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Abstract

This thesis explores several problems in discrete geometry, focusing on covering problems. We

first go over some well known results, explaining Keith Ball’s solution to the symmetric Tarski

plank problem, as well as results of Alon and Füredi on covering all but vertices of a cube with

hyperplanes. The former extensively utilizes techniques from matrix analysis, and the latter applies

polynomial method. We state and explore the related problem, asking for the number of parallel

hyperplanes required to cover a given discrete set of points in Zd whose entries are bounded, and

prove that there exist sets which are “difficult” to cover in every dimension for entries whose

absolute values are bounded by 1 using a similar polynomial-based approach.
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1. Introduction

Covering problems appear naturally throughout mathematics, and generally ask how many

instances, or how much of one object is required to cover another. One famous example is that

of covering the plane using circles while minimizing how much the circles overlap–minimizing the

density of the circles in the space. This problem could, for example, correspond to optimally placing

cellular towers so as to minimize cost while making sure that there is adequate reception throughout

a given space.

Tarski asked the question of whether or not a convex set could be covered by planks in such

a way that the the sum of the widths of the planks is smaller than the width of the set. We define

the width of a convex set S to be infH1,H2 tdpH1, H2q|H1 parallel to H2 u where H1, H2 are distinct

supporting hyperplanes of the set S. We define planks to be the intersection of two half-spaces

associated with parallel hyperplanes. Precisely stated, he conjectured that for any convex set S, if

P1, ..., Pn are planks with widths w1, ..., wn which cover S, then widthpSq ď
řn
i“1wi [3].

Tarski proved this for the special case of the disk in two dimensions and Bang provided a

solution in general. A follow-up conjecture asks about the relative widths of covering planks. That

is, whether or not the inequality
řn
i“1

wi
hi
ě 1 holds in general, where hi denotes the width in the

direction perpendicular to the hyperplane which defines Pi. Ball answers this in the affirmative for

centrally symmetric sets in [2]. We present Ball’s proof in Section 2.

Turning our attention to a more discrete problem, we study coverings of lattice points by hy-

perplanes. In [1], Alon and Füredi prove that any covering of the 2n´1 points of the n´dimensional

unit hypercube by hyperplanes which avoid the origin requires at least n hyperplanes. These results

are proven using polynomial and linear algebraic methods–we go over some of these in Section 3.

We also study problems relating to number of parallel hyperplanes required to cover sets of

lattice points. Define SdT “
 

x P Zd : }x}8 ď T
(

. It is obvious that SdT can always be covered using

2T `1 parallel hyperplanes by choosing hyperplanes orthogonal to one of the standard unit vectors.

Further, it is easy to see that SdT cannot be covered in fewer than 2T `1 parallel hyperplanes. This

leads to the natural question which asks how small can sets X Ă SdT get while still requiring 2T `1

parallel hyperplanes to cover it? We study the existence of sets X Ă SdT which cannot be covered

using fewer than 2T ` 1 parallel hyperplanes and where |X| “ 2T ` d. This is optimal in the sense
3



that any smaller set of points could be covered trivially by covering at least d points with the first

hyperplane, and one with each of the rest. We construct such sets for T “ 1 in every dimension,

and use polynomial methods to prove that none of these sets can be covered by fewer than three

parallel hyperplanes in Section 4.

Sets with this property – having bounded entries and requiring a maximal number of parallel

hyperplanes to cover, have applications in compressed sensing. Specifically, they give us methods

to generate sensing matrices for the purpose of sparse integer recovery. We prove and comment on

these results in Section 5.

2. Plank Problem for Symmetric Bodies

Here, we present Keith Ball’s solution to the symmetric plank problem from [2]. Given a

symmetric convex body C in a Banach space X and n hyperplanes H1, ...,Hn, there is a translate

of a multiple of C which is at least 1
n`1 times the size of C inside C which is not hit by any of the

hyperplanes. In other words, there exists v such that

v `
1

n` 1
C Ă C

and

int

ˆ

v `
1

n` 1
C

˙

XHi “ H.

We will soon see that this is equivalent to plank coverings. We define planks in the following way,

using a unit norm functional φ, a real number m, and half width w:

P “ tx P C | |φpxq ´m| ď wu .

