. Similarly,
two Latin squares where the order of the rows or columns are permuted
could be considered equivalent, and it does not benefit us to study each
permutation independently. Consider figure 6.5 for an example of row order
permutation.

1 2 3
2 3 1
3 1 2

1 2 3
3 1 2
2 3 1

Figure 6.5 Two Latin squares with the order of the rows permuted. These
could be considered equivalent.

Thus, squares with permuted rows or columns orders are the same for
all intensive purposes, and we will indicate this by utilizing the expression
"without loss of generality". With this idea in mind, we continue.
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We first attempt to construct a Latin square of small orders to see what
goes wrong before attempting to generalize our claim to a Latin square of
any order. And for the author’s convenience, we will represent the Latin
squares as matrices.

Consider a Latin square 𝐿 of order 3. Without loss of generality, we let
the 2 blank spaces in 𝐿 be in the last row, in the first and last columns. We
will highlight the spaces we intend to leave blank by placing a circle in its
place. ⃝ ⃝


In order for a space to be blank non trivially, the element missing from

the column needs to be different from the element missing from the row.
Without loss of generality, we place the elements 1 and 2 in the first column.
Then in order for the blank space in the first column to be non-trivial, we
would need the element 3 to be in the same row as the blank space as seen
below. 

1
2
⃝ 3 ⃝


Then in order for the second blank space on the right to also be non-

trivially empty, its column needs to have the elements of 1 and 2 as well.
1 2
2 1
⃝ 3 ⃝


Once we get to this stage, it is clear to see that the two blank spaces in the

second column cannot be filled without breaking the rules of Latin squares.
Therefore we could not create a maximal Latin square of order 3 with exactly
two empty spaces in the same row.

We continue by considering squares of order 4. We begin in the same
manner, let the bottom two corners be the cells we wish to keep empty.
Without loss of generality, we add the elements 3 and 4 to the last row as
seen below
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⃝ 3 4 ⃝


In order for the cells to be non-trivially empty, we need to add the elements
1 and 2 to both the first and last columns. Without loss of generality, we add
1 and 2 into the first column in the first and second row.

1
2

⃝ 3 4 ⃝


Then regardless of how we add the 1 and 2 to the last column, we find

ourselves in a little bit of a pickle regarding how to proceed.
1 2
2 1

⃝ 3 4 ⃝




1 2
2

1
⃝ 3 4 ⃝




1
2 1

2
⃝ 3 4 ⃝


In all three cases, we still need to add the values of 1 and 2 to the second

and third columns in order for us to only have the two blank spaces in the
bottom corners. It is very easy to see that there is no way to achieve that
without breaking the rules of Latin squares. In summary, we need to add 1
to two different columns, however there is only one row left that does not
already have a 1 in it! What a dilemma...

We claim that this particular dilemma will follow us around regardless
of the size of the square, which is how we will prove our theorem.

Proof. Consider a Latin square 𝐿 of order 𝑛. We again let the bottom 2
corners be the designated empty cells. Without loss of generality, we fill the
remaining cells in the bottom row with the elements from 3 to 𝑛. We need
the elements of 1 and 2 to be present in both the first and second columns in
order for the spaces to be non-trivially empty.
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
1 · · · 2
2 · · · 1
...

. . .
...

⃝ 3 · · · n ⃝


However, in order to ensure there are no other blank spaces other than

the two designated ones, the elements of 1 and 2 need to appear in every
column. So 1 and 2 each need to appear 𝑛 times in the 𝑛 columns, but there
are only 𝑛 − 1 rows to put them in, so this construction is impossible.

We point out that in the above example of 𝐿 with order 𝑛 that we decided
to put the 1 and 2 in the first two rows for both the first and last column, but
we emphasize that this choice was arbitrary and that had the reader made
different choices as to where to place the 1 and 2 in the first and last columns,
they would run into the same dilemma regardless. With that our proof is
complete.

