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Abstract 

Giardia lamblia is a single-celled protozoan parasite that when ingested, causes diarrheal 

disease and infects 33% of people in developing countries. Previous studies observe Giardia 

in water-like fluids, but Giardia’s infectious environment consists of viscoelastic mucus in 

the small intestine. Therefore, Giardia was cultured in viscoelastic fluids, and its population 

growth was observed in vitro. To create shear-thinning viscoelastic fluids, 0.2% and 0.4% 

long-chain polyacrylamide (LCPAM) was added to cell culture media. Giardia was cultured in 

control media, 0.2% LCPAM, and 0.4% LCPAM, and population growth was quantitatively 

determined over time. Increasing LCPAM concentration resulted in a solution with higher 

viscosity and elasticity. Experimental results suggest that Giardia growth is delayed in more 

viscoelastic fluids, but the population adjusts to the viscoelastic environments over time.   
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1. Introduction  

Giardia is a parasite that infects the small intestine of humans and other animals.  

Although Giardia is a major public health concern, the disease mechanisms are still poorly 

understood.  Current knowledge of Giardia derives from previous studies of Giardia's 

behavior in water-like fluids.  However, Giardia’s native infectious environment is 

comprised of intestinal mucus which has different physical properties (viscoelasticity) than 

water.  Therefore, this study aims to (1) compare the rheological characteristics of long-

chain polyacrylamide (LCPAM) in Giardia culture media with that of intestinal mucus and (2) 

characterize Giardia population growth behavior over time in viscoelastic LCPAM solutions. 

2. Historical Background 

2.1 Giardia infection. Giardia lamblia, also known as Giardia intestinalis or Giardia 

duodenalis, is a single-celled protozoan parasite that causes the diarrheal illness giardiasis. 

When ingested via water contaminated by feces, Giardia infects the small intestine. The 

infectious dose is low; it takes only 10 Giardia cysts for a host to become infected1. In the 

United States, giardiasis is the most common intestinal parasitic disease for humans2, and it 

infects 33% of people in developing countries3. The incubation period, or time between 

pathogen exposure and the onset of clinical symptoms, of giardiasis is 1-3 weeks1. 

 

2.2 Giardia lifecycle. Giardia has two life cycle stages: a dormant cyst stage and an active 

trophozoite stage. Cysts are hardy, resistant forms that can survive in feces and cold water. 

They are oval-shaped cells that are non-motile and lack flagella. During transmission, the 

host ingests Giardia in the cyst form. Giardia undergoes excystation upon passage through 
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the small intestine. Stomach acids and digestive enzymes activate excystation in which cysts 

develop into infectious trophozoites4. Trophozoites induce epithelial cell apoptosis, which 

disrupts tight junctions and increases epithelial permeability to pathogens5. Flagellated 

trophozoites colonize the small intestine and reproduce via longitudinal binary fission every 

9-12 hours2. As trophozoites pass through the colon, encystation occurs in which Giardia 

exits the body as cysts in feces6. 

 

2.2 Intestinal mucus biology. The mucus of the small intestine is the physiological 

environment for disease-causing Giardia trophozoites. Giardia is a noninvasive parasite, and 

thus it does not physically penetrate the host tissue. Instead, trophozoites attach to the 

mucous surface of the intestinal wall.  

Gastrointestinal mucus is composed of two layers: a loosely adherent layer and a firmly 

adherent layer (Figure 1b). The loosely adherent layer resides between the lumen and the 

firmly adherent layer, and the firmly adherent layer attaches on top of the epithelial cells 

(Figure 1a). Microorganisms commonly penetrate the loosely adherent layer, but the firmly 

adherent layer is mostly 

nonpenetrable7.  Intestinal 

mucous layers are composed 

of MUC2 mucins which form 

a mesh-like network (Figure 

1b). MUC2 is secreted from 

the epithelial cells, and the 

Figure 1. Schematic of intestinal mucus structure. (a) Giardia 
transverses the lumen to reside in the mucosal surface and 
attach to epithelial cells of the intestinal wall8. (b) The firmly 
adherent and loosely adherent layers of mucus7. The firmly 
adherent layer has a dense MUC2 network while the loosely 
adherent layer is more flexible and expanded in volume due to 
proteolytic cleavages. 
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firmly adherent layer has a highly structured, densely packed network due to its proximity 

to the epithelial cells. The firmly adherent layer is freshly secreted and unmodified by 

enzymes in the lumen. In contrast, the loosely adherent layer is closer to the lumen which 

contains proteases that cause proteolytic cleavages of the peptide backbone. Since the 

MUC2 network is stabilized by disulfide bonds of MUC2 dimers, these proteolytic cleavages 

do not dissolve the network. Instead, the cleavages allow the network to expand without 

falling apart7. 

In the stomach and colon, these two mucous layers are easily distinguishable. 

However, in the small intestine, the mucous surface is discontinuous along the length of the 

small intestinal wall9. In 

the Atuma et al. 2001 in 

vivo study on rats, the 

firmly adherent layer of 

the small intestine was 

very thin (~20 μm) or 

absent on individual villi 

(Figure 2). In contrast, the firmly adherent layer was continuous and thicker in the colon 

(~116 μm) and the corpus of the stomach (~80 μm). Thus, the MUC2 network is sparser in 

the small intestine than in the colon. 

 

2.3 Mucus variability. Due to the disruption of the environment when harvesting mucus 

samples, properties, including mechanical properties, of in vivo experiments may differ 

Figure 2. Mucous layers in the gut of a rat7. Thickness 
measurements adapted from Atuma et al. 20019. The stomach and 
colon have an outer (o) loosely adherent layer and an inner 
stratified (s) firmly adherent layer. In contrast, the small intestine 
has patches of mucus that are discontinuous and ill-defined. 
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from native in vivo mucus9,10. Increased mucus secretion in vivo may occur in response to 

irritation9. Previous historical methods of studying mucus in vitro use organic fixatives and 

extensive dehydration which cause major shrinkage of the mucous layers11-13. In all mucus 

experiments, mucin secretion rate, pH, and mechanical shear forces are all changed during 

sample collection. Hence, we do not know the actual properties of in vivo mucus. These 

factors affect the thickness, density, and other physical properties of the MUC2 network10.  

The difficulty of harvesting in vivo mucus motivates in vitro experiments with synthetic 

solutions that mimic mucus. 

 Since the viscoelasticity of mucus is dependent on a variety of environmental factors 

unique to an individual organism, viscoelastic estimates from intestinal mucus studies are 

widely varied. The MUC2 network is primarily responsible for the viscoelastic properties of 

mucus, but the viscoelasticity is also modified by water, lipid, and ion concentrations10. The 

thickness and viscoelasticity of the mucous layers depend on an individual’s diet, which 

affects the gut microbiota14 and pH15.  

