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Abstract 
Densely populated regions around the United States of America exhibit varying 

concentrations of air pollutants that can impact the health of urban populations and surrounding 
ecosystems. Understanding why these differences exist can be important in addressing health 
issues as the human population continues to increase and communities across the US move to 
accommodate these trends. To investigate the impact of natural processes and anthropogenic 
sources on pollutant concentrations, daily data from the Environmental Protection Agency’s 
(EPA’s) publicly available database was downloaded for fine particulate matter (PM2.5), nitrogen 
dioxide (NO2), and ozone (O3) pollutant concentrations from seven metropolitan regions across 
the US for the years 2018-2022 with considerations for population density and pollution 
rankings. Metropolitan locations of study include San Francisco (SF), Los Angeles (LA), New 
York (NY), Houston, Chicago, Atlanta, and Phoenix. A Spearman Rank-Order Correlation test 
was conducted between air pollution data and weather data, including precipitation, wind speed, 
and average temperature, from National Oceanic and Atmospheric Administration (NOAA). 
Further Spearman Rank-Order Correlation tests were conducted between air pollution data and 
vehicle miles travelled data. While precipitation is weakly correlated with all pollutants, 
generally strong positive correlations between O3 and temperature in addition to a strong 
negative correlation between wind speed and NO2 was observed for all regions. Many outliers 
were observed for PM2.5 concentrations in SF, possibly the result of wildfire burning in 
California during the fall months. Further inquiry into the impact of anthropogenic sources 
utilized vehicle miles travelled (VMT) data acquired from Streetlight Data LLC for January 1, 
2020 through June 30, 2020 in SF and LA. A Spearman-Rank Order correlation test found a 
relatively strong positive correlation with NO2 for SF, but generally weak or nonsignificant 
correlations between vehicle travel and pollutants in LA. Overall, low r-values for all 
correlations indicate that other factors may be contributing to differences in pollutant 
concentrations between metropolitan regions.  
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1. Introduction 

1.1 Metropolitan and Urban Expansion 

While metropolitan areas make up less than 20 percent of US land area, approximately 80 

percent of the US population resides in these regions (Auch et al., 2004). They consist of a city 

proper and additional counties, often suburbs, that have high economic contributions to the inner 

city. The expansion of metropolitan areas can be traced back to the end of World War II where 

improved highway systems and transportation networks led to a rise in suburban neighborhoods. 

Extensive movement occurred during this period with US census information from the 1970s 

indicating that more of the American population lived in the suburbs than in central urban areas 

(Auch et al., 2004). Railways and transportation accessibility in the present day have maintained 

an important role in urban expansion, but cheaper living expenses further away from urban 

centers have incentivized relocation where commuting is possible (Kheyroddin & Ghaderi, 

2023). This has been the trend since the year 2000, as suburban population growth has outpaced 

the national overall population growth and urban center population growth (Fry, 2020). Changes 

in air quality rise alongside this urban growth – increased human activity leads urban areas to 

exhibit higher concentrations of air pollutants when compared to natural environments or areas 

that are not as developed (Ling et al., 2011).  

 

1.2 Air Pollution  

Previous studies have extensively investigated the harmful impacts of air pollution on 

both ecosystem and human health. Within an urban context, plants and other agricultural crops 

experience increased selective stress that can reduce genetic diversity (Bell et al., 2011). This 

reduction in biodiversity can have implications for local ecosystem health and the availability of 
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ecosystem services for human populations such as erosion management and pathogen regulation 

(Quijas et al., 2010). While these ecological impacts contribute to human health, exposure to air 

pollution also has more direct impacts on population health. Thorough research has been 

conducted on the area of study in recent years and it is estimated that approximately 6.7 million 

premature deaths are associated exposure to air pollution (Household Air Pollution, n.d.). Many 

results from these studies have drawn strong connections between increased risk of mortality in 

addition to heart and lung diseases through blood contamination, resulting in a long-term mild 

hypoxia state (Zhao & Ma, 2021). The characteristics of individual pollutants result in varying 

impacts on human health, although their combined presence can contribute to a higher overall 

risk of declining health over time. 

  

1.3 Air Pollutants Studied 

The study of air pollution often prioritizes a set of six principal pollutants, deemed 

criteria pollutants, that are identified by the Environmental Protection Agency (EPA) as most 

dangerous and important to monitor (Axelrad, et al., 2013). This study analyzes three pollutants 

from the EPA’s list that are particularly prevalent within urban environments due to 

anthropogenic activity: nitrogen dioxide (NO2), fine particulate matter (PM2.5), and ozone (O3). 

Nitrogen oxides (NOx) are a family of highly reactive gasses that primarily take the form 

of either NO as it is emitted through the combustion of fossil fuels, or the resulting NO2 

produced when NO reacts with free radicals in the atmosphere. The pollutant is primarily derived 

from vehicle emissions and other industrial activity, and as a result concentrations tend to be 

higher in more populated regions or areas adjacent to highways. Classified as a primary pollutant 

due NO’s direct derivation from combustion, NOx can react in the lower atmosphere to form 
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ground level ozone or PM2.5. This process can lead to a buildup of NOx in the atmosphere. It has 

been linked to a positive correlation with the presence of mental health disorders and long-term 

exposure can lead to increased risk of cardiovascular and respiratory diseases, asthma, and lung 

cancer (Shaw & Van Heyst, 2022). These health impacts can be further exacerbated by NO2’s 

contributions to the formation of ozone.  

Tropospheric ozone, also known as ground-level ozone, is a secondary pollutant of NOx 

formed through a series of chemical reactions in the lower atmosphere. This process involves the 

photodegradation of NOx in a reaction with volatile organic compounds (VOCs), so the presence 

of heat and sunlight are essential. Unlike stratospheric ozone that filters the sun’s ultraviolet 

(UV) rays, ground-level ozone can lead to a myriad of harmful health impacts. As a principal 

component of photochemical smog, high concentrations of ozone can inhibit visibility and act as 

an irritant for the eye and nose (Zhang et al., 2019). Additionally, past studies have indicated that 

ozone can cause oxidative damages to cells leading to increased risk of asthma and other 

immune-inflammatory responses (Zhang et al., 2019). Further contributions to these health 

impacts come in the form of particulate matter that can exist alongside the chemically formed 

ozone.  

Fine particulate matter, often written as PM2.5, is classified as airborne particles that are 

2.5 μm or smaller in diameter in either a liquid or solid form. These particles are particularly 

dangerous because their small size can lead to direct entry into the bloodstream when inhaled. As 

a result, they are closely monitored by the EPA due to the variety of associated cardiovascular 

and cognitive health concerns. Exposure to PM2.5 has been shown to contribute towards 

mortalities related to strokes, acute lower respiratory infections, ischemic heart disease, lung 

cancer, and chronic obstructive pulmonary disease (Song et al., 2017). Furthermore, long-term 
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exposure to PM2.5 has been linked to a decline in cognitive function in adults above 50 years of 

age (Ailshire & Crimmins, 2014). These particles are generated through a variety of 

anthropogenic and natural sources. Major anthropogenic sources include vehicle activity, dust, 

industry, biomass burning, and coal combustion (Lv et al., 2016). Yet, biomass burning can also 

occur naturally in the event of wildfires. Shifts in climatic conditions due to global climate 

change has led to a 10-fold increase in the amount of area burned within the US since the 1980s 

alongside increased frequency of wildfire occurrences (Wang et al., 2023). It is often 

acknowledged that PM2.5 pollution is one of the largest invisible threats to human health on a 

shorter time scale, and as a result, government agencies around the world have heavily focused 

on reducing this form of pollution.  

As mandated by the Clean Air Act, the EPA assigns each of these pollutants a primary 

and secondary standard which aim to protect against the previously discussed human and 

environmental health concerns (Axelrad, et al., 2013). The annual standards for PM2.5, NO2, and 

ozone are 15 μg/m3, 53 ppb, and 0.7 ppm respectively (US EPA, 2016; US EPA, 2020; US EPA, 

2016). In an attempt to analyze and maintain concentrations below these standards, the 

government agency has established a network of air quality monitor stations across the US 

equipped with air quality monitoring instruments. The number and type of recorded pollutant 

differ amongst these stations, but all recorded data is made publicly available through an online 

database. While the database provides outputs for analysis, differences in air pollution mixtures 

across regions of the US highlight how it is difficult to analyze pollutants across such a wide 

geographic range (Requia et al., 2019). It is generally agreed that weather impacts air pollution, 

but there is a lack of extensive research into the mechanisms of these relationships and the extent 

to which they impact one another. Previous studies have examined weather factors including 
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temperature, humidity, and wind with findings that support temporal and spatial differences in 

pollutant concentrations (Pleijel et al., 2016). Yet, local differences in this weather, topography, 

industrial activity, and many other competing factors contribute towards complexities in the area 

of study.  

 

1.4 Project Aims 

This study aims to utilize air pollution, weather, and vehicle data to address how a variety 

of factors contribute to differences in air pollutant concentrations between US metropolitan 

areas. The analysis seeks to uncover possible correlations that can point towards further areas of 

study rather than provide an extensive review that accounts for confounding variables and insight 

into causal relationships. Pollutant concentrations between seven metropolitan regions with high 

population density in the US will be compared across years and seasons as to address how a 

large portion of the US population will be affected. Following this initial identification of trends, 

correlations between pollutant concentrations and weather from each region will be analyzed to 

examine the impact of natural hydrologic cycles. Anthropogenic patterns are introduced through 

correlation analysis between vehicle data and pollutants for two regions in California. 

These findings may have important implications as population density increases. It is 

expected for the human population to grow by approximately two billion people over the next 30 

years, and it is likely that continued urban expansion will follow (United Nations, n.d.). 

Understanding the impact of different factors on air pollutants can have implications for policy 

change regarding public health. This can be essential in metropolitan areas where dense 

populations can be exposed to hazardous conditions.  
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2. Materials and Methods  

2.1 Selection of Metropolitan Areas 

For this study, seven metropolitan areas from across the United States were selected and 

analyzed (Table 1). The areas include San Francisco (SF), Los Angeles (LA), New York (NY), 

Houston, Chicago, Atlanta, and Phoenix (Fig. 1). Each area was chosen due to a combination of 

considerations including population density according to the 2022 US Census, geographic 

coverage, and the American Lung Association’s rankings of the worst-polluted cities (Most 

Polluted Cities | State of the Air, n.d.). Counties recognized as members of the selected 

metropolitan regions of study were identified using US Census information through Census 

Reporter (Census Reporter: https://censusreporter.org) and the number of monitor stations for 

each pollutant within each county were recorded (Table 2). This information was utilized to 

download air pollution, weather, and VMT data for the study. 