□

We implore the reader to understand that we have not yet proven that
there does not exist any case that breaks our algorithm, but rather that this
specific attempt at a counter-example does not in fact exist. Upon even
further investigation, we have yet to find a valid counter-example to this
algorithm. Again, this does not suffice to prove that our algorithm always
works, but it does suffice for the author of this thesis to leave it as a conjecture
and move on with her life for the time being.

Conjecture 6.1. The MWAA Minimizing Algorithm computes the minimum
value 𝑡 must be in order to embed a given Latin square 𝐿 into a square 𝑇 of order 𝑡.



Chapter 7

Pageant Squares

Now that we have this algorithm, we get to play around with it. We wish to
investigate partially filled maximal Latin squares 𝐿 with only the elements
of the main diagonal missing. The question then becomes, what is the
minimum embedding for such constructions? Does that fact that only the
diagonal is missing have any affect on the possible extensions needed? Can
we construct squares that need to be extended to 2𝑛? How about just 𝑛 + 1?
The point of this chapter is simply to experiment with a specific form of
maximal partially filled squares, and to test out our new and shiny algorithm.

For the fun of it, let us call these Latin squares with missing diagonals
pageant squares (because they kind of look like they are wearing a pageant
sash if you squint hard enough.)

Definition 7.1 (Pageant Square). A maximal incomplete Latin square 𝐿 in which
𝐿[𝑖 , 𝑗] ≠ ∅ for 𝑖 ≠ 𝑗, and 𝐿[𝑖 , 𝑗] = ∅ for all 𝑖 = 𝑗.

We claim that there exist pageant squares of order 𝑛 that need to be
embedded into a 𝑇 of order 𝑛 + 1. We also claim that there are pageant
squares that need to be extended to at least 𝑡 = 2𝑛 − 1. We prove both these
things by construction.

7.1 Extending to 𝑛 + 1

7.1.1 𝑛 = 2𝑘

Theorem 7.1. For every even number 𝑛, there exists a pageant square 𝐿 of order
𝑛 that can be embedded into a 𝑇 of order 𝑡 = 𝑛 + 1
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Proof. We begin with the construction along with some examples of what
the construction looks like.

𝐿[𝑖 , 𝑗] =


𝑗 − 𝑖 (mod 𝑛) for 𝑗 > 𝑖

𝑗 − (𝑖 − 1) (mod 𝑛) for 𝑗 < 𝑖

∅ for 𝑖 = 𝑗

(7.1)

We provide some examples of this construction

1 2 3
4 1 2
3 4 1
2 3 4

1 2 3 4 5
6 1 2 3 4
5 6 1 2 3
4 5 6 1 2
3 4 5 6 1
2 3 4 5 6

Figure 7.1 Pageant squares of order 4 and 6 that need to be extended to
𝑡 = 𝑛 + 1.

It is clear to see from our construction that each element from 1 to 𝑛

appears exactly 𝑛 − 1 times in our grid. We first need to prove that this
construction is in fact a pageant square by showing it is maximal. To do that
we prove two things: first, that the element 𝑗 is missing from the 𝑗𝑡ℎ column,
second, that the element 𝑖 appears in the 𝑖𝑡ℎ row for every 𝑖 and 𝑗 between 1
and 𝑛. Since the only unoccupied cells are of the form (𝑖 , 𝑖) our claims would
show that we are missing 𝑖 from the 𝑖𝑡ℎ column, but that 𝑖 is present in the
𝑖𝑡ℎ row, which means that there is no way to add an element to the cell (𝑖 , 𝑖).

Claim 7.1. For all 1 ≤ 𝑗 ≤ 𝑛, the element 𝑗 is missing from the 𝑗𝑡ℎ column.

Proof. We prove by contradiction:
When 𝑗 > 𝑖, the value of the entries is equal to 𝑗 − 𝑖 (mod 𝑛), and for an
entry 𝑗 − 𝑖 to equal 𝑗 we would need 𝑖 to equal 0 (which is equivalent to 𝑖 = 𝑛

since we working in mod 𝑛). However, if 𝑖 = 𝑛 then it must be the case that
𝑖 ≥ 𝑗 which is a contradiction.