2.4 Characterization of viscoelastic properties. As a complex (non-Newtonian) viscoelastic 

material, mucus exhibits both viscous (resistance to flow) and elastic (stiffness) behavior in 

its deformation when a shear force is applied16. An ideal elastic solid will deform to an 

extent when a force is applied, then the solid will immediately return to its original state 

when the force is removed. In contrast, an ideal viscous fluid will deform without limit when 

a force is applied, then the fluid will remain in the deformed state when the force is 

removed. Real materials are not ideal solids or ideal fluids, but rather viscoelastic materials 

such as mucus. In oscillatory measurements of viscoelastic mucus, a strain (γ) is applied at a 
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frequency (ω), and the stress (σ) is measured. For small stain, the stress is proportional to 

the strain (linear response) and given by 

𝜎(𝑡) = 𝐺′𝛾0 sin(𝜔𝑡) + 𝐺′′𝛾0 cos(𝜔𝑡) (1) 

From equation 1, G’(ω) is the storage shear modulus that quantifies the elastic component, 

and G’’(ω) is the loss shear modulus that quantifies the viscous component.  

 A frequency sweep is a plot which shows G’(ω) and G’’(ω) as a function of shear 

frequency. Viscoelastic materials are typically classified as either fluids or gels. At low 

frequencies, a gel has G’(ω) is greater than G’’(ω), indicating that the material is more 

elastic than viscous. The gel will not flow in response to a small shear force. For systems 

characterized by a single time scale, the crossover frequency at which G’(ω) = G’’(ω) is the 

inverse of relaxation time τ, which is the characteristic time taken for the material to relax 

to its original state after a shear force is removed. For gels at high frequencies, G’ (ω) is 

typically smaller than G’’(ω), indicating that the material is more viscous than elastic.  For 

intestinal mucus, the firmly adherent layer forms a viscoelastic gel while the loosely 

adherent layer forms a viscoelastic fluid17. Viscoelastic fluids have G’’(ω) greater than G’(ω) 

at low frequencies. 

 A flow curve uses rotational measurements to plot viscosity as a function of shear 

rate. In a rotational measurement, the top plate of a rheometer will continuously rotate in 

the same direction rather than oscillate around an equilibrium point. A flow curve plot 

determines if the material is Newtonian, shear thickening, or shear-thinning. A Newtonian 

fluid has constant viscosity independent of shear rate. A shear thickening material has a 
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viscosity that increases at high shear rates. In contrast, a shear-thinning material has a 

viscosity that decreases at high shear rates.  

 

2.5 Rheological measurements of mucus. Most biological fluids, such as mucus, show 

shear-thinning behavior16. In the firmly adherent layer, MUC2 molecules entangle and 

cross-link to form a viscoelastic gel with shear-thinning properties. Lai et al. 200910 reported 

the range of rheology measurements of pig intestine mucus from two studies18,19: in the 

shear rate range of 10-2-102 rad·s-1, viscosity = 63-5000 mPa·s, G’ = 0.19-12 Pa, G’’ = 0.18-10 

Pa. These two studies are included in a more comprehensive systematic review by Sardelli 

et al. 201920.  Figure 3 and Table 1 (adapted from Sardelli et al. 2019) show rheological 

values from studies on small intestinal mucus. 

Figure 3. Rheological measurements of small intestine mucus from multiple studies, compiled by 
Sardelli et al. 2019. (A) Storage modulus (G’), (B) tan(δ) = G’’/G’, (C) viscosity, and (D) the 
temperature of the rheological measurement. Reference numbers in parentheses refer to the 
references in Table 1. 
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Table 1. References used in Sardelli et al. 2019. The small intestine consists  
of three sections: duodenum, jejunum, and ileum. 
 

Reference 
number in 
Sardelli et al. 
2019 

Reference Mucus source 

19 Sellers et al. 199118 Small intestine, colon 
31 Bell et al. 198521 Duodenum 
37 Macierzanka et al. 201422 Jejunum 
40 Boegh et al. 201423 Jejunum 
63 Meldrum et al. 201824 Duodenum 
64 Macierzanka et al. 201125 Jejunum 
65 Nordgard et al. 201526 Small intestine 
66 Sellers et al. 198719 Small intestine 

 

2.6 Hydrodynamic model of Giardia attachment. For incompressible Newtonian fluids, the 

Navier-Stokes equation describes the motion of viscous fluids 

𝜌
𝜕𝑣⃑

𝜕𝑡
+ 𝜌(𝑣⃑ ∙ ∇)𝑣⃑ = −∇𝑝 + 𝜂∇2𝑣⃑ (2) 

where ρ is the density of the fluid, η is the viscosity of the fluid, 𝑣⃑ is the flow velocity, t is 

time, and p is pressure. 

The ratio of inertial forces to viscous forces for a moving object in a fluid is given by 

the Reynolds number 

𝑅𝑒 =
𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠
=

𝜌𝐿𝑈

𝜂
(3) 

where Re is the Reynolds number, L is the length scale of the object, and U is the velocity of 

the object. The Reynolds number is derived by taking the ratio of the inertial term 

(𝜌(𝑣⃑ ∙ ∇)𝑣⃑) and the viscous term (𝜂∇2𝑣⃑) from the Navier-Stokes equation (2). Giardia in 

water and in mucus has a low Re << 1 due to the small width of the ventral groove (5 μm) 

and the low velocity of Giardia swimming (50 μm·s-1). Low Re systems have negligible 
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inertial forces and dominant viscous forces where the kinetic energy of the system 

dissipates to friction quickly, and thus inertial motion stops across short distances. 

Therefore, for Re << 1, the Navier-Stokes equation (2) simplifies to 

∇𝑝 = 𝜂∇2𝑣⃑ (4) 

Velocity at any point in time only depends on the boundary conditions at that time and not 

at another time. Thus, the 𝜌
𝜕𝑣⃑⃑

𝜕𝑡
 term from equation (1) simplifies to 0. In low Re systems, 

inertial forces are negligible so the 𝜌(𝑣⃑ ∙ ∇)𝑣⃑ term approximates to 0. 

 Giardia exists in a low Re system, and thus attachment is due mostly to viscous 

forces, not inertial forces. Rheological measurements of mucus-analog fluids should also be 

in the Re << 1 regime where simple laminar flow occurs without turbulent flow.  

Peristalsis in the gut provides a mechanical shear force 

that modifies the mucous layers. Giardia trophozoites must also 

resist peristaltic forces by residing in viscoelastic mucus and 

attaching to the surface of epithelial cells. Attachment is crucial 

for reproduction and survival. 

 According to the proposed hydrodynamic model of 

attachment which presumes a low Re regime, Giardia 

attaches via flagellar-driven fluid flow27,28. Due to the 

pumping of the ventral flagella, fluid enters under the ventral 

disk at the anterior opening, and fluid is pumped out the 

posterior end of the ventral groove (Figure 4). Due to this 

Figure 4. SEM of Giardia 
ventral surface.29 Fluid 
flows into the cell from the 
anterior opening of the 
ventral disk (VD), and fluid 
is pumped out the posterior 
side of the ventral groove 
(VG) outlined in red. The 
ventral flagella (VF) creates 
this fluid-driven flow via a 
lower pressure area under 
the VD. 