Theorem 1 (Ball). Given unit functionals pφiq
n
i“1, real numbers pmiq

n
i“1, and positive real numbers

pwiq
n
i“1 such that

ř

wi ď 1, there is some point x in the unit ball with respect to the norm associated

with X such that

|φipxq ´mi| ě wi

Assuming this theorem, we have the following corollary:

Corollary 2. If C is a symmetric convex body in Rd and pHiq
n
i“1 are hyperplanes, then there is a

set of the form x` 1
n`1C inside C whose interior is not met by any of the hyperplanes H.
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Proof. We represent each of the hyperplanes with a unit functional φi and real mi.

We choose the norm which corresponds to C as the unit ball under this norm. This can, in

general, be constructed using the Minkowski gauge functional

fCpxq “ inf
αPR`

!x

α
P C

)

,

which defines a norm whenever C is convex, 0-symmetric, bounded, and contains an open set.

We then apply Theorem 1, setting wi “
1

n`1 . Then there exists a point x in n
n`1C such that

|φipxq ´mi| ě wi

for each i. The assumption that x P n
n`1C gives us that

x`
1

n` 1
C Ă C.

This follows from an elementary application of the triangle inequality: let z P 1
n`1C, then }z} ď 1

n`1

by homogeneity, so

}x` z} ď }x} ` }z} ď
n

n` 1
`

1

n` 1
“ 1.

To prove that the interior of x` 1
n`1C is hit by none of the hyperplanes, let y P x` 1

n`1C. Then

}y ´ x} ď
1

n` 1
,

as x` 1
n`1C is a radius 1

n`1 (open or closed) neighborhood around x. Then for each φi,

|φipxq ´ φipyq| “ |φipx´ yq| ď }φi}X˚}x´ y}X “
1

n` 1
,

so

|φipxq ´mi ´ pφipyq ´miq | “ |φipxq ´ φipyq| ď
1

n` 1
.

Since |φipxq| ě
1

n`1 , φipyq ´mi has the same sign as φipxq ´mi, giving us that it lies on the same

side of the hyperplane. Thus, we conclude that for every y P x` 1
n`1C, y is on the same side of the

hyperplane as x, and the hyperplane cannot cross the interior.

�

We now give a paraphrase of Theorem 1 before proving it.
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Theorem 3. For an nˆn matrix with diagonal entries equal to 1, reals pmiq
n
i“1, nonnegative reals

pwiq
n
1 where

řn
i“1wi ď 1, there are reals pλiq

n
i“1 such that

ÿ

j

|λj | ď 1,

where for every i,
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

ai,jλj ´mi

ˇ

ˇ

ˇ

ˇ

ˇ

ě wi.

Theorem 2 implies Theorem 1. For a sequence pφiq
n
1 of norm 1 functionals on X, choose a

sequence of unit vectors pxiq
n
i“1 such that φipxiq “ 1. Then we construct the matrix

A “ pφipxjqq , i, j P 1, 2, . . . , n.

This will look like

A “

»

—

—

—

–

φ1px1q ... φ1pxnq
...

. . .
...

φnpx1q ... φnpxnq

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1 ... φ1pxnq
...

. . .
...

φnpx1q ... 1

fi

ffi

ffi

ffi

fl

by the above assumption, where the off-diagonal entries are less than 1 by the Hölder inequality.

In the case of the Euclidean norm ball, we have

A “ ΦTΦ,

where the columns of Φ are unit vectors. An analogous matrix A is obtained with any inner-product

induced norm. The insight here is that A is symmetric whenever X is also a Hilbert space.