Similarly, if 𝑗 < 𝑖, then the value of the entries is 𝑗 − (𝑖 − 1) (mod 𝑛), and
for this to equal 𝑗 we would need 𝑖 − 1 = 0, 𝑖 = 1, however if 𝑖 = 1 then it
must be the case that 𝑗 ≥ 𝑖 which contradicts our starting conditions.

Therefore 𝑗 cannot appear in the 𝑗𝑡ℎ column. □
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Claim 7.2. For all 1 ≤ 𝑖 ≤ 𝑛, the element 𝑖 appears in the 𝑖𝑡ℎ row.

Proof. First for 1 ≤ 𝑖 ≤ 𝑛
2 , we claim that 𝑖 appears in the 𝑖𝑡ℎ row in the upper

triangle where 𝑗 > 𝑖. The entry values are 𝑗 − 𝑖 and we simply solve for
𝑗 − 𝑖 = 𝑖 and get 𝑗 = 2𝑖, so for 𝑖 values between 1 and 𝑛/2, the entry (𝑖 , 2𝑖)
has the element 𝑖 in it, and since we are restricting 𝑖 to be less than 𝑛/2, we
know that the value of 2𝑖 will definitely be greater than 𝑖 and we are still in
the upper triangle where 𝑗 > 𝑖.

Then for values of 𝑛
2 < 𝑖 ≤ 𝑛, we claim that the element 𝑖 appears in the

𝑖𝑡ℎ row in the lower triangle 𝑗 < 𝑖. The value of the entries equals 𝑗 − (𝑖 − 1)
(mod 𝑛) and if we set that equal to 𝑖 we get 𝑗 = 2𝑖 − 1. Since 𝑖 > 𝑛

2 we know
that the value of 2𝑖 − 1 is greater than 𝑛, but since we are working in mod 𝑛,
the value of 2𝑖 − 1 (mod 𝑛) is in fact less than 𝑖 and we remain in the lower
triangle of 𝑗 < 𝑖. So the entry (𝑖 , 2𝑖 − 1 (mod 𝑛)) is equal to 𝑖, and we have
thus shown that for every 𝑖, the element 𝑖 appears in the 𝑖𝑡ℎ row. □

Therefore since the only unoccupied cells are in the form (𝑖 , 𝑖) and we
know that the only element missing from the 𝑖𝑡ℎ column is the element
𝑖 itself, but that 𝑖 appears in the 𝑖𝑡ℎ row, this tells us that all the unoccu-
pied cells are in fact non-trivially empty and that our Latin square is maximal.

Now that we have constructed the even case, we must show that this
construction can be embedded into a square of order 𝑛 + 1. Doing so is
straightforward as we can utilize Ryser’s conditions. We know that the
empty diagonal cells cannot be filled with any element between 1 and 𝑛

because 𝐿 is maximal, so all the diagonal cells must be occupied by the new
element 𝑛 + 1. Then once we fill in the diagonal with the element 𝑛 + 1, we
now have a grid filled with elements from 1 to 𝑛+1 and we can apply Ryser’s
conditions. Ryser states that if each element between 1 and 𝑛 + 1 appear at
least 2𝑛 − (𝑛 + 1) = 𝑛 − 1, times, then the grid can be successfully embedded.
Since that is indeed the case now that we have added the element 𝑛 + 1 into
the 𝑛 empty diagonal spaces, we know that we can in fact extend our grid
by 1. In figure 7.2, we show how the constructions in figure 7.1 are extended
to order 𝑛 + 1. □
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5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 1
1 2 3 4 5

7 1 2 3 4 5 6
6 7 1 2 3 4 5
5 6 7 1 2 3 4
4 5 6 7 1 2 3
3 4 5 6 7 1 2
2 3 4 5 6 7 1
1 2 3 4 5 6 7

Figure 7.2 Pageant squares of order 4 and 6 embedded in squares of order 5
and 7

That completes the construction and embedding of the even case, we
now consider the odd case.