12 
 

directed fluid flow, the pressure under the ventral disk is lower than the outside 

environment, creating a force sufficient for attachment. 

 

2.7 Long Chain Polyacrylamide (LCPAM) in media. Traditional Giardia culture media 

provides the proper biochemical nutrients for Giardia to grow, but the media has water-

like, low viscoelasticity, unlike intestinal mucus. By weight, mucus of the small intestine is 

comprised of 84% water and 0.7-5.8% mucins20, high molecular weight glycoproteins such 

as MUC2. Although the concentration of mucins is low, small differences in this 

concentration may cause significant changes in mucus viscoelasticity. The media lacks 

mucins, and thus the media lacks the viscoelastic properties of mucus. To mimic the 

physical properties of mucus without significantly altering the biochemical pathways of 

Giardia metabolism, a high molecular weight (18 MDa) long-chain polyacrylamide (LCPAM) 

was added to the media. LCPAM is a water-soluble, nonionic polymer formed from 

acrylamide subunits (CH2CHCONH2). Uncharged LCPAM should have minimal chemical 

interactions with the ionic media and the anionic surface of Giardia30. The LCPAM used in 

this study has a simple linear-chain structure without cross-links. Due to the high molecular 

weight, LCPAM enhances the viscosity and elasticity of the solvent31. LCPAM 18 MDa is also 

an appropriate analog for mucin as its molecular weight is the same order of magnitudes as 

MUC2 (2.7 MDa32 to 7 MDa33). 

 

2.8 LCPAM sonication. Sonicating the LCPAM solution via ultrasound degradation breaks 

the LCPAM molecules into smaller polymers. This procedure allows for decreasing the 
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viscosity of an LCPAM solution while keeping the concentration of LCPAM constant. A 

higher degree of degradation indicates that the sonicated polymer has a lower average 

molecular weight. In a study on the xanthan gum polymer by Saleh et al. 2017, the degree 

of degradation decreases with salt concentration34 and polymer concentration35, and it 

increases with sonication intensity34, irradiation time34,36, and molecular weight34,35.  

Degradation of the polymer is due to cavitation, which is harder to achieve in 

solutions with a high polymer concentration. When initiating liquid cavitation via sonication, 

the negative pressure generated by the acoustic wave in the rarefaction cycle must 

overcome the cavitation threshold: the natural cohesive forces holding the solution 

together37. As the polymer concentration increases, the viscosity increases, and the 

magnitude of the cohesive forces increases resulting in a higher cavitation threshold. 

Therefore, the degree of degradation is lower in solutions with a high polymer 

concentration. 

 The presence of salts decreases the degree of degradation. As salt concentration 

increases, the ionic strength of the solution increases, 

resulting in a reduced intramolecular charge repulsion 

within a polymer. The contour length38,39 (maximum 

polymer length) and the persistence length34 (stiffness 

parameter) decrease, thus decreasing rigidity and causing 

the polymer to collapse into a coiled state (Figure 5). The 

resulting coiled polymer has a lower surface area exposed Figure 5. Configuration states 
for a polymer in solution37. (a) 
stretched out, (b) coiled, (c) 
intermediate. 
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to extreme shear forces, leading to a lower degree of degradation in a salt solution34. 

 

3. Methods 

3.1 Preparing solutions of LCPAM in media. The TYI-S-33 Giardia culture media was 

prepared with 0.024 M sodium bicarbonate substituted for the phosphate buffer solution40. 

Long-chain polyacrylamide (LCPAM) 18 MDa (International Laboratory USA) was aseptically 

added to the media in 3 additions to create concentrations of 0.2% and 0.4% by molecular 

weight. Tubes were filled by balancing the max volume of liquid media with the minimum 

empty tube volume such that the LCPAM powder could mix properly without clumping; 40 

mL of solution was prepared in a 50 mL tube. LCPAM solutions were mixed in an end-over-

end rotator overnight. 

 

3.2 Sonicating solutions. LCPAM solutions were sonicated to 

decrease the viscosity to the desired value. All sonication 

instruments that entered the tissue culture hood were sterilized 

with 70% ethanol (Figure 6). With 40 mL of 0.2% or 0.4% LCPAM in 

a 50-mL conical tube on a beaker of ice, the Sonic Dismembrator 

Ultrasonic Processor FB-120 (Fischer Scientific) 1/4" probe tip was 

submerged such that the end of the tip was in the middle of the 

solution volume. Solutions were sonicated for 5 

seconds on, 5 seconds off at 50% amplitude (50 

μm) and 20 kHz frequency for 1-30 minutes. The 

Figure 6. Sonication setup under tissue 
culture hood. The ultrasonic processor 
head is stabilized by ring stand. LCPAM 
solution is stabilized by a Styrofoam 
base and submerged in a beaker of ice. 
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ultrasonic processor automatically adjusted the power to maintain a constant amplitude 

regardless of changes in fluid’s resistance to probe movement (viscosity). By keeping 

amplitude constant throughout the sonication process, sonication results are reproducible 

among solutions with varying viscosities. 

 Sonicated solutions were degassed to ensure an anaerobic environment for Giardia. 

A vacuum desiccator was used to eliminate oxygen bubbles from the sonicated solution. 

The desiccator was sterilized with 70% ethanol and placed under the tissue culture hood. 

The tube of the sonicated solution was uncapped, mounted on a Styrofoam base, and 

placed in the desiccator. The solution was degassed for 30 mins while continuously pumping 

with a house vacuum pump. 

 

3.3 Measuring solution rheology. A cone and plate MCR 702 Rheometer (Anton Paar) with 

LPP50 and CP50 plates was used to obtain a frequency sweep and flow curve for 700 μL of 

each solution (Figure 7). At least 1.5 mL of each solution was aseptically collected for 

rheology; this allows for at least two rheology measurements of 700 μL 

each. The rest of the solution was used for Giardia cell culture. Rheology 

plots were constructed with one curve per sample. A sample is defined 

as a solution made on a particular day. Standard deviation error bars 

indicate variability among multiple tests within a sample. A test is 

defined as a single set of rheology measurements 

from one load of 700 μL. If there were multiple 

Figure 7. Schematic of cone and 
plate rheometer16.  A sample is 
loaded onto the bottom plate, and 
the top cone is lowered onto the 
sample.  The top cone is rotated to 
perform oscillatory and steady strain 
rheology tests. 
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rheology measurements on the same test load of 700 μL, only one set of measurements 

was used to represent the test. 

Rheology was measured at 37°C to mimic the temperature of the cell culture 

incubator. The frequency sweep was measured with 17 data points with frequency values 

ranging from 2 to 400 rad·s-1. Data points were equally spaced on a log scale of frequency. 

The flow curve was measured with 22 data points with shear rate values ranging from 0.1 to 

100 s-1. Data points were equally spaced on a log scale of shear rate. 