 
Figure 1. Map of 7 metropolitan areas within the US selected for study. 
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Table 1. Demographic information for 7 metropolitan areas of study. N/A indicates no 
associated information. 

Metropolitan 
Area 

State(s) Number of 
Counties 

Area 
(miles2) 

Population 
(millions) 

American Lung Association 
Rankings 

SF
 

CA 9 2,470.3 4.58 

#11 by Ozone 
#7 by Year-Round Particle 
Pollution 
#6 by Short-Term Particle 
Pollution 

L
A

 

CA 3 4,852.1 12.87 

#1 by Ozone 
#4 by Year-Round Particle 
Pollution 
#9 by Short-Term Particle 
Pollution 

N
Y

 

NY, NJ, CT 12 6,684.4 19.62 #12 by Ozone 

H
ou

st
on

 

TX 9 8,268.8 7.34 
#9 by Ozone 
#15 by Year-Round Particle 
Pollution 

C
hi

ca
go

 

IL, IN, WI 14 7,194.9 9.44 #23 by Year-Round Particle 
Pollution 

A
tla

nt
a  

GA 11 8,685.7 6.22 N/A 

Ph
oe

ni
x  

AZ 2 14,568.7 5.02 

#5 by Ozone 
#7 by Year-Round Particle 
Pollution 
#13 by Short-Term Particle 
Pollution 

 
 
Table 2. Counties and data availability in 7 metropolitan areas of study. Crosses (x) indicate 
available data, N/A showing non-available data between 2018-2022 for air pollutants and the 
impacting factors, and italicized values indicate available stations with significant gaps in data. 

Region County PM2.5 NO2 O3 VMT Temperature Rainfall Wind 

SF
 

Alameda County 6 6 5 × 4 32 3 
Contra Costa 
County 

2 4 4 × 6 30 1 

San Francisco 
County 

1 1 1 × N/A 7 N/A 

San Mateo 
County 

1 1 1 × 4 27 1 
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Marin County 2 1 1 × 3 28 N/A 
Santa Clara 
County 

3 2 4 × 3 36 2 

Solano County 1 1 3 × N/A 13 1 
Sonoma County 1 1 2 × 2 83 1 
Napa County 2 2 2 × N/A 10 1 

L
A

 

Los Angeles 
County 

15 16 15 × 23 75 11 

Orange County 2 3 3 × 2 45 2 

Ventura County 5 2 5 × 6 21 3 

N
Y

 

Kings County 3 N/A N/A 
 

N/A 1 N/A 

Queens County 3 2 1 
 

2 10 2 

New York 
County 

5 N/A 1 
 

N/A 5 2 

Bronx County 4 2 2  N/A 1 N/A 

Richmond 
County 

2 N/A 1  N/A 3 N/A 

Westchester 
County 

1 N/A 1  N/A 13 2 

Bergen County 2 1 1  N/A 16 1 

Hudson County 2 2 1  N/A 5 N/A 

Passaic County 1 N/A 1  N/A 15 N/A 

Putnam County N/A N/A 1  N/A 5 N/A 

Orange County 1 N/A 1  N/A 10 1 

Rockland County 1 N/A 1  N/A 3 N/A 

H
ou

st
on

 

Austin County N/A N/A N/A  N/A 16 N/A 

Brazoria County N/A 2 2  2 17 3 

Chambers County N/A N/A N/A  1 4 N/A 

Fort Bend County N/A N/A N/A  N/A 20 1 

Galveston County 1 1 1  1 44 1 

Harris County 10 14 17  2 80 3 

Liberty County N/A N/A N/A  2 10 N/A 

Montgomery 
County 

1 1 1  2 50 1 

Waller County N/A N/A N/A  N/A 2 N/A 
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C
hi

ca
go

 
Cook County 12 6 10  1 105 3 

DuPage County 1 N/A 1  1 57 2 

Lake County, IN 7 1 2  N/A 36 N/A 

Lake County, IL N/A N/A 1  N/A 44 1 

Will County 2 N/A 1  N/A 66 1 

Kane County 2 N/A 1  N/A 44 1 

McHenry County 1 N/A 1  N/A 36 N/A 

Kenosha County 1 1 2  N/A 19 1 

Porter County 1 N/A 2  1 40 1 

Kendall County N/A N/A N/A  N/A 21 N/A 

DeKalb County N/A N/A N/A  N/A 16 N/A 

Grundy County N/A N/A N/A  N/A 15 N/A 

Jasper County N/A N/A N/A  N/A 18 N/A 

Newton County N/A N/A N/A  N/A 18 N/A 

A
tla

nt
a 

Cherokee County N/A N/A N/A  N/A 8 N/A 

Clayton County 1 N/A N/A  1 4 1 

Cobb County 1 N/A 1  N/A 21 1 

DeKalb County 1 2 1  N/A 22 1 

Douglas County N/A N/A 1  N/A 4 N/A 

Fayette County N/A N/A N/A  N/A 8 N/A 

Forsyth County N/A N/A N/A  N/A 12 N/A 

Fulton County 3 1 1  N/A 22 1 

Gwinnett County 1 N/A 1  N/A 26 1 

Henry County 1 N/A 1  N/A 9 N/A 

Rockdale County N/A N/A 1  N/A 3 N/A 

Ph
oe

ni
x  Maricopa County 12 7 24  1 247 4 

Pinal County 4 N/A 6  1 49 N/A 
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2.2 Data Acquisition: Air Pollution Data 

Air pollution data for each of the selected areas were downloaded from the EPA’s public 

online database for the years 2018-2022 (EPA: https://www.epa.gov/outdoor-air-quality-

data/download-daily-data). This database, known as the Air Quality System (AQS), is composed 

of data collected from government-funded air quality monitors around the country with gaps in 

available daily pollutant data filled by AirNow monitors (AirNow: https://www.airnow.gov/). 

EPA monitors contributing data to the AQS operate on large-scales due to the quality and 

capabilities of the filtering instruments, yet the same filtration data can be collected through 

small-scale operations which will be outlined in the appendix (Section III). Particulate matter 

(PM2.5), nitrogen dioxide (NO2), and ozone (O3) were available for all regions of study and were 

downloaded for all available counties. Downloaded data were identified as the following: daily 

mean PM2.5 concentration (μg/m3), maximum 1-hour NO2 concentrations reported daily (parts 

per billion, ppb), and maximum 8-hour ozone concentrations reported daily (parts per million, 

ppm). Daily concentrations for each of the pollutants within the given years of study were 

downloaded for all available monitoring stations for the identified counties. Missing or 

incomplete data from counties was recorded. Mean daily pollutant concentrations were 

calculated for each metropolitan region by averaging the concentrations across monitoring 

stations from each county for the corresponding area of study in R Studio. These singular 

pollutant concentration values associated with each day from January 1, 2018 to December 31, 

2022 were input into a CSV file that allowed for further analysis.   

 



 11 

2.3 Data Acquisition: Weather Data 

Weather data for each of the selected areas was downloaded from the US National 

Oceanic and Atmospheric Administration’s (NOAA) public online database, Climate Data 

Online (CDO) for the years 2018-2022 (CDO: https://www.ncei.noaa.gov/cdo-

web/search;jsessionid=DE94D380A5ABAF961A0159D5BD07B18F). Daily average wind speed 

(m/sec), precipitation (mm), and average temperature (degrees Celsius) were available for all 

regions of study and downloaded for all available counties. Missing or incomplete data from 

counties was recorded. Mean daily values for each factor were calculated for each metropolitan 

region by averaging the recorded values across monitoring stations from each county for the 

corresponding area of study in R Studio (Section IV). Once a singular value associated with each 

day from January 1, 2018 to December 31, 2022 was calculated for each of the weather factors, it 

was input into a CSV file that allowed for further analysis.   

 

2.4 Data Acquisition: VMT Data 

Vehicle miles travelled (VMT) data were acquired for the two California metropolitan 

areas, LA and SF, from Streetlight Data LLC. The company uses machine learning alongside 

vehicle monitors to calculate vehicle travel per county on a daily basis. Thus, the provided travel 

data is calculated at a county-level from January 1, 2020 to June 30, 2020. Mean daily values for 

LA and SF were calculated by averaging the provided VMT values across corresponding 

counties for the overall metropolitan area in R Studio. Once a singular value associated with each 

day from January 1, 2018 to June 30, 2020 was calculated for both regions, it was input into a 

CSV file that allowed for further analysis.  
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2.5 Data Analysis 

R Studio (V346.421) was used to treat PM2.5, NO2, and O3 concentrations across all 

regions for the study period. The initial stages involved calculations for the daily average mean, 

as previously discussed. This process involved averaging daily concentrations for each pollutant 

across all monitoring stations within the identified counties associated with the area of study. 

Averages were calculated for all seven metropolitan areas. The code used to calculate mean daily 

pollutant concentrations are available in the appendix (Section IV). While most metropolitan 

areas had at least one monitoring station that measured PM2.5, NO2, and O3 for each county, 

several metropolitan areas did not have any monitoring stations for these pollutants. Most 

notably, Houston, Atlanta, and Chicago were missing coverage of five, three, and five counties 

respectively. In Houston, these counties include Austin, Chambers, Fort Bend, Liberty, and 

Waller. In Atlanta, these counties include Cherokee, Fayette, and Forsyth. In Chicago, the 

missing counties include Kendall, DeKalb, Grundy, Jasper, and Newton. NO2 measurements 

were the least available while O3 and PM2.5 were fairly well covered. It is important, however, to 

note that several O3 datasets were missing concentrations for the winter months. This is likely 

due to a greater concern about the pollutant during warm summer months when conditions are 

ideal for the O3 photochemical formation process to occur. When available datasets were 

identified as unusable due to extensive missing data, they were marked and removed from the 

analysis (Table 1). All mean daily pollutant concentrations, their corresponding dates, and their 

corresponding metropolitan areas were input into a CSV file that was used for further analysis.  