7.1.2 𝑛 = 2𝑘 + 1

We first begin by understanding why our construction for the even case
does not work in the odd case. In summary, if we use our construction
on a Latin square 𝐿 of odd order, the square will not be maximal. In the
even construction, the values missing from columns 1, 2, 3, . . . , 𝑛 are the
values 1, 2, 3, . . . 𝑛 respectively, however, the values missing from from rows
1, 2, 3, . . . , 𝑛 are the values 𝑛, 𝑛 − 1, 𝑛 − 2, . . . , 1 respectively. So in an empty
cell (𝑖 , 𝑖) the row will be missing 𝑛 − (𝑖 − 1), while the column is missing the
value of 𝑖. So the row and the column will only ever be missing the same
element if 𝑖 = 𝑛 − (𝑖 − 1), which we can solve to find it only possible when
𝑖 = 𝑛+1

2 . If 𝑛 is even, then this 𝑖 value is not an integer, which implies there
is no cell (𝑖 , 𝑖) where the row and column are missing the same value, and
that implies that our grid is maximal. In the odd case however, for the entry
( 𝑛+1

2 , 𝑛+1
2 ), which is now an integer, the row and column are both missing the

same value, and that blank space in the grid can be filled. Consider figure
7.3. We used the construction in formula 7.1 on grids of orders 4 and 5. In
orange we added to the right side of the grid the values missing from each
respective row, and below the grid, the values missing from each column.
It is clear to see that in the even case, the row and the column are never
missing the same value, however in the odd case, the 3𝑟𝑑 row and column
are both missing the value 3, which means that we can add the element
3 to the position (3, 3) in our grid without any contradictions to the Latin
square, so our grid was not maximal. That is why we cannot use the same
construction for the odd case.
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1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1
1 2 3 4

1 2 3 4 5
5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 1
1 2 3 4 5

Figure 7.3 The construction in formula 7.1 on a grids of order 4 and 5, with
missing values in orange.

In our attempts to find pageant squares of odd degree that need to be
embedded in 𝑡 = 𝑛 + 1, we found that it is in fact impossible to do so for
𝑛 = 3. Proving this was simply a matter of considering all the cases and
showing that each case was either not maximal, and thus not a pageant
square, or it needed to be embedded into 𝑡 = 5 instead of 𝑡 = 4. The problem
seemed to lie in the fact that the number 3 was simply just too small and
there aren’t enough permutations of 1, 2 and 3 to construct with.

Upon further investigation, we did find a construction for 𝑛 = 5 and
we used the minimum embedding algorithm to prove that it can indeed be
embedded into a square of order 6. The construction of said square can be
found in figure 7.4.

1 2 3 4
3 4 5 2
4 5 1 3
2 4 5 1
5 3 1 2

Figure 7.4 An odd case (𝑛 = 5) that works, but we can’t explain why, nor can
we generalize it.

The existence of the above pageant square leads us to believe that there
may in fact be a construction for odd orders larger than 3, but we have yet to
find it. We leave it as a conjecture.

Conjecture 7.1. For every odd number 𝑛 > 3, there exists a pageant square 𝐿 of
order 𝑛 that can be embedded into a 𝑇 of order 𝑡 = 𝑛 + 1
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7.2 Extending to 2𝑛?

Theorem 7.2. A pageant square will always have a minimum embedding of order
𝑡 less than 2𝑛.

Proof. By Ryser’s conditions, if 𝐿 can only be embedded into 𝑇 of order
𝑡 = 2𝑛 then there must exist some 𝑖 ∈ [𝑡] such that 𝑁(𝑖) = 0. We know that
we have 𝑛 unoccupied cells in 𝐿 and thus we can place every element from
𝑛 + 1 to 𝑡 exactly once in 𝐿. Thus, if there should be an 𝑖 such that 𝑁(𝑖) = 0,
it would need to be the case that 𝑖 ∈ [𝑛]. However, if 𝑖 does not appear
in 𝐿 any times, then the empty diagonal is trivially unoccupied, because
then you could simply add 𝑖 to every diagonal entry and the square would
be complete with no embedding necessary. So we cannot create a pageant
square that needs to be extended to 2𝑛.