 Due to the rheometer’s sensitivity limits, rheology data were excluded (frequency 

sweep: max shear rate = 30 s-1, minimum torque = 100 nNm; flow curve: minimum torque = 

650 nNm). For the frequency sweep, if G’ was greater than G’’, the data was excluded since 

the rheometer was measuring surface tension due to improper sample loading technique. 

The calculated characteristic shear rate of Giardia is 10-270 s-1. Therefore, a characteristic 

viscosity at a 10 s-1 shear rate was determined from the flow curve of each solution. 

 

3.4 Culturing Giardia for growth curves. Giardia trophozoites were grown at 37°C in 

autoclaved 9-mL glass tubes of control media (CM), 0.2% LCPAM, or 0.4% LCPAM. 

 

3.4.1 Cell seeding. To increase the population of Giardia cells, cells from one tube were 

seeded into multiple new tubes. First, the confluent tubes were observed under a 10x light 

microscope to ensure that cells were at 80-100% confluency. Tubes were chilled on ice for 

15 minutes. Tubes were shaken to detach cells and cells were observed under the 

microscope to ensure detachment. Under a tissue culture hood, all cell solutions were 
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combined into a sterile 15-mL or 50-mL conical tube. The conical tube was centrifuged for 

10 minutes at 2500 rpm. Under a hood, the tube was placed on ice and the supernatant was 

removed using a serological pipet. With a serological pipet, 3n mL of fresh media was added 

and mixed with the cell pellet where n is the number of confluent tubes used in the seeding 

process. 10 μL of this concentrated cell solution was transferred to a PCR tube and counted 

on a 0.1 mm3 hemocytometer. The cell density of the concentration solution, di, should 

satisfy 

𝑑𝑖 ≥
𝑑𝑓 ∙ 9 𝑚𝐿

0.5 𝑚𝐿
(5) 

where df is the final seeding cell density in each newly seeded 9 mL tube. If condition (5) is 

not satisfied, then cells cannot be seeded for a quantitative growth curve analysis. If 

condition (5) is satisfied, dilute the concentrated cell solution so that the two sides of the 

condition equate. To seed cells, add 0.5 mL of the concentrated cell solution into each new 

9-mL tube and fill the tube with fresh media. 

 

3.4.2 Media refreshing. Due to the build-up of cell debris and a decrease in Giardia nutrient 

supply over time, media should be refreshed (replaced with fresh media) every 3-4 days. 

Media refers to the solution in the tube, so media could represent CM, 0.2%, or 0.4% 

LCPAM. Since most living Giardia cells are attached when taken out of the incubator, old 

media and debris can be removed without removing living cells. Old media was slowly 

removed via a serological pipet, and fresh media was used to replenish the tubes. 
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3.4.3 Qualitative growth curves. In preparation for a quantitative growth curve, Giardia 

growth was initially observed qualitatively over time. Following the cell seeding procedure, 

tubes were seeded with a known starting cell density. Every 6, 12, or 24 hours, cell growth 

was observed by taking images of the ceiling and floor at 3 points along the length of the 

tube (total of 6 images per tube). Estimates of % confluency were recorded for each 

timepoint. After imaging, tubes were placed back into the incubator with the same 

configuration for the ceiling and floor. Qualitative growth curves were constructed based on 

the % confluency estimates. This preliminary data informed an estimate for the max 

timepoint of the quantitative growth curve experiments. 

 

3.4.4 Counting Giardia cells. The number of cells in a tube was counted to build the 

quantitative growth curves. The 9-mL glass tubes were placed on ice for 20 minutes, then 

shaken to detach cells. Each cell solution was transferred to a separate 50-mL conical tube. 

To ensure sufficient transfer of cells, the interior wall of all 9-mL glass tubes was rinsed with 

8 mL of cold 1x PBS and transferred to the 50-mL tube. The second and third rinse were 

with 5 mL of cold PBS. After rinsing, all 50-mL tubes were centrifuged at 2500 rpm for 10 

minutes. A 10-mL serological pipet was used to slowly remove the supernatant until ~3.8 

mL of solution is left. The pellet was resuspended by mixing in 1 mL of cold PBS. 10 μL of the 

cell suspension was added to a microcentrifuge tube. The volume of the remaining cell 

solution (y in equation 6) was measured. In the microcentrifuge tube, 10 μL of filtered 

trypan blue was added and the solution was mixed using a 10 μL pipet. Cells were counted 

by loading 10 μL of the mixed solution onto a 0.1 mm3 hemocytometer. 
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For each 0.1 μL hemocytometer quadrant, the number of living and dead cells were 

counted, and the quadrant was imaged for future reference (Figure 8). The cell density ρ 

[cells/mL] was calculated using 

𝜌 =
𝑥 𝑐𝑒𝑙𝑙𝑠

10−4 𝑚𝐿
∙ 2 ∙

𝑦 𝑚𝐿

9 𝑚𝐿
(6) 

where x is the average number of cells per hemocytometer quadrant, y is the volume of the 

remaining cell solution, and the factor of 2 is the 

dilution factor to account for the trypan blue. 

 

3.4.5 Quantitative growth curves. Two types of 

quantitative growth curve sets were constructed: (1) 

CM cells seeded into CM, 0.2%, and 0.4% LCPAM, 

and (2) 0.4% LCPAM-conditioned cells seeded into 

CM, 0.2%, and 0.4% LCPAM. 0.4% LCPAM-

conditioned cells are cells that were maintained in a 

0.4% LCPAM solution for at least 6 days. 

For a quantitative growth curve assay, all tubes were seeded at the same time and 

at the same seeding density. Thus, before starting this experiment, the total number of 

tubes (n) for each solution type needs to be calculated using  

𝑛 = 𝑎 ∙ (1.25 ∙
𝑡

𝑇
+

𝑡

96
) (7) 

where t is the max timepoint from the qualitative growth curve, T is the timepoint period, 

and a is the number of tubes counted per timepoint. In equation (7), the factor of 1.25 

Figure 8. Image of 16-grid 
hemocytometer quadrant observed 
under a 10x light microscope. The 
total number of living cells was 
counted per quadrant. Living Giardia 
are bright, tear-dropped shaped cells 
while dead Giardia are perfectly 
round circles and smaller in size. 
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accounts for extra tubes in case of contamination, and the 
𝑡

96
 term accounts for the 

additional tubes used for media refreshing every 96 hours. Table 2 shows conditions and 

variable values for equation (7).  

 After seeding the appropriate number of tubes, tubes were placed in a 37°C 

incubator for cell growth. At each timepoint, cells were counted quantitatively. To construct 

growth curves of the cell density over time, the average cell density was plotted with error 

bars representing standard error among hemocytometer quadrants (CM growth curves) or 

the standard deviation among tubes (0.4% LCPAM-conditioned growth curves).  