Returning to the matter at hand, for linear combinations of these dual vectors x “
řn
i“1 λixi

where
řn
i“1 |λi| ď 1, we have that

}x} “ }
n
ÿ

i“1

λixi} ď
ÿ

i

|λi|}xi} “
ÿ

i

|λi| ď 1,

and more importantly, that

φipxq “
ÿ

j

λjφipxjq “
ÿ

j

λjai,j .
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Then, applying Theorem 2, we have that there exists some sequence of coefficients pλiq
n
1 with the

restrictions above, and nonnegative reals pwiq
n
1 which sum to no more than 1,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

ai,jλj ´mi

ˇ

ˇ

ˇ

ˇ

ˇ

ě wi,

which means that

|φipxq ´mi| ě wi

for each i, where x “
řn
i“1 xiλi. Note that this even slightly stronger–we are taking a subset of of

the unit ball, as we look only at the span of the dual vectors of the hyperplanes. Bang proved a

version of Theorem 2 for symmetric matrices:

Lemma 4. Let H “ phi,jq be a real symmetric n ˆ n matrix with ones on the diagonal, pµiq
n
1 a

sequence of reals and pθiq
n
1 a sequence of nonnegative reals. Then there exists some sequence of

signs pεjq
n
1 such that for any i,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

hi,jεjθj ´ µi

ˇ

ˇ

ˇ

ˇ

ˇ

ě θi.

Proof. Choose your signs pεiq to maximize

ÿ

i,j

hi,jεiεjθiθj ´ 2
ÿ

i

εiθiµi.

Fix k P t1, ..., nu and define pδjq
n
1 by

δj “

$

’

&

’

%

εj j ‰ k

´εj j “ k.

Then we have
ÿ

i,j

hi,jδiδjθiθj ´ 2
ÿ

i

δiθiµi ď
ÿ

j

hi,jεiεjθiθj ´ 2
ÿ

i

εiθiµi

as pεiq
n
1 maximized the expression. So

0 ď
ÿ

j

hi,jεiεjθiθj ´ 2
ÿ

i

εiθiµi ´

˜

ÿ

i,j

hi,jδiδjθiθj ´ 2
ÿ

i

δiθiµi

¸

“
ÿ

j

hi,j rεiεj ´ δiδjs θiθj ´ 2
ÿ

i

rεi ´ δis θiµi

7



“
ÿ

j

hi,j rεiεj ´ δiδjs θiθj ´ 2 r2εks θkµk

If i ‰ k and j ‰ k, the first term evaluates to zero.

“
ÿ

i

hi,k rεiεk ´ δiδks θiθk `
ÿ

j

hk,j rεkεj ´ δkδjs θkθj ´ 4εkθkµk

By symmetry of H,

“ 2

˜

ÿ

i

hi,k rεiεk ´ δiδks θiθk

¸

´ 4εkθkµk

“ 2
ÿ

i

hi,k rεiεk ´ δip´εkqs θiθk ´ 4εkθkµk

“ 2
ÿ

i

hi,k rεiεk ` δiεkqs θiθk ´ 4εkθkµk

“ 2εk
ÿ

i

hi,k rεi ` δis θiθk ´ 4εkθkµk

And εi ` δi “

$

’

&

’

%

2εi i ‰ k

0 i “ k

“ 4εkθk
ÿ

i‰k

hi,kθiεi ´ 4εkθkµk

We may add and subtract 4εkθkhk,kθkεk, obtaining

“ ´4θ2k ` 4εkθk
ÿ

i

hi,kθiεi ´ 4εkθkµk

Thus,

4θ2k ď 4εkθk
ÿ

i

hi,kθiεi ´ 4εkθkµk

θ2k ď εkθk

«

ÿ

i

hi,kθiεi ´ µk

ff

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i

hi,kθiεi ´ µk

ˇ

ˇ

ˇ

ˇ

ˇ

ě θk

Since we fixed an arbitrary k, the proof is complete. �

Note that in this case, the role of pλiq
n
1 as defined before is played by pθiεiq

n
1 . Remarkably,

given distances to each hyperplane pθiq
n
1 that we wish for, we can achieve the desired inequality by

choosing only the signs of the coefficients in the linear combination. Additionally, note that these
8



dual vectors are, in some sense “orthogonal” to the hyperplanes. This is most evident in Euclidean

space, defining a functional φypxq “ xy, xy, the dual vector to the functional will be y. y will be

orthogonal to the differences of the vectors in the affine space tx | φypxq ´m “ 0u . Thus, given a

functional φy, choosing a multiple of the point x “ y to be far away from the hyperplane defined

by φypxq will give you the “most bang for your buck” in getting away from the chosen hyperplane.