□

7.3 Extending to 2𝑛 − 1

Theorem 7.3. There exists a pageant square 𝐿 of order 𝑛 which cannot be embedded
into any square 𝑇 of order 𝑡 < 2𝑛 − 1.

Similar to the first section, we prove this by construction. We first begin
with the intuition behind the construction. In the previous section, in order
to ensure that our grid only needed to be extended to 𝑛 + 1, we set it up so
that every element between 1 and 𝑛 appeared as many times as possible
within our grid 𝐿. By doing so, we forced 𝑁(𝑖) to be greater than or equal to
𝑛 − 1, for all 𝑖 between 1 and 𝑛, which maximizes the minimum occurring
value. If however, we want the minimum embedding to be as large as
possible, the goal is to built our grid with a value appearing as few times
as possible. Obviously the least number of times we can add an element to
the grid is 0 times, however that would cause the missing diagonal entries
to be trivially empty, and our grid would not be maximal. So we need to
find the minimum number of times an element can appear in our grid while
ensuring that the diagonal is not trivially empty.

Instead of aiming to minimize the occurrence of an arbitrary element,
we decided to select the element 1 as the value whose occurrence we wish to
minimize. Thus moving forward, our construction aims to minimize 𝑁(1).
We know that for each time we add 1 to a cell (𝑖 , 𝑗) (where 𝑖 ≠ 𝑗 because
we are not adding entries to the diagonal), the entire column of 𝑗 and row
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𝑖 can no longer have the value 1 added to them, so the diagonal cells (𝑖 , 𝑖)
and (𝑗 , 𝑗) cannot be filled with the element 1. Since each time we add a 1 we
can eliminate at most 2 diagonal entries from being filled with 1, we would
need at least

⌈
𝑛
2
⌉

cells to have 1 in them in order to ensure that none of the
diagonals could be filled with the element 1.

x x 1 x x
x x x 1 x
x x x x 1

x x x
x x x

x x x 1 x
x x x x 1

⃝ x x
x x
x x

Figure 7.5 The element 1 being added 3 or 2 times to a grid of order 5. x
represents where 1 can no longer be added.

Take for example figure 7.5, to the grid on the left we added the element
1 in

⌈ 5
2
⌉
= 3 cells, and showed that none of the diagonal entries can have a 1

in them. However, if we only add 1 twice, as shown on the grid on the right,
then there is bound to be a diagonal entry that can have 1 added to it (in
this case it is the cell with the red circle in it), so a grid with less than

⌈
𝑛
2
⌉

appearances of an element can never be maximal.
Now that we understand the foundation of the construction is ensuring that
at least one element appears the minimum number of times, which is

⌈
𝑛
2
⌉
,

we can move on to the construction.

𝐿[𝑖 𝑗] =


𝑗 − 𝑖 − (

⌊
𝑛
2
⌋
− 1) (mod 𝑛) for 𝑗 ≥ 𝑖 +

⌊
𝑛
2
⌋

and 𝑖 −
⌊
𝑛
2
⌋
≤ 𝑗 < 𝑖

𝑗 − 𝑖 −
⌊
𝑛
2
⌋

(mod 𝑛) for 𝑗 < 𝑖 −
⌊
𝑛
2
⌋

and 𝑖 < 𝑗 < 𝑖 +
⌊
𝑛
2
⌋

𝑛 ONLY if 𝑛 odd for (𝑖 , 𝑗) = (
⌊
𝑛
2
⌋
,
⌈
𝑛
2
⌉
)

∅ for 𝑖 = 𝑗

(7.2)
In order to understand what the different cases are more clearly, consider

figure 7.6, where the 5 different colors are the different cases. Both of the
orange sections fall under the first case, the purple sections fall under the
second case, and the red square is the 3rd case, unique to grids of odd order.
Then consider figure 7.7 to see examples of the construction.
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1
1