Mean daily pollutant concentrations were used to run an analysis of variance (ANOVA) 

test and create significance boxplots comparing overall pollutant concentrations between each of 

the seven metropolitan areas to identify initial trends of interest. The code was run for each type 
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of pollutant to create three different boxplots (Section IV). This data was used to create 

additional significance boxplots plotting annual concentrations of each pollutant for each region 

(Section IV). Significance boxplots plotting seasonal concentrations for each metropolitan area 

were created as well. Mean daily pollutant concentrations were assigned to seasons based on the 

months that fall under the generally accepted meteorological seasons: March, April, and May 

were assigned to spring; June, July, and August were assigned to summer; September, October, 

and November were assigned to fall; and December, January, and February were assigned to 

winter. The code to create regional annual pollutant concentration plots and regional seasonal 

concentration plots was run for each metropolitan area for each pollutant (Section IV). Finalized 

boxplots were imported into Microsoft PowerPoint where full figure formatting was arranged, 

and appropriate axes were added. 

Weather and VMT significance correlation plots were configured using the Spearman 

Rank-Order Correlation test (corroplot package) in RStudio. NOAA daily weather data was 

averaged for each factor across all monitoring stations within the identified counties associated 

with the area of study. Averages were calculated for all seven metropolitan areas (Section IV) 

and calculated means were added to the previously mentioned CSV file holding mean daily 

pollutant concentrations. Once all data had undergone initial treatment, a significance correlation 

plot was created to visualize r-values for each weather factor and each pollutant. A similar 

process was carried out for VMT data, however initial treatment to calculate mean daily averages 

was unnecessary as the provided data had already been treated by previous researchers. Once the 

data was added to the CSV file, a significance correlation plot similar to that of the weather 

correlation plot was created.  
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3. Results 

In order to assess differences in pollutant concentrations between geographic locations, 

PM2.5, NO2, and O3 concentrations were compared between seven metropolitan areas using an 

ANOVA test. Furthermore, pollutant concentrations were compared annually by region using 

ANOVA tests to examine sources of outliers in the overall pollutant comparison and additional 

ANOVA tests compared seasonality for each metropolitan area to understand how natural 

variations impact pollutant concentrations. Spearman Rank-Order Correlation tests were 

conducted between pollutant concentrations and weather factors to examine natural climate 

impacts and anthropogenic impacts were examined using Spearman Rank-Order Correlation tests 

between pollutant concentrations and VMT data.  

 

3.1 Pollutant Concentration Comparisons 

Overall, mean concentrations for all pollutants fell below the annual standards set by the 

EPA, but all regions had outliers that did not meet the standards with the exception of Houston 

for NO2. Post hoc comparisons using the Tukey HSD tests indicated that there was a 

significantly higher concentration of PM2.5 in LA with a median concentration of 9.7 μg/m3 

followed by Atlanta and Houston both with a median concentration of 8.5 μg/m3 (Table S1).  

The lowest overall concentrations were exhibited by NY with a median concentration of 6.0 

μg/m3. Outliers were especially prevalent for PM2.5 observations overall (Fig. 2A), and SF 

exhibited the most outliers above the upper quartile for this pollutant. The lowest O3 

concentrations were present in SF, Houston, and NY with median concentrations of 0.034 ppm, 

0.034ppm, and 0.033ppm, respectively. Furthermore, SF exhibited the most outliers below the 

lower quartile. Phoenix exhibited significantly larger concentrations of NO2 and O3 than the other 
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studied regions (Fig. 2B, 2C) with a median NO2 concentration of 31.7 ppb and a median O3 

concentration of 0.048 ppm.  

 

 
Figure 2. Fine particulate (PM2.5 ),  NO2, and O3 concentrations for 7 selected metropolitan 
regions between 2018 and 2022. Horizontal lines within the boxes represent median values 
while vertical lines indicate the overall spread of the dataset. Dots indicate outliers. Letters 
indicate significance between years for each region where two boxes that share the same letter 
are not statistically significantly different from each other. Red dotted lines mark the EPA annual 
standard for each pollutant. 
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3.1.1 PM2.5 

Significant annual PM2.5 differences were exhibited in all regions (Fig. 3). A general 

positive trend in pollutant concentration occurred over the course of 5 years in Houston where 

the lowest median concentration of 7.6 μg/m3 occurred in 2018 and the highest concentration 

occurred in 2022 with a median of 9.0 μg/m3.  The highest concentrations in LA occurred in 

2018 with a median of 10 μg/m3 while the lowest concentration occurred a year later in 2019 

with a median of 8.9 μg/m3. A similar trend occurred in SF where the highest median 

concentration in 2018 was 8.2 μg/m3 and the lowest median concentration in 2019 was 6.3 

μg/m3. The lowest concentrations for Atlanta and Phoenix occurred in 2020 with median 

concentrations of 7.5 μg/m3 and 5.1 μg/m3 respectively and the highest concentrations occurred 

in 2019 with 8.4 μg/m3 for both metropolitan areas.  Chicago and NY exhibited the lowest 

median concentrations in 2020 with values of 8.0 μg/m3 and 5.3 μg/m3 respectively. Both 

metropolitan areas also exhibited the highest median concentrations in 2021 where Chicago had 

a median concentration of 9.1 μg/m3 and NY had a median concentration of 6.3 μg/m3. Outliers 

were present for every year in all regions, but extensive outliers were observed in 2020 for SF 

and LA.   
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Figure 3. Annual fine particulate (PM2.5) concentrations for 7 selected metropolitan regions 
between 2018 and 2022. Red boxes represent 2018, yellow boxes represent 2019, green boxes 
represent 2020, blue boxes represent 2021, and purple boxes represent 2022. Horizontal lines 
within the boxes represent median values while vertical lines indicate the overall spread of the 
dataset. Dots indicate outliers. Letters indicate significance between years for each region where 
two boxes that share the same letter are not statistically significantly different.  
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3.1.2 NO2 

ANOVA tests indicated overall significant annual differences between NO2 

concentrations for the seven regions (Fig. 4). Concentrations in Phoenix were significantly 

higher in 2018 when compared to all other years with a median concentration of 25.3 ppb as 

indicated by a Tukey HSD post hoc comparison. The highest concentrations in LA, SF, and 

Chicago occurred in 2018 with median values of 24.2 ppb, 17.4 ppb, and 27.6 ppb, respectively. 

The highest concentrations for NY and Atlanta occurred in 2019 with median concentrations of 

29.2 ppb and 25.25 ppb, respectively. Houston’s highest concentration occurred in 2022 with a 

median concentration of 16.0 ppb. The lowest concentration occurred in 2021 for LA and SF 

with median values of 23.4 ppb and 14.7 ppb, respectively. All other regions experienced their 

lowest median concentrations in 2020: NY’s concentration was 25.7 ppb, Houston’s 

concentration was 14.1 ppb, Chicago’s concentration was 26.0 ppb, Atlanta’s concentration was 

21.6 ppb, and Phoenix’s concentration was 21.6 ppb.  Outliers were present for all regions except 

for Phoenix with SF exhibiting extensive outliers in 2018.  
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Figure 4. Annual NO2 concentrations for 7 selected metropolitan regions between 2018 and 
2022. Red boxes represent 2018, yellow boxes represent 2019, green boxes represent 2020, blue 
boxes represent 2021, and purple boxes represent 2022. Horizontal lines within the boxes 
represent median values while vertical lines indicate the overall spread of the dataset. Dots 
indicate outliers. Letters indicate significance between years for each region where two boxes 
that share the same letter are not statistically significantly different.  
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3.1.3 Ozone 

Post hoc comparisons using Tukey HSD tests indicated a significantly higher O3 

concentration in 2019 for Atlanta with a median concentration of 0.037 ppm as well as a 

significantly higher concentration in 2022 than 2018 in Houston. However, there were 

insignificant differences between years for all other regions (Fig. 5). LA’s highest median 

concentration of 0.046 ppm occurred in 2018 and 2022 while the lowest median concentration of 

0.045 ppm occurred in 2020. In SF, the highest concentration occurred in 2021 with a median 

value of 0.035 ppm while the lowest concentrations occurred in 2018, 2019, and 2022 with a 

median concentration of 0.034 ppm. Ozone concentrations in NY were lowest in 2018 with a 

median concentration of 0.031 ppm. The highest concentrations in this region were exhibited in 

2019, 2021, and 2022 with a median concentration of 0.034 ppm. The highest median 

concentrations for Houston and Chicago occurred 2022 with values of 0.035 ppm and 0.037 

ppm, respectively. Houston’s lowest median concentration was 0.031 ppm in 2018 while the 

lowest median concentrations of 0.035 ppm occurred in 2018, 2019, and 2020 in Chicago. The 

highest median concentration in Phoenix occurred in 2019 with a median concentration of 0.037 

ppm and the lowest median concentration occurred in 2020 with a median concentration of 0.032 

ppm. Outliers were present for all regions but were more prevalent in SF, LA, NY, and Chicago.  
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Figure 5. Annual O3 concentrations for 7 selected metropolitan regions between 2018 and 
2022. Red boxes represent 2018, yellow boxes represent 2019, green boxes represent 2020, blue 
boxes represent 2021, and purple boxes represent 2022. Horizontal lines within the boxes 
represent median values while vertical lines indicate the overall spread of the dataset. Dots 
indicate outliers. Letters indicate significance between years for each region where two boxes 
that share the same letter are not statistically significantly different. 
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3.1.4 Seasons 

Tukey HSD post hoc comparisons indicated PM2.5 concentrations were significantly 

highest in the fall for SF and LA with many outliers above the upper quartile for SF (Fig. 6). 