In proving Theorem 2, Ball proves the special case in which wi “
1
n for each i, as we may

simply increase the number of hyperplanes and tile the original planks of smaller planks which are

each of the same size. He proves an even stronger version of the theorem, stating that

ÿ

j

λ2j ď
1

n

This is stronger becuase by the Cauchy Schwartz inequality,,

ÿ

j

|λj | “ 1 “
A

~1, ~λ
E

ď }~1}}~λ} “
?
n

d

ÿ

i

λ2i

where we assume the first equality as we can always pad ~λ by scaling it up, and preserving

the inequalities.

1 ď
?
n

d

ÿ

i

λ2i

ÿ

i

λ2i ď 1

Ball then approaches the problem with Hilbert space methods to transform the problem into one

which may be solved by Lemma 4. The idea is that if the theorem holds for AU, where U is

orthogonal, then it holds for A. This is evident from the fact that Lemma 3 says that for matrix

B with 1 on the diagonal which is symmetric, there exists ~λ with }λ}1 ď 1 such that

”

B~λ´ ~m
ı

i
ě wi

If we were to assume B “ AU for U orthogonal, then

”

AU~λ´ ~m
ı

i
ě wi

But then we would let

~λ1 “ Uλ

9



obtaining

”

B~λ1 ´ ~m
ı

i
ě wi

where letting wi “
1
n , we have equality in 1 and 2 norms, so that }λ1}2 “ }λ}2 “ }λ}1 “ 1,

thus proving the proposition.

However, this is the point where we find issues with the symmetry–despite the existence of

U such that AU is symmetric (this is obvious from the polar decomposition) there does not, in

general, exist U so that the diagonal elements of AU are all the same.

Thus, isometry is not enough–we must extend the transformation to isometry combined with

a diagonal transformation,

Lemma 5. Let A be an n ˆ n matrix of reals, each of whose rows are non-null. Then there is a

sequence pθiq
n
1 of positive reals and an orthogonal matrix U so that

H “ phi,jq “
´

θi pAUqi,j

¯

is positive and has 1’s on the diagonal.

In other words, there exists a positive definite diagonal matrix Dθ and an orthogonal matrix U

such that DθAU is positive and has ones on the diagonal. In order to prove this fact, we introduce

the nuclear norm } ¨ }C1 of a matrix, defined as

}A}C1 “ tr
´?

A˚A
¯

We require the following facts:1

}B}C1 “ max
 

trpBUq | UTU “ I
(

}BC}C1 ď

b

trpBTBqtrpCTCq “ }B}F }C}F

Before proving this, we require a couple more lemmas.

1See [10] for proof
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Lemma 6. If H “ phi,jq is a positive matrix with non-zero diagonal entries and U is orthogonal,

then
ÿ

i

pHUq2ii
hii

ď
ÿ

i

hii

Proof. For each i, let γi “
pHUq2ii
hii

and let D be the diagonal matrix with γi on the diagonals. Let

T “
?
HTH. We have that

ÿ

i

pHUq2ii
hii

“
ÿ

i

γi pHUqii

“ tr pDHUq ď sup
OTO“I

tr pDHOq ď }DH}C1

by the first property above

“ }DTT }C1 “ } pDT qT }C1

ď }DT }F }T }F

“
a

tr pDTT ˚Dq tr pT ˚T q

“
a

trpDHDqtrpHq

And because H is positive,

“ trpHq1{2 ptrpDHDqq1{2

“

«

ÿ

i

hii

ff1{2 « n
ÿ

i“1

γ2i hi,i

ff1{2

“

«

ÿ

i

hii

ff1{2 « n
ÿ

i“1

pHUq2ii
hii

ff1{2

So
ÿ

i

pHUq2ii
hii

ď

«

ÿ

i

hii

ff1{2 « n
ÿ

i“1

pHUq2ii
hii

ff1{2

Giving us that
«

n
ÿ

i“1

pHUq2ii
hii

ff1{2

ď

«

ÿ

i

hii

ff1{2

n
ÿ

i“1

pHUq2ii
hii

ď
ÿ

i

hii

�
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Lemma 7. If H “ phijq is a positive nˆ n matrix with nonzero diagonal entries, then

›

›

›

›

ˆ

1
?
hii
hi,j

˙›

›

›

›

C1

ď
?
n}H}

1{2
C1

Proof. Let D?h be the diagonal matrix with 1?
hii

on the diagonal. Then

›

›

›

›

ˆ

1
?
hii
hi,j

˙›

›

›

›

C1

“ }D?hH}C1

And by Property 1 above,

“ tr
`

D?hHU
˘

for some orthogonal matrix U.