1

1
1

1
1

1

Figure 7.6 Visual representation of the cases in equation 7.2
Light orange: 𝑗 ≥ 𝑖 +

⌊
𝑛
2
⌋

Purple: 𝑖 < 𝑗 < 𝑖 +
⌊
𝑛
2
⌋

Orange: 𝑖 −
⌊
𝑛
2
⌋
≤ 𝑗 < 𝑖

Light purple: 𝑗 < 𝑖 −
⌊
𝑛
2
⌋

Red: (𝑖 , 𝑗) = (
⌊
𝑛
2
⌋
,
⌈
𝑛
2
⌉

for odd 𝑛

4 5 1 2 3
3 4 5 1 2
2 3 4 5 1
6 2 3 4 5
5 6 2 3 4
4 5 6 2 3

6 7 8 1 2 3 4 5
5 6 7 8 1 2 3 4
4 5 6 7 8 1 2 3
3 4 5 9 7 8 1 2
2 3 4 5 6 7 8 1
9 2 3 4 5 6 7 8
8 9 2 3 4 5 6 7
7 8 9 2 3 4 5 6
6 7 8 9 2 3 4 5

Figure 7.7 The construction of equation 7.2 on grids of orders 6 and 9

Now that we have our construction, we can move on to proving this
construction does indeed work and needs to be extended to 2𝑛 − 1.

Proof. It is important to first check that the construction we made is maximal,
as we did with the previous section. However, that just requires some
straightforward computations. For an intuitive understanding of why the
grid is maximal, please refer to figure 7.8 to see which values are missing in
each row and column (printed in orange).
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4 5 1 2 3 6
3 4 5 1 2 6
2 3 4 5 1 6
6 2 3 4 5 1
5 6 2 3 4 1
4 5 6 2 3 1
1 1 1 6 6 6

6 7 8 1 2 3 4 5 9
5 6 7 8 1 2 3 4 9
4 5 6 7 8 1 2 3 9
3 4 5 9 7 8 1 2 6
2 3 4 5 6 7 8 1 9
9 2 3 4 5 6 7 8 1
8 9 2 3 4 5 6 7 1
7 8 9 2 3 4 5 6 1
6 7 8 9 2 3 4 5 1
1 1 1 1 6 9 9 9 9

Figure 7.8 The construction of equation 7.2 on grids of orders 6 and 9 with
missing values added in orange.

It is clear to see that a row and column will never be missing the same
element. As for the actual rigorous proof that the construction is maximal,
the author was kind enough to leave this exercises to her lovely readers,
because she has better things to do with her time. Once the readers have
convinced themselves that this construction is indeed maximal, either by
checking or just having faith in the author, we can now use the algorithm
we developed in the previous chapter.

We know by construction that our minimum value 𝑚0 is equal to
⌈
𝑛
2
⌉
,

which means the minimum value 𝑡 can be is 𝑡 ≥ 2𝑛 −
⌈
𝑛
2
⌉
= 𝑛 +

⌊
𝑛
2
⌋
. Then

since 𝑑 = 𝑛 we find 𝑚1 =

⌊
𝑛

𝑛+⌊ 𝑛
2 ⌋−𝑛

⌋
≈ 2. Since this minimum is smaller

than 𝑚0, we keep going. With this new minimum we get that 𝑡 must be at
least 2𝑛 − 2, then 𝑚2 =

⌊
𝑛

2𝑛−2−𝑛
⌋
= 1. Then since 𝑚2 < 𝑚1 we go again. With

𝑚2 = 1 we find the minimum 𝑡 must be is 𝑡 ≥ 2𝑛 − 1 and 𝑚3 = 𝑛
2𝑛−1−𝑛 = 1.