Regions on the West Coast exhibited similar trends regarding low concentrations with SF, LA, 

and Phoenix exhibiting significantly lower concentrations during the fall season. All other 

regions experienced lowest overall concentrations in either the fall or winter seasons. 
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Figure 6. Seasonal fine particulate (PM2.5) concentrations for 7 selected metropolitan 
regions between 2018 and 2022. Green boxes indicate spring months, blue boxes indicate 
summer months, red boxes indicate fall months, and purple boxes indicate winter months. 
Horizontal lines within the boxes represent median values while vertical lines indicate the overall 
spread of the dataset. Dots indicate outliers. Letters indicate significance between years for each 
region where two boxes that share the same letter are not statistically significantly different from 
each other.  
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NO2 concentrations were significantly lowest during the summer season for all regions 

with the exception of Chicago where the difference between fall and winter concentrations were 

not statistically significant (Fig. 7). Even so, NO2 concentrations in the spring and winter seasons 

are significantly higher than the fall and summer seasons for this region (Fig. 7). While all 

regions exhibited highest concentrations during the winter season, the second highest NO2 

concentrations were split between spring and fall amongst regions.   
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Figure 7. Seasonal NO2 concentrations for 7 selected metropolitan regions between 2018 
and 2022. Green boxes indicate spring months, blue boxes indicate summer months, red boxes 
indicate fall months, and purple boxes indicate winter months. Horizontal lines within the boxes 
represent median values while vertical lines indicate the overall spread of the dataset. Dots 
indicate outliers. Letters indicate significance between years for each region where two boxes 
that share the same letter are not statistically significantly different from each other.  
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The majority of regions had high O3 concentrations in the spring, however LA, SF, and 

Phoenix exhibited this trend in the fall. Tukey HSD post hoc comparisons revealed that winter 

exhibited significantly lower O3 concentrations for all regions while summer exhibited the 

highest concentrations for most regions (Fig. 8). O3 concentrations were highest in the spring for 

SF and Houston. There was not a statistically significant difference between the two highest 

concentrations in the spring and summer for Atlanta.  
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Figure 8. Seasonal O3 concentrations for 7 selected metropolitan regions between 2018 and 
2022. Green boxes indicate spring months, blue boxes indicate summer months, red boxes 
indicate fall months, and purple boxes indicate winter months. Horizontal lines within the boxes 
represent median values while vertical lines indicate the overall spread of the dataset. Dots 
indicate outliers. Letters indicate significance between years for each region where two boxes 
that share the same letter are not statistically significantly different from each other.  
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3.2 Pollutant Correlations 

3.2.1 Weather 

Overall, significant strong positive correlations between temperature and ozone were 

observed for all regions (Fig. 9). The strongest correlation was found for Phoenix (r = 0.69) 

followed closely by LA (r = 0.68). The weakest of these correlations was exhibited in Houston 

where a correlation coefficient of 0.13 was found. Precipitation exhibited significant negative 

correlations with all pollutants for all regions with the exception of SF where no significant 

correlation was found. While significant negative correlations between wind speed and all 

pollutants were generally observed, O3 concentrations in SF (r = 0.15) and Phoenix (r = 0.23) 

were positively correlated with this weather factor. NO2 concentrations in these two metropolitan 

areas, however had significantly strong negative correlations between NO2 and wind speed. SF (r 

= -0.72) and Phoenix (r = -0.57) exhibited correlation coefficients that were generally stronger 

than other regions who experienced similar significant negative correlations, as the next largest 

coefficient was exhibited by LA with a correlation coefficient value of -0.51. While correlation 

tests indicated significant correlations for most factors in all regions, low correlation coefficients 

were calculated for most results.  
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Figure 9. Significance correlation plots between weather data (wind speed, precipitation, 
and temperature) and pollutant concentrations for 7 selected metropolitan regions from 
2018 to 2022. Values in boxes indicate r-values for correlation where darker text indicates a 
more statistically significant correlation. An “X” indicates a lack of significant correlation 
between the variables. 
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3.2.2 VMT  

Significant positive correlations were observed between VMT and PM2.5 (r = 0.28) as 

well as NO2 (r = 0.38) concentrations in LA (Fig. 10). A similar trend was observed in SF for 

VMT and PM2.5 (r = 0.36) and NO2 (r = 0.56) in addition to a weak negative correlation between 

VMT and O3 (r = -0.29). SF had larger correlation coefficients than the LA correlations. 

Furthermore, there was no significant correlation between VMT and O3 concentrations in LA 

(Fig. 10) 

 

 
Figure 10. Significance correlation plot between vehicle miles travelled (VMT) data and 
pollutant concentrations in LA and SF from January 2020 through June 2020. Values in 
boxes indicate r-values for correlation where darker text indicates a more statistically significant 
correlation. An “X” indicates a lack of significant correlation between the variables. 
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4. Discussion 

4.1 Temperature 

Overall, the lowest ozone concentrations occurred in the winter for all regions and most 

regions exhibited the highest concentrations in the summer with the exception of SF, Houston, 

and Atlanta (Fig. 8). Previous studies have found that temperature has a strong positive 

correlation with ozone concentrations and increasing trends in temperature sensitivity in ozone 

production have been stronger in more recent years (Lee et al. 2014). Low temperatures, as 

winter months generally exhibit the coldest annual temperatures across the US, may contribute to 

significantly lower ozone concentrations due to reduced rates of ozone formation at this time. 

Furthermore, ozone formation is dependent on oxygen radicals that occur through the photolysis 

of oxygen molecules (Chieh C. 2021). Generally, solar UV radiation in winter months is weaker 

than radiation exhibited during summer months in North America (Sliney & Wengraitis, 2006). 

Here, oxygen radicals become the limiting factor in ozone formation as the necessary conditions 

for photolysis to occur are not present. As a result, it is likely that this combination of lower 

temperatures and UV radiation restrict ozone production in the winter across all regions.  

While winter months exhibit the coldest annual temperatures, summer months generally 

exhibit the warmest annual temperatures. Meng et. al (2023) found that ozone formation 

reactions increase with temperature, likely contributing to the overall strong positive correlation 

values between ozone and temperature exhibited across all studied regions. The aforementioned 

study also identified that under warmer conditions, an increase in ozone production rates was 

greater than the rate of ozone loss, contributing to fast net ozone accumulation in heat wave 

conditions. It is possible that these net positive relationships between temperature and ozone 

formation contributed to generally higher summer concentrations for most metropolitan regions.  
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The only three regions that did not exhibit highest concentrations in the summer season – 

SF, Atlanta, and Houston – exhibited highest concentrations in the spring season or did not have 

a significant difference between the spring and summer seasons. A study conducted in 2020 

identified a significant shift in warm weather type frequency in eastern North America with a 

mean frequency of 56 days (Ellis & Marston, 2020). This approximately two month shift in 

warm conditions may explain the deviation from the majority of regions in ozone concentrations 

exhibited by SF, Atlanta, and Houston. Continued exacerbation of these shifts due to 

anthropogenic climate change may contribute to similar higher spring concentrations in more 

metropolitan areas in the future. 

 

4.2 Precipitation 

While there were insignificant correlations between precipitation and NO2 in addition to 

ozone in SF, all other regions exhibited a negative correlation between precipitation and all 

pollutants (Fig. 9). The formation of acid rain may contribute to an understanding of these 

results, as previous atmospheric models have pointed to a dependent relationship between 

pollution’s removal from the atmosphere and the rate of precipitation formation where faster 

rates have contributed to less remaining pollution (Naresh et al., 2007). Under a four-phase 

interaction composed of the formation of raindrops, the introduction of primary pollutants, the 

introduction of secondary pollutants, and the interactions of all pollutants, acid rain formation 

depends on the rate of pollutant introduction to precipitation (Naresh et al., 2006). Pollutant 

particles are extracted from the atmosphere as they form acid rain through these processes, thus 

likely resulting in a lower atmospheric concentration as measured at EPA monitoring stations. 
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These negative correlations, however, are generally weak as exhibited by correlation 

coefficients greater than -0.30 for all calculated values (Fig. 9). Previous studies have found the 

incorporation of air pollutant particles into orographic clouds, formed in response to local 

topography and uplifted winds, leads to a reduction in drop coalescence speed, thus resulting in a 

delay in the conversion of clouds to precipitation (Givati & Rosenfeld, 2004). Consideration of 

this additional relationship between precipitation and pollutants may contribute to lower 

confidence within these correlations as the amount of precipitation may be limited by the pre-

existing concentration of pollutants in the area. Further investigation into precipitation 

suppression through examination of precipitation on a monthly basis in relation to pollutant 

concentrations would allow for a better understanding of the impact of this weather factor on the 

studied metropolitan areas.  

 

4.3 Wind  

NO2 and wind were significantly negatively correlated across all metropolitan regions with 

an especially strong correlation in SF (r = -0.72) and Phoenix (r = -0.57) (Fig. 9). Previous 

studies have shown that NO2 columns are strongest in the area of origin, but they do exhibit high 

influence on surrounding areas through wind transport (Rivera et al., 2015). While these two 

metropolitan areas are located in the western part of the US, both have different topographies. SF 

is located along the coast, thus exposing the area to winds from the Pacific Ocean. It is possible 

that these winds may blow the NO2 pollutants inland, contributing to reducted pollutant 

concentrations for the metropolitan area as a whole. On the other hand, Phoenix is landlocked 

and located within a basin that expands into Mexico. The expansive nature of these geologic 
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features may contribute to the transport of pollutants to far edges of the basin, thus reducing the 

concentrations directly over the studied metropolitan area.  

While there were strong negative correlations exhibited between wind and NO2 in these 

regions, significantly high NO2 and ozone concentrations were present in Phoenix while SF 

concentrations were generally lower (Fig. 2). Here, considerations of the different topographies 

may lead diverging processes of pollutant buildup between regions. Previous studies have found 

that the spread of NO2 due to wind were especially strong for regions in the same basin while 

low wind speeds and positive vertical temperature gradients were associated with weather 

classification schemes that saw the highest concentrations of NO2 (Rivera et al., 2015; 

Grundstrom et al., 2015). Additional studies have shown that a multi-day buildup of locally 

produced ozone did not have a significant increase during the day, but the buildup of precursors 

at night did impact ozone concentrations for the next day (Fast et al. 2000). It is possible that 

generally low wind speeds exhibited in Phoenix may combine with basin topography to build up 

ozone and ozone precursors, including NO2, over time.  

In addition to the local buildup of pollutants, Gaffey et al. (2022) found that CO and NO, two 

emissions that can contribute to the formation of NO2, are mostly mobile and indicate long-range 

transport of emissions through an anticorrelation between NO2 formation and O3 concentrations 

at night. Wind activity around Phoenix and surrounding regions, therefore, may contribute to the 

higher concentrations of observed NO2 and O3 concentrations. Further spatial analysis may allow 

for insight into the impact of long-range transport on these regions of study.  
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4.4 Vehicle Emissions 

While positive correlations between PM2.5 and NO2 with VMT were observed, there was 

a negative correlation between ozone and VMT (Fig. 10). Previous studies have identified a 

general trend in vehicle contributions to roadway pollution with especially strong contributions 

from diesel vehicles (Song et al., 2018). With this in mind, it is possible that these positive 

correlations are due to a larger fleet of diesel vehicle traffic during this period.  