“
ÿ

i

pHUqii?
hii

We now apply Cauchy-Schwartz,

ď
?
n

g

f

f

e

ÿ

i

pHUq2ii
hii

And by Lemma 5,

ď
?
n

d

ÿ

i

hii

“
?
n}H}C1

because H was assumed to be positive. �

We now prove Lemma 5

Proof. (Lemma 5)

We wish to find pθiq
n
1 , and U orthogonal such that

´

θi pAUqi,j

¯

“ DθAU

where Dθ is the diagonal matrix with θi on the diagonal. Since A has no rows that are

uniformly 0, there is some constant c so that

}DθA}C1 ě cmax
i
θi

12



We apply the equivalence of norms in finite dimensions to note that there exists l such that

}DθA}C1 ě l}DθA}F

}DθA}
2
F “

n
ÿ

i“1

n
ÿ

j“1

A2
i,jθ

2
i

Let M “ mini maxj |Ai,j |. Then

}DθA}
2
F ě

n
ÿ

i“1

M2θ2i

In producing this inequality, we are essentially replacing the norm of each row with a lower

bound for its single largest component.

n
ÿ

i“1

M2θ2i ěM2 max
i
θ2i

so

}DθA}F ěM max
i
θi

thus proving the desired inequality, setting c “ lM .

We now prove that there exists a ~θ which minimizes }DθA}C1subject to
ś

i θi “ 1. Suppose

that maxi θi ě
1
c }A}C1 . Then }DθA}C1 ě }A}C1 . We therefore have that

inf
ś

θi“1
}DθA}C1 “ inf

ś

θi“1,}~θ}8ď
1
c
}A}C1

}DθA}C1

We can therefore constrain our maximization problem to a compact set, and since }DθA}C1

is continuous, the minimum must be attained. Choose ~θ which minimizes }DθA}C1subject to
ś

i θi “ 1.

Let H “
a

DθAATDθ given this ~θ. Since A is full rank, H is positive definite. Therefore H

has strictly positive diagonal entries. By polar decomposition, we may write

H “ DθAU

for some U . For each i, let

γi “
1
?
hii

˜

n
ź

j“1

a

hjj

¸1{n

13



Then
ś

γi “ 1.

ź

i

γi “
ź

i

¨

˝

1
?
hii

˜

n
ź

j“1

a

hjj

¸1{n
˛

‚

“

˜

n
ź

j“1

a

hjj

¸˜

ź

i

1
?
hii

¸

“ 1

Because pθiq
n
1 was chosen as a minimizer of }DθA}C1 , we have

}H}C1 ď } pγiθiai,jq }C1

“ } pγihi,jq }C1

We may factor out a constant
´

śn
j“1

a

hjj

¯1{n
,

“

˜

n
ź

j“1

a

hjj

¸1{n ›
›

›

›

ˆ

1
?
hii
hi,j

˙›

›

›

›

C1

By Lemma 6,

ď
?
n}H}

1{2
C1

˜

n
ź

j“1

a

hjj

¸1{n

So

}H}C1 ď
?
n}H}

1{2
C1

˜

n
ź

j“1

a

hjj

¸1{n

}H}
1{2
C1
ď
?
n

˜

n
ź

j“1

hjj

¸1{2n

}H}C1

n
ď

˜

n
ź

j“1

hjj

¸1{n

But H is positive, so }H}C1 “ trpHq.

ř

i hii
n

ď

˜

n
ź

j“1

hjj

¸1{n

ď

ř

i hii
n

where the second inequality follows from the AM-GM inequality.