Table 2. Conditions for CM and 0.4% LCPAM-conditioned quantitative growth curve sets. Variables in 
parentheses are values for equation (6). The timepoint period represents how often tubes were 
counted. For the CM growth curve set, tubes were counted every 12 or 24 hours, depending on the 
solution type. 

 

 CM growth curve set 
0.4% LCPAM-
conditioned growth 
curve set 

Seeding density [cells/mL] 9.0 x 104 6.8 x 104 
Number of tubes counted per 
timepoint (a) 

1 2 

Cell density error bars 
SE among hemocytometer 
quadrants 

SD among tube 
totals 

Maximum timepoint [hours] (t) 168 72 
Timepoint period [hours] (T) 12 or 24 24 

Media refresh timepoint 
96 hours for 0.2% and 
0.4% LCPAM 

N/A 

 

4. Results 

4.1 Rheology of LCPAM solutions. Previous studies have investigated the rheology of 

LCPAM in a water solvent, so as a first step we investigated the effect of using CM as the 

solvent. Figure 9a shows the viscosity vs. shear rate for 0.4% LCPAM in water (green), and 
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the same concentration in CM (blue). At all shear rates, the viscosity is substantially lower, 

and the shear-thinning behavior is less dramatic. As with pure water solvents, the viscosity 

of LCPAM in CM increases strongly with concentration (compare 0.2%, purple, with 0.4%, 

blue). 

 To compare the elasticity of the LCPAM solutions, a frequency sweep was created 

from representative data of one sample of 0.4% LCPAM in water, 0.4% LCPAM in media, and 

0.2% LCPAM in media (Figure 9b). All 3 solution types exhibit the behavior of a viscoelastic 

fluid: G’’ > G’ at low frequencies and G’ > G’’ at high frequencies. The relaxation time τ of 

0.4% LCPAM in water (59 s) is approximately 3 orders of magnitude greater than that of 

0.4% LCPAM in media (0.073 s) and 0.2% LCPAM in media (0.057 s). At all frequencies, 0.4% 

LCPAM is more viscous (compare blue with purple triangles) and more elastic than 0.2% 

LCPAM (compare blue with purple circles, Figure 9b). 

Figure 9. Flow curve (a) and frequency sweep (b) of 0.4% LCPAM in water (green, n = 1), 0.4% LCPAM 
in media (blue, n = 7), and 0.2% LCPAM in media (purple, n = 3). (a) Error bars show the standard 
deviation of samples. The dashed line on the flow curve indicates the viscosity of the media solvent 
which has the same viscosity as water (η = 0.69 mPa·s). (b) Circles are the storage modulus (G’), 
triangles are the loss modulus (G’’). Representative data from one sample of each solution (n = 1) is 
shown.  
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Unless specified, 0.4% LCPAM and 0.2% LCPAM refers to LCPAM in a media solvent. 

In measuring multiple samples of 0.4% LCPAM, there was high variability among sample 

rheology.  Thus, we investigated two potential sources of variability: variability due to tests 

of the same sample or variability due to samples.  The variability in 0.4% LCPAM is higher 

among samples than among tests for the same sample (Figure 10). This suggests that the 

rheometer produces reproducible results whereas sample preparation may not be as 

consistent. While the inconsistency in rheology measurements is concerning, 0.2% LCPAM 

does have a different viscosity than 0.4% LCPAM since the error bars of their flow curves do 

not overlap (Figure 9a). 

Figure 10. Flow curve of (a) five 0.4% LCPAM tests for the same sample and (b) seven 0.4% LCPAM 
samples. Variability in LCPAM rheology is not due to test variation (a), but rather variability is due to 
variation among samples (b). 
 

4.2 LCPAM sonication rheology. To reduce the viscosity of 0.4% LCPAM without changing 

the concentration, we sonicated 0.4% LCPAM for 1 minute to reach a characteristic viscosity 

(3.44 mPa·s) similar to that of 0.2% LCPAM (5.21 mPa·s; Figure 11). Sonication times greater 
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than 10 minutes did 

not greatly affect 

viscosity. As sonication 

time increases, 

sonicated 0.4% LCPAM 

reaches a minimum 

viscosity of 1.18 mPa·s. 

 To ensure that 

sonication was affecting 

LCPAM viscosity and not 

the CM solvent viscosity, 

CM without LCPAM was sonicated. Sonicating CM for 10 minutes resulted in no change in 

solvent viscosity. 

 

4.3 Giardia growth curves. 

4.3.1 Control cells. To test our hypothesis that viscoelastic environments affect Giardia 

growth, we measured growth curves of Giardia in solutions with measured rheology. First, 

we started with control cells grown in control media (CM), 0.2% LCPAM, and 0.4% LCPAM. 

Populations in all solutions reach approximately the same confluency (~1.1 x 106 cells/mL), 

but the time until confluency depends on the solution (CM = 72 h, 0.2% LCPAM = 120 h, 

0.4% LCPAM = 168 h; Figure 12a). Cells in 0.2% LCPAM have initial growth behavior similar 

to CM, but after 36 hours, the growth in 0.2% LCPAM is not sustained.  

Figure 11. Flow curve of 0.4% LCPAM (dark blue, n = 7) and 0.4% 
LCPAM sonicated for 1 min (blue, n = 1), 2 min (light blue, n = 1), and 
10 min (light green, n = 1). 0.2% LCPAM shown in purple (n = 3), and 
dashed line indicates media solvent viscosity (η = 0.69 mPa·s). Error 
bars are standard deviation of samples. 0.4% LCPAM sonicated for 1 
min has approximately the same viscosities as 0.2% LCPAM. 
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The growth phase is defined as the time period where cell density sharply increases, 

and the growth rate is at its maximum. The lag time is defined as the time until the growth 

phase begins. The lag time for CM, 0.2%, and 0.4% LCPAM is 24 h, 96 h, and 144 h 

respectively (Figure 12a). When plotted on a lag time vs. log viscosity scale, lag time 

increases logarithmically as average viscosity increases (Figure 12c). 

 

4.3.2 0.4% LCPAM-conditioned cells. After CM cells were grown in the 3 solutions, the 

confluent 0.4% LCPAM cells were similarly seeded into the 3 solutions.  0.4% LCPAM-

conditioned cells grown in CM, 0.2%, and 0.4% LCPAM all have a lag time of 24 hours 

(Figure 12b). During the growth phase, 0.4% LCPAM has a faster growth rate than CM and 

0.2% LCPAM which have similar growth rates. 