The negative correlations between ozone and VMT, however, may indicate high 

concentrations of VOCs and additional pollutants in these regions (Fig. 10). Liu et al. (2018) 

found that NOx emissions from vehicles have high contributions to ozone formation with the 

elimination of NOx and or VOC emissions from these vehicles estimated to result in a 5-2.5% 

decline in ozone formation. While NOx is a contributor to ozone formation, these pollutants can 

participate in additional atmospheric reactions to form nitric acid (HNO3). The compound relies 

on the photolysis of ozone to form OH radicals that react directly with NOx. It is possible that a 

net negative trend in ozone particles can be explained by NOx’s participation in other reactions 

considering the ways in which ozone and nitric acid reactions occur simultaneously. Under this 

framework, the limiting factor in these reactions would become UV radiation and the rate of 

photolysis.  

Even so, overall low correlation coefficients indicate that additional factors impacted 

pollutant concentrations outside of the observed VMT data (Fig. 10). These values, however, 

could also be in-part due to the years where data was accessible. In the year 2020, average total 

vehicle traffic was reduced by 12.7% and NO2 concentrations dropped significantly in counties 

where COVID-19 lockdowns did occur in comparison to counties where lockdowns were not 

instated (Wegman & Katrakazas, 2021; Bar et al., 2021). These trends in reduced traffic, 
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stemming from complex societal adjustments to the global COVID-19 pandemic, may introduce 

confounding factors into the correlations. Access to additional data from years before and after 

the pandemic can contribute to a more robust study of vehicle impact on pollutant concentrations 

in these regions.  

 

4.5 California Wildfires and Outliers 

Out of the seven studied metropolitan areas, the highest overall PM2.5 concentrations from 

2018-2022 were observed in LA. Similar to Phoenix, the region is located in a basin where 

previous studies have pointed to meteorological feedbacks that contribute to a buildup of 

pollutant concentrations in the central basin (Wang et al. 2020). The topographic characterization 

of basins, composed of taller features that surround a central dip, may contribute to the 

confinement of these particles within the system and the resulting positive feedback loops that 

further exacerbate the PM2.5 buildup.  

While the observed PM2.5 concentrations in LA may be due to the inability for wind to 

easily blow particles out of basins, there was a weak negative regional correlation between PM2.5 

concentrations and wind (Fig. 9). Wang and Guo (2009) found a similar pattern – the spatial 

patterns of the LA region combined with the Santa Ana Winds (SAWs) generally had a negative 

correlation where lower concentrations were exhibited in areas where the wind was blowing. 

This behavior, however, operated inversely when wildfires were introduced into the system. 

During time periods when wildfires were presently burning, SAW activity contributed to higher 

pollution concentrations in the region (Wang and Guo 2009; Aguilera et al. 2020). With this 

information in mind, California’s annual wildfires may contribute to observed high 

concentrations even while a negative correlation between wind and pollutant concentration was 
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found. Furthermore, studies have identified that the amount of PM2.5 in the basin system 

impacted the extent of the positive feedback loop where higher concentrations led to more effects 

within the system (Wang et al. 2020). An initial buildup of PM2.5 particles within the LA basin, 

such as during a wildfire event, may have led to further buildup due to faster rates of the 

aforementioned positive feedback loops.  

The presence of wildfires may also contribute to extensive PM2.5 outliers observed for SF 

and LA in 2020 (Fig. 3). In 2020, Cal Fire reported that the state of California experienced 8,648 

wildfires. Among these fires, the August Complex Fire in Northern California was recorded as 

the largest fires in California’s history (“10 Dead in California as Wildfires Spread on West 

Coast,” 2020) and the state experienced 4,304,379 of burned acreage by the end of the year, 

double the amount burned in 2018 (Safford et al. 2022). Large-scale biomass burning events, 

such as these annual wildfires, can be important point sources of PM2.5 particles. Burning 

periods, however, vary on an annual basis. This unpredictable variation can make wildfires a key 

pollutant source which can lead to extremely high concentrations one year in comparison to the 

baseline of the next. This supports fewer outliers that are exhibited for years outside of 2020 

when less extensive burning occurred during these time periods. With this in mind, the extent 

and intensity of the burning in 2020 thus likely contributed to the many observed outliers in both 

SF and LA for this year.  

The 2020 California wildfires have initiated extensive studies into the state’s burning 

period, especially in the ways it is responsive to anthropogenic climate change. Southern 

California’s chapparal shrub communities are prone to burning and rely on postfire conditions 

for growth and persistence, however frequent fires on shorter intervals have inhibited these 

communities’ abilities to grow in more recent decades (Storey et al., 2021). Previous studies 
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have pointed to longer and more intense burning periods as a result of expanded dry seasons, 

drought conditions, and recessions in snowpack (Safford et al. 2022). Additional changes in 

weather patterns have shifted patterns in vegetation growth and drying, thus producing more 

annual fuel for burning in addition to varying amounts of fuel moisture in the fall and summer 

(Hernández Ayala et al., 2021; Wang et al. 2023). SF and LA, the two metropolitan regions in 

the state of California, exhibited more overall outliers over the course of 2018 to 2022 in 

comparison to the other areas of study (Fig. 2). In addition to contributions from the record-

breaking 2020 wildfires, these changes in ecosystem conditions may also contribute to more 

regular biomass burning events and a consequential increase in PM2.5 sources. Furthermore, 

previous studies have identified how California’s dry hot air with low moisture content is 

conducive to the spread of wildfires (Hernández Ayala et al., 2021). The contribution of these 

conditions to the spread, and therefore the length of burning, increase fire intensity which may 

explain the present outliers.   

The majority of SF outliers were observed in the fall season when PM2.5 concentrations 

were generally high for both SF and LA (Fig. 6). These trends may be explained by changes in 

fuel availability and seasonal conditions necessary for burning to occur. Gross et al. (2020) found 

a weather and climate driven trend towards higher-risk conditions of wildfire burning occurring 

in August. The study identified that this trend makes it more likely for northern and southern 

California to undergo wildfire burning simultaneously, an event that was previously rarer. This 

shift towards extensive burning in August introduces an additional source of PM2.5 into the 

environment that is not present during the other seasons, thus increasing the overall 

concentrations during the end of the summer and early fall. Previous studies have also identified 

how strong winds can contribute to the dispersal of PM2.5 particles across hundreds to thousands 
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of kilometers and can keep particles airborne for months (Aguilera et al. 2020). While August 

borders the end of the summer and beginning of the fall, it is possible that the introduction of 

SAWs for LA and additional wind patterns in SF may contribute to longer-lasting particle 

suspension across the entire fall period. 

While high concentrations of PM2.5 were exhibited in both California metropolitan areas, 

low ozone concentrations were observed in SF while high concentrations were observed in LA. 

Smoke events, as produced by wildfires, have been shown to reduce UVB radiation necessary for 

ozone production due to the absorption of radiation by soot particles (Gaffney et al. 2002). 

Extensive wildfire burning during 2020 in addition to smaller biomass burning events throughout 

2018-2022 may contribute to more PM2.5 particles with soot components in the SF metropolitan 

area and a resulting reduced rate of photolysis. Under these conditions, oxygen radicals may 

serve as a limiting factor for ozone production and lead to an overall smaller concentration of 

this pollutant.   

In contrast, the high ozone concentrations observed in LA may be explained by variations 

in the amount of locally produced NOx and VOC emissions between these two metropolitan 

areas. A 2021 study by Langford et al. identified an overall higher ozone concentration in urban 

areas adjacent to wildfire burning due to wind transfer of ozone with wildfire smoke. They also 

identified that there was a possibly significant relationship between ozone production and local 

pyrogenic VOCs and NOx in the surrounding region. LA’s history of vehicle transport may 

contribute to higher concentrations of these primary pollutants in comparison to SF, and buildup 

of these pollutants due to the LA basin’s topography may provide more local emissions for the 

wildfire smoke to react with in comparison to SF. This topography may also provide the 
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necessary conditions for positive feedback loops in terms of ozone production to form, thereby 

causing the disparate ozone concentrations between SF and LA.   

 

4.6 Air Pollution Policy  

The COVID-19 pandemic led to a string of policy decisions across the US in the form of 

lockdowns. The first case of COVID-19 in the US was reported in January of 2020, and within 

five months there were 18,600 confirmed deaths alongside over 500,000 confirmed cases (CDC, 

2023). The state governments began implementing shutdowns across the country as a mitigation 

strategy to fight against the virus in March of 2020, and these conditions were instated through 

2021 (CDC, 2023). During the beginning of the shutdown period in 2020, all regions except for 

SF and LA experienced their lowest overall NO2 concentrations (Fig. 4). A study conducted by 

Liu et al. (2021) drew connections between minimized transportation during the pandemic 

shutdowns and changing trends in NO2 concentrations: NO2 concentrations near major power 

plants decreased following the shutdown period, while NO2 concentrations in heavily residential 

areas with close interactions to highways increased. It is possible that similar trends were 

exhibited in the metropolitan regions of study which encompass both industrial and residential 

areas. With this in mind, the lower overall concentrations may be attributed to a larger decrease 

in pollutant concentrations in industrial areas than increases in residential spaces for the studied 

regions. 

While all of the median concentrations of the studied metropolitan areas fell below EPA 

annual standards, most regions had outliers above the standards except for the observed NO2 in 

Houston. These standards, as set by the Clean Air Act, were established in 1970 with the goal of 

having every state meet the regulations five years later (US EPA, 2013). The legislation 
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prioritized major pollutant sources, specified as singular or group sources that have the potential 

to emit 10 or more tons of pollutants on an annual basis (US EPA, 2013). While the 

implementation of this policy likely supported pollutant concentrations meeting an overall 

standard, it is possible that outliers arose from events not directly tied to the major pollutant 

sources that the legislation was targeting.  

Legislation that built onto the Clean Air Act may contribute to further differences 

between metropolitan regions. Ozone concentrations were highest in the summer season for all 

regions with the exception of SF, Houston, and Atlanta (Fig. 8). It is probable that concentrations 

were higher in summer months due to higher UV radiation and consequential photolysis, 

however the three regions that did not follow this trend may be explained by responses to policy 

changes. Previous studies have identified that ozone sensitivity regimes are VOC limited in 

conditions of extreme heat (Meng et al., 2023), and it is possible that past policies aimed at VOC 

reductions have thus contributed to these unexpected results in SF, Houston, and Atlanta. 