Now that we have 𝑚3 = 𝑚2 we can stop at 𝑡 = 2𝑛−1. So for this construction,
the minimum 𝑡 can be in order to embed our square is 2𝑛 − 1. The only
outstanding question now is how do we guarantee that 2𝑛 − 1 is large
enough? The algorithm just tells us that 2𝑛 − 1 is the minimum 𝑡 can be,
but is it possible for this construction needs to be embedded into a grid of
order 2𝑛? No! Because we proved in the previous section that there is no
construction of a pageant square that needs to be extended to an order of 2𝑛.

□

And for the sake of the reader, the author has provided a completed
Latin square for this new construction for the square of order 6 that needs to
be extended to order 11.
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7 4 5 1 2 3 6 8 9 10 11

3 8 4 5 1 2 11 6 7 9 10

2 3 9 4 5 1 10 11 6 7 8

6 2 3 10 4 5 8 9 11 1 7

5 6 2 3 11 4 9 7 10 8 1

4 5 6 2 3 7 1 10 8 11 9

1 7 8 9 10 11 2 3 4 5 6

8 1 7 11 9 10 3 4 5 6 2

9 10 11 8 7 6 4 5 1 2 3

10 11 1 6 8 9 7 2 3 4 5

11 9 10 7 6 8 5 1 2 3 4

Figure 7.9 The Latin square 𝐿 of order 6 extended to 𝑇 of order 2𝑛 − 1 = 11.



Chapter 8

In the Next Episode...

We begin with a little recap of what has happened so far in the show. First,
we unpacked the works of M. Hall, P. Hall, Ryser and Evans, making sure to
understand their works through the lens of bipartite graphs and matchings.
Next, we used our understanding of their works to develop an algorithm that
finds the minimum order an incomplete Latin square must be embedded
into. Lastly, we defined matrices called pageant squares and found the
minimum and maximum possible embeddings of these types of squares.

Moving forward, the first thing we would work on next is to try and
complete the construction of the odd case for pageant squares that need to
be embedded in a square of order 𝑛 + 1.

After that, we would like to consider all the values between 𝑛 + 1 and
2𝑛 − 1 to see if there exist pageant squares that need to be embedded in
squares of order 𝑡 for all 𝑛 + 1 < 𝑡 < 2𝑛 − 1, or if there are certain values
that cannot be achieved. Those two goals would be enough to quench our
questions about pageant squares.

Our next goal would be to try and support our algorithm further. Our
algorithm currently gives us a lower bound for what 𝑡 must be for an em-
bedding. We would like to show that the algorithm does in fact give the
minimum embedding rather than just a bound. We would go about this
by either attempting to find counter-examples, and finding ways to adjust
our algorithm to account for such cases, or by proving that no such counter
examples exist, and that the algorithm works perfectly as is.

Lastly we would like to go back to the questions that inspired this the-
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sis paper to begin with, which is to understand uniqueness of the solutions
to Latin squares, in addition to their solvability, which is what this paper
aimed to address.



Appendix A

Source Code

A.1 Python Code

import numpy as np
from collections import Counter
from itertools import chain
from math import*
import copy

# The Latin square is defined by L
# we use 0 to denote empty cells

L = np.array([[1, 0, 3],
[0, 2, 0],
[3, 0, 1]])

L1 = np.array([[1, 2, 3, 4],
[2, 3, 4, 1],
[3, 1, 0, 2],
[4, 0, 2, 3]])

#order of L
n = len(L[0])

#count of every element in the square
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Num = Counter(chain(*L))

#if a number between 1 and n appears 0 times,
# we add it to the counter with a value of 0
for x in list(range(1, n+1)):

if x not in Num.keys():
Num.update({x:0})

#counter of every element not including 0 (empty cells)
Num2 = copy.deepcopy(Num)
del Num2[0]

#order counter by most occuring, extract the smallest value
m0 = Num2.most_common()[-1][1]

#number of empty cells in L
d = Num[0]

#The Algorithm
def PleaseWork(m):

t1 = 2*n - m
m1 = floor(d/(t1-n))

if m1 >= m:
print('We can embed L in a square of order', t1)
return t1

else:
PleaseWork(m1)

PleaseWork(m0)
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