 

4.3.3 Control cells vs. 0.4% LCPAM-conditioned cells. For all 3 solutions, 0.4% LCPAM-

conditioned cells do not reach the confluency cell density of control cells. The lag time for 

control cells increases with solution viscosity whereas, for 0.4% LCPAM-conditioned cells, it 

is independent of the solution. The growth rate, or the slope of the growth curve during the 

growth phase, for control cells is independent of the solution whereas for 0.4% LCPAM-

conditioned cells, it is dependent on the solution. 
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Figure 12. Growth curves of control cells (a) and 0.4% LCPAM-conditioned cells (b) grown in control 
media, 0.2% LCPAM, and 0.4% LCPAM. (a) Each point represents one tube, and error bars represent 
the standard error of the hemocytometer quadrants. All tubes had a starting cell density of 9.0 x 104 
cells/mL. 0.2% and 0.4% LCPAM tubes were refreshed with new media at 96 hours. (b) Each point 
represents the average of two tubes, and error bars represent the standard deviation of the tubes. 
All tubes had a starting cell density of 6.8 x 104 cells/mL. (c) Lag time (extracted from panel a) vs. 
average viscosity for control cells grown in the 3 solutions. Average viscosity is displayed on a log 
scale. 

(a) 

(b) 

(c) 
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5. Discussion 

5.1 LCPAM in water vs. media. For the discussion that follows, viscosities at a 10 s-1 shear 

rate are compared. The characteristic viscosity of 0.4% LCPAM in a water solvent (250 

mPa·s) is about 10 times greater than 0.4% LCPAM in a media solvent (20 mPa·s; Figure 9a). 

To explain this difference, we assess the chemical differences of water vs. media. For 

purposes of rheology, the primary difference is the presence of 0.4% salts in the media.  

Contrary to our results, Chen et al. 2012 reported that the viscosity of 2.6 MDan 

LCPAM does not change in the presence of increasing salt concentrations up to 2%41. This 

suggests that not only the presence of salts but the interactions of salts and other 

macromolecules in the media contribute to the overall lower viscosity of LCPAM in media 

compared to water. Hypothetically, the small biomolecules in the media (i.e. peptones and 

yeast extracts) could reduce the LCPAM intermolecular reactions and increase the affinity 

for intramolecular H-bonding of the LCPAM amides. This would cause the linear LCPAM 

molecule to collapse into a coiled state (Figure 5). LCPAM in a coiled state decreases the 

entanglement between LCPAM molecules, leading to a decrease in viscosity. While this 

biochemical reasoning may be true, overall, the mechanism to explain the reduced viscosity 

and increased elasticity of 0.4% LCPAM in media vs. in water is unknown. 

Our 0.4% LCPAM in media does not mimic all the properties of mucus, but we can 

investigate analogies between our viscoelastic salty solution and mucus. Salts account for 

up to 1% of mucus mass10,42,43. An increase in ion concentration correlates with a decrease 

in mucus viscosity10, which is a similar trend observed in our comparison of 0.4% LCPAM in 

salty media vs. in non-salt water (Figure 9a). In mucus, an increase in ion concentration 
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correlates with more elastic behavior44. This relationship is not apparent in our comparison 

of 0.4% LCPAM in salty media vs. in water. Instead, at all shear rates 0.4% LCPAM in media 

has a lower storage modulus (G’) than 0.4% LCPAM in water, indicating that 0.4% LCPAM in 

media is less elastic. 

 

5.2 0.2% vs. 0.4% LCPAM in media. The viscosity of LCPAM is dependent on concentration. 

To explain the intermolecular interactions between LCPAM molecules, the overlap 

concentration was calculated by finding the critical concentration where the average 

spacing between molecules equals Rg. 

𝑉𝑝

𝑉𝑠
=

𝑁𝑝 ∙ (
4
3 𝜋𝑅𝑔

3)

𝑉𝑠
= 1 (8) 

𝑐𝑐𝑖𝑡𝑖𝑐𝑎𝑙 =
𝑁𝑝 ∙ 𝑀̅𝑤

𝑉𝑠

(9) 

𝑐𝑐𝑖𝑡𝑖𝑐𝑎𝑙 =
3𝜋

4
∙

𝑀̅𝑤

𝑅𝑔
3

(10) 

In equations (7-9), Vp is the volume of the solute particles, Vs is the volume of the solution, 

Np is the number of solute particles, Rg is the radius of gyration, 𝑀̅𝑤 is the molecular weight 

of the solute, and ccritical is the critical overlap concentration. In equation (10), the overlap 

concentration can be simplified to a function of 𝑀̅𝑤 and Rg. For our 18 MDan LCPAM in 

media, the Rg is approximately 350 nm45,46 and thus the overlap concentration is 0.017% 

LCPAM. 

 Since the 0.4% LCPAM solution is notably greater than the critical overlap 

concentration, the LCPAM molecules will entangle with each other via intermolecular 

forces. For shear-thinning fluids such as 0.4% LCPAM, the applied shear force is both 

stretching the coiled LCPAM (weakening intermolecular forces) and detangling the coils 
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(weakening intermolecular forces). Detangling has a greater effect on viscosity, so we see 

the shear-thinning effect in the viscosity vs. shear rate plot for 0.4% LCPAM (Figure 9a, 

blue). As a greater shear force is applied, the coils are detangled more and thus the viscosity 

decreases.  

 The 0.2% LCPAM solution has a concentration greater than but close to the overlap 

concentration of 0.017%. Thus, 0.2% has less shear-thinning behavior as observed in Figure 

9a, purple. The viscosity vs. shear rate curve of 0.2% LCPAM appears Newtonian-like 

because the starting viscosity is low and close to the Newtonian solvent viscosity. At low 

shear rates, the LCPAM additive does not change the viscosity very much. Thus, the effect 

of reducing the LCPAM’s contribution at high shear rates is negligible. 

 

5.3 0.4% LCPAM vs intestinal mucus. The rheology of our 0.4% LCPAM analog is lower than 

that of intestinal mucus. In the shear rate range of 10-2-102 rad·s-1, the viscosity of mucus 

from a pig small intestine ranged from 63 to 5000 mPa·s10,18,19; the range for our 0.4% 

LCPAM viscosity (11-53 mPa·s, Figure 9a) is lower than the range of the reference small 

intestine mucus. In comparison to viscosity values of intestinal mucus from the recent 

systematic review Sardelli et al. 201920, our 0.4% LCPAM in water has a viscosity vs. shear 

rate curve that is the most similar to the mucus references (compare green dashed with 

solid curves, Figure 13). Although our 0.4% LCPAM in media has a lower viscosity than small 

intestine mucus samples at all shear rates (compare blue dashed with solid curves, Figure 
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13), 0.4% LCPAM in media still 

serves as an appropriate mucus 

analog in that it exhibits the 

shear-thinning behavior of 

mucus with a significantly 

higher viscosity than water 

(Figure 9a). 

 

5.4 LCPAM rheology 

variability. The wide rheology 

variability among LCPAM samples may be due to a variety of factors. We qualitatively 

observed that 0.4% LCPAM precipitates out of solution in some samples. The supernatant is 

less viscous than the bottom of the tube due to the collection of LCPAM debris. This 

suggests that a 0.4% concentration is too high for LCPAM to be fully mixed. The 

concentration of LCPAM is not uniformly distributed along the length of the tube. For 

example, for a prepared 0.4% LCPAM solution, the bottom of the tube may be 0.5% LCPAM 

and the top of the tube may be 0.3% LCPAM. Thus the rheology of each sample will vary 

depending on the location of sample collection within the tube. 