Alongside the Clean Air Act, the US signed the Montreal Protocol, which aimed to reduce the 

production of ozone-depleting substances, in 2012 (US EPA, 2015). Since then, the EPA reports 

a 78% decrease in the combined concentrations of many principal pollutants, including VOCs 

(US EPA, 2015). Considering ozone production is VOC limited under warmer conditions, 

policies targeting these primary pollutants may have further limited the amount of ozone 

formation that could be undergone in more recent years.  

When considering all of the studied metropolitan areas, NY exhibited the lowest overall 

PM2.5 concentrations. Pitiranggon et al. (2021) found that major policy implementation and 

economic incentives led to a decrease in the use of fuel oil for ships and residual fuel oils for cars 

and other forms of vehicular traffic. They identified that changes in emission standards, rather 
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than decreased traffic, had led to an overall decrease in PM2.5 concentrations in the area from 

2002-2018. These changes, stemming from state government-level policy changes, may have 

contributed in-large to these low concentrations. It is also possible that the state’s focus on 

vehicle emissions played a key role in reducing the observed concentrations. 

Policy, however, spanned further than just a vehicle focus. Studies looking at NY 

emissions from 2005-2016 identified that policy changes had lowered electricity generation 

industry emissions and saw a decline in the use of No. 2 and No. 4 oils for space heating within 

the region (Masiol et al. 2019). The policies implemented by NY oversaw changes in all sectors, 

and the widespread reach of changes within the urban system may have played a large role in 

lowering PM2.5 concentrations. Even so, the only source that exhibited a positive trend within NY 

was the use of spark-ignition vehicles, however a simultaneous introduction of ultralow sulfur 

fuels for most forms of transportation and the implementation of particle traps and NOx controls 

for heavy-duty diesel trucks was in operation (Masiol et al. 2019). It is possible that these 

concurrent efforts to address rising trends in pollutant sources led to the overall lower 

concentrations in the metropolitan area, even with less robust results exhibited. Yet, the strong 

focus on this pollutant source also points to vehicle traffic as an area that may require more 

nuanced policy changes for further pollutant reduction in the future. Differences in correlation 

coefficients for VMT and pollutants (Fig. 10) also suggest that the necessity to prioritize 

vehicular emissions in relation to other pollutant sources may vary among regions.  
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Conclusion  

5.1 Overview: Trends in Metropolitan Pollutants 

The strongest correlations were found between ozone and temperature for all regions, 

likely attributed to the necessity of photolysis in the formation of ozone. These findings are 

supported by seasonal variations in ozone concentrations where summer concentrations were 

highest for all areas of study. The overall highest ozone and NO2 concentrations were observed 

in Phoenix during the period of study and both were significantly higher than the other 

metropolitan areas in the analysis. Negative correlations were generally found between NO2 and 

wind while precipitation and all pollutants exhibited a weak negative correlation. Complex 

atmospheric reactions in tandem with different topographies may contribute to these findings, as 

the formation of acid rain and basin wind patterns introduce dynamic systems that may influence 

observed concentrations.  

The introduction of wildfires into these systems complicates the generally observed 

trends. In addition to extensive PM2.5 outliers in LA and SF during 2020, significantly higher 

overall PM2.5 concentrations were observed in LA when compared to all studied regions. These 

trends may be the result of wildfire burning during these time periods. Intensified burning as a 

result of environmental shifts in the face of climate change paired with strong wind patterns may 

have further contributed to pollutant transport and buildup for these metropolitan areas.  

Generally, VMT correlations from this study align with previous literature (Song et al., 

2018). Positive correlations were observed between VMT and PM2.5 as well as NO2, indicating 

the use of diesel vehicles in the two regions of California being studied. Surprisingly, weak or 

insignificant anticorrelations were observed between VMT and ozone despite the positive 

relationship between VMT and NO2.  
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Air pollution policy in the US, such as the Clean Air, may also contribute to lower 

observed concentrations in several metropolitan areas. NY exhibited significantly lower PM2.5 

concentrations than all other regions of study. Well documented policies aimed at reducing 

pollutants have been implemented in this region, likely contributing to these low concentrations. 

Even so, median concentrations for all regions fell below the EPA annual standards as set by the 

Clean Air Act. Outliers may be attributed to sources that are difficult to predict, such as 

wildfires, or from additional sources not identified as major sources by the Clean Air Act.  

 

5.2 Limitations and Next Steps 

Further extensions of this research would benefit from examination of the relationships 

between wind transport between metropolitan regions, exploration of the role of precipitation 

suppression, and more extensive analysis using VMT data for all regions over a longer span of 

time.  

While relatively strong correlations between wind and NO2 were drawn from this study, a 

lack of spatial analysis limits the application of long-range transport of pollutants to these 

findings. A study by Gaffey et al. (2022) identifies this transport of pollutants to be especially 

prevalent in basins. With this in mind, this extension of the study would provide important 

insight into the observed findings for metropolitan areas with significant results, such as LA and 

Phoenix. This analysis can be completed using HYSPLIT, providing important implications for 

the relationship between wind and the studied pollutants. 

Weak negative correlations between precipitation and pollutant concentrations may be 

further expanded on through an analysis of the relationship between pollutant concentrations and 

exhibited precipitation for all regions. Understanding this inverse relationship will provide 
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insight into the weak r-values exhibited in correlation calculations while also opening additional 

avenues for investigation regarding other factors influencing the observed correlations. The 

relationship between acid rain and pollutant concentrations may also be expanded on by 

analyzing the relationships between precipitation pH and observed NO2 concentrations for each 

region.  

While the available VMT data allowed for correlations between pollutants and vehicle 

activities in the state of California, it is possible that the results drawn from these analyses are 

limited in scope as they are from the same general region. A broader understanding of VMT’s 

relationship with observed concentrations can be drawn from analysis for regions from other 

states, as would be the case for the other five metropolitan areas of study. Furthermore, analysis 

of VMT data over the course of several years would reduce the likelihood of biased results.  

 

5.3 Further Implications 

The findings from this study emphasize the diverse factors that influence air pollutants 

within a dynamic atmospheric system. While policies have already been put in place to address 

existent atmospheric pollution, further policy action will be necessary as urban centers and their 

surrounding metropolitan areas continue to expand. Resulting anthropogenic activity will 

continue to impact these systems at a local and global scale and if unattended to, buildup of these 

concentrations can negatively impact the health of exposed populations through a decline in 

physical fitness within these densely populated regions (Zhao & Ma, 2020). Significant 

differences between overall pollutant concentrations for PM2.5, NO2, and ozone between 

metropolitan areas indicate that region-specific conditions need to be considered when 

implementing further policies aimed at reducing harmful aerosols. Topographic variations and 
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temperature differences should be accounted for, as they may influence wind patterns and 

pollutant formation rates.  

The focus of prior policies on major sources of toxic particles can be expanded on to 

address less consistent sources. Observations from this study show the expansive influence of 

wildfire activity on PM2.5 and ozone concentrations, leading to extensive outliers that surpass the 

EPA’s annual standards. Looking forward, changing climate conditions will likely lead to more 

extensive and intense burning events (Hernández Ayala et al., 2021; Wang, et al. 2023; Storey et 

al., 2021; Safford et al. 2022). Integration of actions aimed at addressing the reduction of these 

events through on-site ecosystem maintenance is thus as important as policies aimed at reducing 

the greenhouse gas effect. The resulting emphasis on pairing regional policies with broader aims 

may be essential in accounting for unpredictable pollutant sources.  

Shifting trends in the observed seasonal concentrations further indicate the role of climate 

change within observed pollutant concentrations. With this in mind, regional policies must also 

account for changing weather conditions that may result in atmospheric interactions that differ 

from historically observed trends. A thorough understanding of each region’s baseline 

relationships between weather and pollutant concentrations is thus essential, and further 

examination into these trends is of utmost importance moving forward.  
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Supplementary Material  

 
Table S1. Summary Data for concentrations of PM2.5, NO2, and Ozone from 2018-2022 for 7 
regions. 

Metropolitan 
Area 

PM2.5 (μg/m3 LC) NO2 (ppb) Ozone (ppm) 
Mean SD Median Mean SD Median Mean SD Median 

SF 9.1 9.8 
 

7.3 
 

17.1 
 

8.24 
 

16.0 
 

0.034 
 

0.0079 
 

0.034 
 

LA 11 
 

5.1 
 

9.7 
 

24.7 
 

9.51 
 

23.7 
 

0.046 
 

0.011 
 

0.046 
 

NY 6.8 
 

3.8 
 

6.0 
 

28.6 
 

10.5 
 

27.3 
 

0.035 
 

0.013 
 

0.033 
 

Houston 9.3 
 

4.3 
 

8.5 
 

16.4 
 

7.67 
 

15.1 
 

0.036 
 

0.012 
 

0.034 
 

Chicago 9.2 
 

4.1 
 

8.5 
 

27.3 
 

9.76 
 

26.6 
 

0.037 
 

0.013 
 

0.036 
 

Atlanta 8.7 
 

3.9 
 

8.0 
 

24.1 
 

9.35 
 

22.9 
 

0.036 
 

0.013 
 

0.035 
 

Phoenix 8.5 
 

4.6 
 

7.6 
 

30.9 
 

9.16 
 

31.7 
 

0.048 
 

0.011 
 

0.048 
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Appendix 

I. Downloading EPA Data in .CSV Format 
 
1. Open https://www.epa.gov/outdoor-air-quality-data/air-data-concentration-plot 
2. Select pollutant 
3. Select year period 
4. Select Geographic Area by county 
5. Select “Plot Data” 
6. Download data into .csv files 

 
II. Downloading NOAA Data in .CSV Format 

 
1. Open https://www.ncei.noaa.gov/cdo-web/search  
2. Select “Daily Summaries” as Weather Observation Type 
3. Select date range 
4. Select “Counties” 
5. Under “Enter a Search Term,” write the appropriate state abbreviation (e.x. California as CA) 
6. Identify county of interest and select “Add to cart” and visit cart 
7. Select “Custom GHCN-Daily CSV” then “Continue”  
8. Select “Station Name,” “Geographic Location,” and “Metric” units 
9. Select “Precipitation,” “Air Temperature,” and “Wind” then “Continue” 
10. Enter email address and select “Submit Order” 
11. Download .csv file from email 
 
 

III. Small Scale Air Filter Sampling and Collection 
 

PM2.5 concentrations were collected in Bangkok, Thailand 

and the Bernard Field Station in Claremont, CA using 47 mm 

Whatman QMA quartz filters (Fig. S1). MesaLabs PQ200 

Ambient Air Particulate Samplers (Fig. S2, S3, S4) were 

placed in each location and filters were removed and replaced 

on 24-hour intervals for each sampler. Once removed, filters 

were carefully placed into Petri dishes labeled with a filter 

number and the dates of collection before the dishes were 

wrapped in parafilm and placed in a freezer for later analysis.  Figure S 1. 47 mm Whatman QMA quartz 
filters 



 c 

 

 

12 digestion tubes were cleaned prior to filter 

digestion. Each bottle underwent a scrubbing processing 

using a bottle scrubber and Alconox followed by three 

rinses with deionized (DI) water and an additional three 

rinses using Milli-Q water. The process was repeated for 

each tube and all tubes were then left to dry under a 

Cleatech 24” Portable Ductless Exhaust Fume Hood 

(Fig. S5, S6). 