 LCPAM variability could also be attributed to factors outside the limits of our 

experimental design. For example, while in theory each batch of media is prepared in an 

identical manner, the bovine sera and bile components are derived from different cows, 

and the ultrapure water quality varies by week. The variability is inevitable when studying 

Figure 13. Flow curves of this study’s 0.4% LCPAM in water 
(green dashed), 0.4% LCPAM in media (blue dashed), and 
0.2% LCPAM in media (purple dashed) overlaid on intestinal 
mucus samples from the systematic review Sardelli et al. 
201920. The citation reference number from the Sardelli study 
is in parentheses. Reference 63 refers to the Meldrum et al. 
201824 study of pig mucus in the duodenum, the primary 
region of Giardia infection. References 27, 40, and 64 studies 
mucus in the jejunum, another region of the small intestine. 
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living, biological organisms that live 

in ultrapure water, such as Giardia 

and other bacterial populations47. 

Moreover, the LCPAM solution 

measured in the rheometer could 

have been put under additional 

mechanical stress due to pipetting 

(Figure 14). Thus, the viscosity and 

elasticity of the measured sample 

may be lower than the actual LCPAM solution in which the Giardia are growing. 

 

5.5 LCPAM sonication. Sonicating 0.4% LCPAM was successful in decreasing the viscosity. 

Sonicating 0.4% LCPAM for 1 minute yielded approximately the same viscosity as 0.2% 

LCPAM (Figure 11). In this study, massive Giardia cell death within 12 hours was observed 

when seeding cells in a 10-minute-sonicated 0.4% LCPAM without degassing. This suggests 

that even when bubbles are not visible in the solution, the sonication procedure introduces 

dissolved gas or gas bubbles that are lethal to anaerobic Giardia. Degassing after sonication 

is a crucial step in preparing a viable solution for Giardia. 

 Qualitatively, Giardia growth in sonicated 0.4% LCPAM yields variable results: 

Giardia sometimes exhibits growth behavior similar to its growth behavior in an un-

sonicated solution with the same viscosity, and Giardia sometimes enters a long death 

phase in which the population does not recover. This inconsistency in Giardia growth 

Figure 14. Mechanical degradation of LCPAM through a 
narrow pore48. Schematic is comparable to pipetting an 
LCPAM solution sample into the rheometer. As LCPAM 
coils funnel through the narrow pore, the 
intramolecular interactions are weakened, and LCPAM 
transitions to a linear state. 
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suggests that sonicating LCPAM in media is not a chemically inert process. Breaking down 

polymer chains may generate free radicals, which introduce a new chemical effect that 

could potentially be lethal for Giardia. If this chemical change does occur during sonication, 

then sonication is counter-effective. Sonication was executed to test the hypothesis that the 

addition of LCPAM does not have a chemical effect on the media. However, if sonication is 

introducing a new chemical effect, then we cannot isolate the physical effect of LCPAM 

from its chemical effect. 

 

5.6 Adaptation vs. acclimation. To explain the difference in growth curves in Figure 12a and 

Fb, we evaluate two hypotheses: adaptation vs. acclimation. Adaptation is equivalent to the 

theory of natural selection or biological evolution. If this hypothesis is true, Giardia will 

select for phenotypes that are advantageous in the new environment, and cells with this 

phenotype will replicate while cells without the phenotype will die. In contrast, acclimation 

is equivalent to epigenetics. If this hypothesis is true, individual Giardia cells will alter their 

gene expression to adapt to the new environment. Acclimation is adjustment within the 

lifetime of an individual cell, and adaptation is the adjustment of the population over 

multiple generations. For biological organisms, the adjustment to a new environment is 

typically a combination of both acclimation and adaptation. When Giardia are placed in a 

high-stress environment (0.4% LCPAM), Giardia eventually adjust to their new viscoelastic 

environment via adaptation or acclimation. 

 The rapid growth during all growth phases in Figure 12a and Fb suggest that 

acclimation is dominant over adaptation. Adaptation requires multiple lifecycles to achieve, 
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and Giardia undergoes replication every 6 to 8 hours in CM. Thus, if adaptation were the 

dominant mechanism, we would expect to see a gradual increase in cell density over time. 

Instead, we observe rapid growth within 24 hours for Giardia in 0.2% and 0.4% LCPAM. This 

rapid growth is better explained by a sudden change in gene expression by all cells in the 

solution. As soon as Giardia adopts the proper gene expression, Giardia can quickly 

replicate and thrive in their viscoelastic environment. Moreover, adaption is not likely since 

there are extremely low levels of genetic variation in Giardia populations49. This suggests 

that random mutations are rare, and thus Giardia does not have much genetic diversity to 

selectively favor a particular phenotype within a population. 

To further distinguish between adaptation vs. acclimation, two types of experiments 

can be done: (1) genetic sequencing and (2) reversion growth curves. For the first 

experiment, we would compare the genome and transcriptome of CM cells grown in 0.4% 

LCPAM at seeding vs. at confluency. If the genome is more different than the transcriptome, 

then adaptation is dominant; acclimation is dominant if vice versa. For the second 

experiment, CM cells will be grown to confluency in 0.4% LCPAM, then these 0.4% LCPAM-

conditioned cells will be grown to confluency in CM, then these 0.4%-to-CM cells will be 

grown in 0.4% LCPAM. If the resulting cells exhibit a growth curve similar to CM cells in CM, 

then Giardia retains full genetic memory after initial adaptation to 0.4% LCPAM. On the 

other hand, if the resulting cells exhibit a growth curve similar to CM cells in 0.4% LCPAM, 

the Giardia has a time-limited genetic memory in which cells acclimate to their current 

environment independent of their previous environments. The second proposed 
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experiment is easier to execute than the first, and thus Figure 12b represents the 0.4% 

LCPAM-conditioned cells grown in CM.  

Qualitatively, we observed that the 0.4%-to-CM cells grown in 0.4% LCPAM had a lag 

phase of 144 hours and a growth curve similar to CM cells grown in 0.4% LCPAM (Figure 

12a,b, blue). Thus, these results support the hypothesis that acclimation is dominant over 

adaptation. 

 

5.7 Future studies. With an experimental question as complex as the one this study aims to 

investigate, a wide array of future studies can be suggested to understand the growth of 

Giardia in viscoelastic fluids. In this section, a few potential experiments are proposed in the 

order of increasing significance. 

 To address the problem of high rheology variability among LCPAM samples, another 

polymer, with similar physical properties of LCPAM, should be tested. The heterogeneous 

concentration of LCPAM within a tube due to insufficient mixing leads to weak conclusions 

on the effect of viscoelasticity on Giardia growth. Thus, we want to find a different polymer 

that fits the following criteria for a mucus analog: (1) increases the viscoelasticity or 

viscosity of the solution, (2) has minimal chemical modifications to the media solvent or 

Giardia, and (3) creates a homogenous concentration when mixed with media. Xanthan 

gum is a polysaccharide that may satisfy these criteria. The methodology of this study 

should be repeated with xanthan gum instead of LCPAM. 