Figure S 4. MesaLabs PQ200 Ambient Air 
Particulate Sampler front exterior 

Figure S 3. MesaLabs PQ200 Ambient Air 
Particulate Sampler side exterior 

Figure S 2. MesaLabs PQ200 Ambient Air 
Particulate Sampler interior 

Figure S 5. Cleatech 24” Portable Ductless 
Exhaust Fume Hood 
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An empty digestion was run using a 16% HCl acid solution made from 25 mL HCl and 

85 mL MilliQ water. 8 mL of the 16% acid solution was placed into each tube using a 

micropipette and tube stoppers were carefully placed on the tube openings so that the areas of 

the tube stoppers that were to be exposed to the tube contents were not touched. Lids were then 

screwed on. This process was repeated for all 12 tubes under a fume hood before being placed 

into the PerkinElmer Titan MPS Microwave Sample 

Preparation System (Fig. S8) to run the digestion.  

While the empty digestion was run, filters were 

retrieved from a freezer and prepared for digestion under a 

Cleatech 24” 

Portable Ductless 

Exhaust Fume 

Hood. The hood surface, tweezers, and scissors were 

cleaned using DI water and tissue wipes before parafilm 

from all Petri dishes holding filters were removed. Filters 

were carefully cut in half so that they could be used for 

multiple analyses. During this process, tweezers only 

touched the outside section of the filters where particles 

had not been collected. Tweezers and scissors were 

cleaned and dried using DI water and tissue wipes between the cutting process for each filter. 

Once all filters had been cut, the whole mass and half mass of each filter was collected using an 

Adam Equipment PW 184 Analytical Balance (Fig. S7). To do this, am empty Petri dish lid was 

placed on the scale. Once tared, both halves of the filter were carefully placed on the lid in the 

Figure S 6. Cleatech 24” Portable Ductless 
Exhaust Fume Hood interior ventilation 

Figure S 7. Adam Equipment PW 184 Analytical 
Balance 
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scale using tweezers so that the area of particle collection was not touched. The full mass was 

weighed and recorded before one of the halves was removed so that the mass of a half filter was 

weighed and recorded. Once all masses had been recorded, the half filter whose mass was 

recorded was carefully cut into six pieces using tweezers and scissors that had been cleaned and 

dried with DI water and tissue wipes so that they could easily be inserted into the digestion tubes. 

All pieces of the filter were placed back into their initial Petri dish. Recording of the whole mass, 

half mass, and filter cutting was repeated for all filters. Tweezers and scissors were cleaned using 

DI water and tissue wipes between each filter. 

Following the initial empty digestion, each tube 

was removed from the microwave digester and rinsed 

twice with 4 mL of MilliQ water. Tweezers were cleaned 

and dried with DI water and tissue wipes before the half 

filters that had previously been cut into six pieces were 

placed into tubes and the tube and corresponding filter 

were recorded. This process was repeated for all 12 tubes 

and filters and tweezers were cleaned between each 

process. Meanwhile, a 35% HCl acid solution was made 

under a fume hood using 55mL HCl and 55 mL MilliQ 

water. Once all six pieces of the half filters had been 

dropped into their tubes, 8 mL of the 35% acid solution was put into each tube using a 

micropipette. Tube stoppers were carefully placed on the tube openings so that the areas of the 

tube stoppers that were to be exposed to the tube contents were not touched and lids were then 

screwed on. One tube acted as the control group, as it had no filter and only contained the acid 

Figure S 8. PerkinElmer Titan MPS Microwave 
Sample Preparation System 
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solution. This process was repeated for all 12 tubes before being placed into the PerkinElmer 

Titan MPS Microwave Sample Preparation System to run the digestion.  

Once completed, digestion tubes were removed from the digester and cooled for five 

minutes under the fume hood. 15 mL centrifuge tubes were labeled with filter numbers or 

“control.” In the fume hood, cooled digestion tubes were unscrewed while holding the lid’s small 

opening facing away from the body to avoid exposure to dangerous gaseous chemicals. A 

micropipette was used to add 8 mL of MilliQ water to each tube followed by return of stoppers 

and gentle shaking of the tube to combine the contents of the tube. The stopper was then 

removed, and the contents of the tube was poured into the centrifuge tube with the corresponding 

label for the filter number. This process was repeated for all remaining tubes.  

 
IV. R Code Used 

 
Merging Pollutant Data and Mean Calculations  
The code below is merging and calculating mean values for LA’s PM2.5 concentrations. Region 
and pollutant name must be appropriately changed for merging operations for different 
pollutants or regions. 

 
library(dplyr) 
library(plyr) 
 
#list.files combines data from the same folder 
setwd("~/Downloads/Summer Research/LA/PM2.5") 
data2 <- ldply(list.files(), read.csv, header=TRUE)  
 
#selecting columns 1 & 5 (Date & PM2.5) 
data1=data2 %>% select(1,5) 
data1 
 
#formatting the data to the correct "date" format and  
data1$Date <- format(as.Date(data1$Date)) 
data1$Date <- as.Date(data1$Date,format = "%Y-%m-%d") 
data1$Date <- format(as.Date(data1$Date)) 
data1 
 
#Average the PM2.5 values for each day 
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data=aggregate(data1$PM2.5, by=list(data1$Date), mean)     
data 
 
#Produce CSV file that has 2 columns: date & the average PM2.5 
write.csv(data,file="~/Desktop/data.csv",quote=F,row.names = F) 

 
 

PM2.5 Overall Concentration Comparison Significance Boxplots 
library(dplyr) 
library(plyr) 
library(ggplot2) 
library(hrbrthemes) 
library(agricolae) 
library(multcompView) 
 
mastersheet<-read.csv("Combined Air Pollution.csv") 
mastersheet 
 
mastersheet$Region<-as.character(mastersheet$Region) 
 
model=lm(mastersheet$PM2.5 ~ mastersheet$Region ) 
ANOVA=aov(model) 
TUKEY <- TukeyHSD(x=ANOVA, 'mastersheet$Region', conf.level=0.95) 
plot(TUKEY , las=1 , col="brown") 
TUKEY 
 
generate_label_df <- function(TUKEY, variable){               
   
  Tukey.levels <- TUKEY[[variable]][,4] 
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters']) 
  Tukey.labels$Region=rownames(Tukey.labels) 
  Tukey.labels=Tukey.labels[order(Tukey.labels$Region) , ] 
  return(Tukey.labels) 
} 
 
LABELS <- generate_label_df(TUKEY , "mastersheet$Region") 
 
PM2.5Significance <- ggplot(mastersheet,aes(x=Region,y=PM2.5, fill=Region)) + 
  scale_y_log10()+ 
  geom_boxplot() + theme_bw() + theme(legend.position = "none") + 
  labs(y="PM2.5 (ug/m3 LC)", x="Region")+ 
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  ggtitle("PM2.5 Concentrations (Log Scale) from 2018-2022")+ 
  geom_text(data=LABELS, aes(y=190, label=LABELS[,1]), col='black', size=4) + 
theme(panel.grid = element_blank()) +  
  scale_fill_brewer(palette="Set2") +  
  scale_x_discrete(breaks=c("Atlanta", "Chicago", "Houston", "LA","NY", "Phoenix", "SF"), 
                   labels=c("Atlanta", "Chicago", "Houston", "LA","NY", "Phoenix", "SF")) 
 
PM2.5Significance + geom_hline(yintercept=15, linetype="dashed", color = "red") 
 
 

NO2 Overall Concentration Comparison Significance Boxplots 
mastersheet$Region<-as.character(mastersheet$Region) 
 
model=lm(mastersheet$NO2 ~ mastersheet$Region ) 
ANOVA=aov(model) 
TUKEY <- TukeyHSD(x=ANOVA, 'mastersheet$Region', conf.level=0.95) 
plot(TUKEY , las=1 , col="brown") 
TUKEY 
 
generate_label_df <- function(TUKEY, variable){               
   
  Tukey.levels <- TUKEY[[variable]][,4] 
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters']) 
  Tukey.labels$Region=rownames(Tukey.labels) 
  Tukey.labels=Tukey.labels[order(Tukey.labels$Region) , ] 
  return(Tukey.labels) 
} 
 
LABELS <- generate_label_df(TUKEY , "mastersheet$Region") 
 
NO2Significance <- ggplot(mastersheet,aes(x=Region,y=NO2, fill=Region)) + 
  geom_boxplot() + theme_bw() + theme(legend.position = "none") + 
  labs(y="NO2 (ppb)", x="Region")+ 
  ggtitle("NO2 Concentrations from 2018-2022")+ 
  geom_text(data=LABELS, aes(y=80, label=LABELS[,1]), col='black', size=4) + 
theme(panel.grid = element_blank()) +  
  scale_fill_brewer(palette="Set2") +  
  scale_x_discrete(breaks=c("Atlanta", "Chicago", "Houston", "LA","NY", "Phoenix", "SF"), 
                   labels=c("Atlanta", "Chicago", "Houston", "LA","NY", "Phoenix", "SF")) 
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NO2Significance + geom_hline(yintercept=53, linetype="dashed", color = "red") 
 