 Given that the reversion growth curves suggest acclimation as dominant over 

adaptation, RNA sequencing should be done on cells cultured in CM and 0.4% LCPAM-
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conditioned cells. This genetic analysis may provide further evidence to support the 

acclimation theory. 

 To put this study in the context of Giardia infection, an experiment can be done to 

observe the onset and severity of giardiasis in mice infected with CM cells vs. 0.4% LCPAM-

conditioned cells. Based on this study’s results, we hypothesize that giardiasis onset will 

occur earlier in infections of 0.4% LCPAM-conditioned cells since these cells are adjusted to 

the viscoelasticity of intestinal mucus. 

 The hydrodynamic model of Giardia attachment can be further supplemented with 

experimental observations of flagellar pumping and fluid flow in viscoelastic solutions. The 

current hydrodynamic model proposes experimental and theoretical mechanisms for 

Giardia attachment in water, but modeling the waveform of the flagella in a viscoelastic 

solution can improve the relevance of the model for Giardia’s mucous, infectious 

environment. 

6. Conclusion 

 Previous studies investigated Giardia in a water-like environment, but Giardia’s 

infectious environment is viscoelastic intestinal mucus.  Thus, LCPAM was added to the 

water-like media in concentrations of 0.2% and 0.4% to yield a viscoelastic solution 

compatible with Giardia growth. A sonication protocol was created to effectively reduce the 

viscosity of 0.4% LCPAM to that of 0.2% LCPAM and CM.  With future modifications, 

sonicated LCPAM solutions can be used to eliminate the physical effect (reduce 

viscoelasticity) and observe the chemical effect on Giardia growth. 
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 Giardia growth was observed over time in solutions of CM, 0.2%, and 0.4% LCPAM.  

The lag time before the growth phase was greater in higher viscosity solutions, but the 

growth phase of all 3 solutions are approximately identical.  Along with quantitative and 

qualitative reversion growth curves, these growth curve trends suggest that Giardia’s 

adjustment to viscoelasticity is primarily acclimation rather than adaptation. 
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Supplemental Information 

SI.1 Rheology and qualitative growth curves for Ficoll in media. Ficoll 400kDa (Sigma Life 

Sciences) was added to Giardia media to increase the viscosity of the solution. LCPAM 

changes both the viscosity and elasticity of a solution, but Ficoll changes the viscosity 

without significantly changing the elasticity. Thus, we could compare Giardia growth in 

LCPAM and Ficoll to determine if Giardia growth is sensitive to elasticity and viscosity, or 

only to viscosity. This experiment was executed, but due to difficulties of culturing Giardia 

in Ficoll, Ficoll was discontinued in this study. However, the rheological values for Ficoll in 

media are provided below. 

 In contrast to shear-thinning LCPAM solutions, 10%, 15%, 20%, and 24% Ficoll in 

media exhibit Newtonian behavior (Figure SI1a). Theoretically, Ficoll should not exhibit 

elastic behavior in oscillatory rheology measurements; with the assumption that G’ = 0, the 

theoretical G’’ is 

𝐺′′(𝜔) = 𝜔𝜂 (𝑆1) 

where η is the viscosity of Ficoll (which, due to Newtonian behavior, does not change with 

shear rate). Although the oscillatory measurements of Ficoll report a non-zero value for G’, 

the theoretical G’’ is approximately the same as the experimental G’’ (compare dotted lines 

with triangles, Figure SI1b). 
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Figure SI1. Flow curve (a) and frequency sweep (b) of 10% Ficoll (grey, n = 2), 15% Ficoll (orange, n = 
2), 20% Ficoll (blue, n = 2), and 24% Ficoll (green, n = 2). Error bars show the standard deviation of 
samples. (b) Circles are the storage modulus (G’), triangles are the loss modulus (G’’). The dotted line 
represents theoretical G’’ calculation from equation S1. 
 

Qualitative observations of Giardia growth suggest that growth behavior is 

approximately the same in 24% Ficoll and 0.4% LCPAM. These two solutions have 

approximately the same viscosity within the characteristic shear rate range for Giardia 

(compare purple with yellow within shear rate 10-100 s-1, Figure SI2). Thus, a quantitative 

growth curve assay was done with control media, 0.4% LCPAM, and 24% Ficoll. However, 

Giardia's cell density for 24% Ficoll did not increase for 6.5 days. Additionally, tubes of 

Giardia in Ficoll were highly prone to contamination. Due to experimental difficulties, Ficoll 

was no longer used in Giardia growth experiments. 

 

(a) (b) 
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Figure SI2. Flow curve for all solutions of LCPAM, Ficoll, and control media. All rheological 
measurements were taken at 37°C. 

 

SI.2 Image processing for automated Giardia counting. Before counting Giardia cells 

manually under a light microscope, we attempted to automate the process through image 

processing. Cells were cultured in cell chamber slides, and growth was imaged over time. 

Unlike tubes, chamber slides have a flat bottom in which cells can be imaged with a 

confocal microscope. Images of the chambers were taken approximately every 12 or 24 

hours (see Figure SI3a for an example). 

 A Python program was developed to identify living Giardia cells. The program was 

adapted from Trackpy, a Python package for particle tracking and image processing. The 

program was trained to correctly identify Giardia cells (bright features against a dark 

background) using a variety of parameters. Parameters that were effective in correctly 

identifying features include diameter, minimum mass (brightness), max size, separation 
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distance, and eccentricity. Parameters that did not significantly change feature 

identification include percentile minimum for peak brightness, threshold for bandpass, and 

smoothing size. All of these parameters are described on the Trackpy website (http://soft-

matter.github.io/trackpy/v0.4.2/). 

 Trackpy is effective at counting Giardia cells when the image quality is good (Figure 

SI3b). Images that are easier to process have a background that is blurred with even 

contrast, Giardia cells that do not overlap with each other, bright cells with a dark outline, 

and the absence of impurities such as black blobs (debris) or bright dead cell clumps. 

Unfortunately, these criteria were rarely met as it was difficult to obtain clean images. 

Additionally, cells cultured in chambers were highly prone to contamination, possibly due to 

the loose seal between the chamber and the glass slide. Imaging was difficult for chambers 

due to the presence of bubbles in the chamber, which interfered with the light from the 

microscope. Thus, Trackpy was discontinued for this experiment, and quantitative growth 

curves were executed by manual counting (see Section 3.4.4). 

 

 Figure SI3. (a) Confocal image of chamber slide with Giardia grown in control media 
at 17 hours. (b) Using the Trackpy Python package, living Giardia cells were identified 
with red circles. Axes represent pixel dimensions. 

(a) (b) 

http://soft-matter.github.io/trackpy/v0.4.2/
http://soft-matter.github.io/trackpy/v0.4.2/
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