 

Ozone Overall Concentration Comparison Significance Boxplots 
mastersheet$Region<-as.character(mastersheet$Region) 
 
model=lm(mastersheet$Ozone ~ mastersheet$Region ) 
ANOVA=aov(model) 
TUKEY <- TukeyHSD(x=ANOVA, 'mastersheet$Region', conf.level=0.95) 
plot(TUKEY , las=1 , col="brown") 
TUKEY 
 
generate_label_df <- function(TUKEY, variable){               
   
  Tukey.levels <- TUKEY[[variable]][,4] 
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters']) 
  Tukey.labels$Region=rownames(Tukey.labels) 
  Tukey.labels=Tukey.labels[order(Tukey.labels$Region) , ] 
  return(Tukey.labels) 
} 
 
LABELS <- generate_label_df(TUKEY , "mastersheet$Region") 
 
OzoneSignificance <- ggplot(mastersheet,aes(x=Region,y=Ozone, fill=Region)) + 
  geom_boxplot() + theme_bw() + theme(legend.position = "none") + 
  labs(y="Ozone (ppm)", x="Region")+ 
  ggtitle("Ozone Concentrations from 2018-2022")+ 
  geom_text(data=LABELS, aes(y=0.10, label=LABELS[,1]), col='black', size=4) + 
theme(panel.grid = element_blank()) +  
  scale_fill_brewer(palette="Set2") +  
  scale_x_discrete(breaks=c("Atlanta", "Chicago", "Houston", "LA","NY", "Phoenix", "SF"), 
                   labels=c("Atlanta", "Chicago", "Houston", "LA","NY", "Phoenix", "SF")) 
 
 
OzoneSignificance + geom_hline(yintercept=0.07, linetype="dashed", color = "red") 
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Summary Data Table 
 
library(dplyr) 
 
data2 <- read.csv(file = "Combined Air Pollution.csv") 
head(data2) 

 
data=data2 %>% select(1, 3) 
data 
 
data3<- na.omit(data) 
 
data_summary2 <- data3 %>%               
  group_by(Region) %>% 
  dplyr::summarize_all(list(my_mean = mean,my_median = median, 
                            my_sum = sum, 
                            my_sd = sd)) %>%  

  as.data.frame() 
 
data_summary2    
 
write.csv(data_summary2 ,file="~/Desktop/data.csv",quote=F,row.names = F) 
 
 

Annual Concentration Boxplots per Region with Significance 
The code below is for annual boxplots for SF’s PM2.5 concentrations. Region and pollutant 
name must be appropriately changed for plot formation of different pollutants or regions. 
 

library(dplyr) 
library(plyr) 
library(ggplot2) 
library(hrbrthemes) 
library(agricolae) 
library(multcompView) 
 
mastersheet<-read.csv("Combined Air Pollution.csv") 
mastersheet 
data <- filter(mastersheet, Region == "SF") 
data 
 
data$Year<-as.character(data$Year) 
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model=lm(data$PM2.5 ~ data$Year ) 
ANOVA=aov(model) 
TUKEY <- TukeyHSD(x=ANOVA, 'data$Year', conf.level=0.95) 
plot(TUKEY , las=1 , col="brown") 
TUKEY 
 
generate_label_df <- function(TUKEY, variable){               
   
  Tukey.levels <- TUKEY[[variable]][,4] 
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters']) 
  Tukey.labels$Year=rownames(Tukey.labels) 
  Tukey.labels=Tukey.labels[order(Tukey.labels$Year) , ] 
  return(Tukey.labels) 
} 
 
LABELS <- generate_label_df(TUKEY , "data$Year") 
 
ggplot(data,aes(x=Year,y=PM2.5,fill=Year)) + 
  geom_boxplot()   + facet_wrap(~Region) + theme_bw() + theme(legend.position = "none") 
+ ylim(0,60) + 
  geom_text(data=LABELS, aes(y=58, label=LABELS[,1]), col='black', size=4) + 
theme(panel.grid = element_blank()) +  
  theme(plot.title = element_blank(), axis.title.x = element_blank(), axis.title.y = 
element_blank()) + scale_x_discrete(breaks=c("2018","2019","2020", "2021", "2022"), 
labels=c("18", "19", "20", "21", "22")) 
 
 

Seasonality by Region Concentration Boxplots with Significance 
The code below is for seasonal boxplots for SF’s PM2.5 concentrations. Region and pollutant 
name must be appropriately changed for plot formation of different pollutants or regions. 
 

library(dplyr) 
library(plyr) 
library(ggplot2) 
library(hrbrthemes) 
library(agricolae) 
library(multcompView) 
 
mastersheet<-read.csv("Combined Air Pollution.csv") 
mastersheet 
data <- filter(mastersheet, Region == "SF") 
data 
 
data$Season<-as.character(data$Season) 
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model=lm(data$PM2.5 ~ data$Season ) 
ANOVA=aov(model) 
TUKEY <- TukeyHSD(x=ANOVA, 'data$Season', conf.level=0.95) 
plot(TUKEY , las=1 , col="brown") 
TUKEY 
 
generate_label_df <- function(TUKEY, variable){               
   
  Tukey.levels <- TUKEY[[variable]][,4] 
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters']) 
  Tukey.labels$Season=rownames(Tukey.labels) 
  Tukey.labels=Tukey.labels[order(Tukey.labels$Season) , ] 
  return(Tukey.labels) 
} 
 
LABELS <- generate_label_df(TUKEY , "data$Season") 
 
ggplot(data,aes(x=Season,y=PM2.5,fill=Season)) + 
  geom_boxplot()   + facet_wrap(~Region) + theme_bw() + theme(legend.position = "none") 
+ ylim(0,60) + 
  geom_text(data=LABELS, aes(y=58, label=LABELS[,1]), col='black', size=4) + 
theme(panel.grid = element_blank()) +  
  theme(plot.title = element_blank(), axis.title.x = element_blank(), axis.title.y = 
element_blank()) + scale_x_discrete(limits=c("Summer","Spring","Fall", "Winter"), 
                   labels=c("Summer","Spring","Fall", "Winter")) 

 
 
Merging Weather Data and Mean Calculations  
The code below is merging and calculating mean values for SF’s weather factors. Region name 
must be appropriately changed for merging operations for different regions. 

 
setwd("~/Downloads/Summer Research/SF/Weather Data") 
data2 <- ldply(list.files(), read.csv, header=TRUE)  
 
datawind=data2 %>% select(6,7) 
data1 <- na.omit(datawind)                            
data1   
 
data1$DATE <- format(as.Date(data1$DATE)) 
data1$DATE <- as.Date(data1$DATE,format = "%Y-%m-%d") 
data1$DATE <- format(as.Date(data1$DATE)) 
 
data=aggregate(data1$AWND, by=list(data1$DATE), mean)     
data 
 
write.csv(data,file="~/Desktop/data.csv",quote=F,row.names = F) 
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dataRF=data2 %>% select(6,8) 
data3 <- na.omit(dataRF)                           
data3   
 
#Format all of the columns correctly 
data3$DATE <- format(as.Date(data3$DATE)) 
data3$DATE <- as.Date(data3$DATE,format = "%Y-%m-%d") 
data3$DATE <- format(as.Date(data3$DATE)) 
data3 
 
data=aggregate(data3$PRCP, by=list(data3$DATE), mean)     
data 

 
write.csv(data,file="~/Desktop/data.csv",quote=F,row.names = F) 

 
dataT=data2 %>% select(6,9) 
data4 <- na.omit(dataT)                           
data4   

 
data4$DATE <- format(as.Date(data4$DATE)) 
data4$DATE <- as.Date(data4$DATE,format = "%Y-%m-%d") 
data4$DATE <- format(as.Date(data4$DATE)) 
data4 
 
data=aggregate(data4$T, by=list(data4$DATE), mean)   
write.csv(data,file="~/Desktop/data.csv",quote=F,row.names = F) 
 

 
Weather Factor Correlation Plots 
The code below is for a correlation plot between pollutant concentrations and weather factors 
for SF. Region name must be appropriately changed for different regions. 

 
library(ggcorrplot) 
library(ggplot2) 
library(dplyr) 
library(tidyverse) 
library(corrplot) 
library(Hmisc) 
 
data2 <- read.csv(file = "Combined Air Pollution.csv") 
head(data2) 
 
colnames(data2)[6]="Wind Speed" 
colnames(data2)[7]="Precipitation" 
colnames(data2)[8]="Temperature" 
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data1 <- filter(data2, Region == "SF") 
data1 
 
data=data1 %>% select(3, 4, 5, 6, 7, 8) 
data 
 
data<- na.omit(data) 
 
M<-cor(data, use="pairwise.complete.obs") 
round(cor(data), 
      digits = 2 ) 
 
corrplot(cor(data), 
         method = "number", 
         type = "upper"  
) 
cor.vals = cor(data) 
cor.p = cor.mtest(data, conf.level = 0.95)$p 
rownames(cor.p) = rownames(cor.vals) 
colnames(cor.p) = colnames(cor.vals) 
cor.p 
 
corrplot(cor(data), type="upper",  method = "number", 
         p.mat = cor.p, sig.level = 0.05) 
 
 

VMT Correlation Plots  
The code below is for a correlation plot between pollutant concentrations and VMT data for SF 
Region name must be appropriately changed for different regions. 

 
library(ggcorrplot) 
library(ggplot2) 
library(dplyr) 
library(tidyverse) 
library(corrplot) 
library(Hmisc) 
 
data2 <- read.csv(file = "Combined Air Pollution.csv") 
head(data2) 
 
colnames(data2)[12]="VMT" 
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data1 <- filter(data2, Region == "SF") 
data1 
 
data=data1 %>% select(3, 4, 5, 12) 
data 
 
data<- na.omit(data) 
 
M<-cor(data, use="pairwise.complete.obs") 
round(cor(data), 
      digits = 2 ) 
 
corrplot(cor(data), 
         method = "number", 
         type = "upper"  
) 
cor.vals = cor(data) 
cor.p = cor.mtest(data, conf.level = 0.95)$p 
rownames(cor.p) = rownames(cor.vals) 
colnames(cor.p) = colnames(cor.vals) 
cor.p 
 
corrplot(cor(data), type="upper",  method = "number", 
         p.mat = cor.p, sig.level = 0.05) 
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