�

We may finally prove Theorem 2.
14



Proof. Using Lemma 4, choose pθiq
n
1 and an orthogonal matrix U such that H “ DθAU “

´

θi pAUqi,j

¯

has 1 on the diagonal and is positive. By Lemma 3,

we may choose signs pεiq
n
1 such that for each i,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

hi,jεjθj ´ nθimi

ˇ

ˇ

ˇ

ˇ

ˇ

ě θi

This is allowed becase the pθiq
n
1 were first fixed, and the mi mentioned in lemma were arbitrary,

so we replace them with nθimi.

ˇ

ˇ

ˇ

ˇ

ˇ

θi
ÿ

j

θj rAU si,j εj ´ nθimi

ˇ

ˇ

ˇ

ˇ

ˇ

ě θi

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

θj rAU si,j εj ´ nmi

ˇ

ˇ

ˇ

ˇ

ˇ

ě 1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

θj rAU si,j εj

n
´mi

ˇ

ˇ

ˇ

ˇ

ˇ

ě
1

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–A

¨

˝U

´

~θ d ~ε
¯

n

˛

‚

fi

fl

i

´mi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě
1

n

So set ~λ “ pλiq
n
1 “ U

p~θd~εq
n so that

|rAλsi ´mi| ě
1

n
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

ai,jλj ´mi

ˇ

ˇ

ˇ

ˇ

ˇ

ě
1

n

We need only to show that
ř

j λ
2
j ď

1
n . U is orthogonal, so

ÿ

j

λ2j “
ÿ

j

»

–

´

~θ d ~ε
¯

n

fi

fl

2

j

“
1

n2

ÿ

j

θ2j

We need to show that
ř

j θ
2
j ď n. We know by definition that

´

θi pAUqi,j

¯

“ DθAU “ H

So

DθA “ HU˚

15



θiai,j “ pHU
˚qi,j

Assuming that A has 1 on the diagonals, aii “ 1.

θi “ pHU
˚qi,i

Now we take
n
ÿ

i“1

θ2i “
ÿ

i

pHU˚q2i,i

“
ÿ

i

pHU˚q2ii
hii

because all of the hii are 1. We apply lemma 5 to obtain that

ď
ÿ

i

hii “ n

Thus,

n
ÿ

i“1

θ2i ď n

�

3. Covering the cube except for one point

We explore some results of Alon and Füredi in related to covering all of the points of the unit

hypercube t0, 1un except for the origin, as well as some extensions.

Theorem 8 (Alon and Füredi). Suppose that the hyperplanes H1, ...,Hm Ă Rn avoid ~0, but cover

the other 2n ´ 1 vertices of the unit cube C “ t0, 1un. Then m ě n.

This theorem states that in order to cover the n dimensional hypercube with hyperplanes

without covering the origin, we require at least n hyperplanes.

Before proving this, we require a lemma.

Lemma 9. If Qp~xq P Z rx1, ..., xns is a multilinear polynomial with Qp~0q “ c ‰ 0, and Qp~xq “ 0

for x P t0, 1un z
!

~0
)

, then Qp~xq “ cpx1 ´ 1qpx2 ´ 1q ¨ ¨ ¨ pxn ´ 1q, which is degree n.

16



Proof. First, note that

cpx1 ´ 1qpx2 ´ 1q ¨ ¨ ¨ pxn ´ 1q “ c
ÿ

IĂt1,...,nu

p´1q|I| xI

where we define xI “
ś

iPI xi and xH “ 1. We write

Q p~xq “
ÿ

IĂt1,...,nu

cIxI

and prove that cI “ c p´1q|I|. We proceed by induction on |I|. We know that cH “ Qp~0q “ c.

Now suppose that cI “ p´1q|I| for all J Ă I where J ‰ I and |I| ě 1. Let ~eI P t0, 1u
n be the vector

with coordinates one for the indices contained in I, and 0 elsewhere. Since |I| ‰ 0, Qp~eIq “ 0. For

all J Ă I, we therefore have that
ś

iPJ p~eIqi “ 1. Thus,

Qp~eIq “
ÿ

JĂI

cJ “ cI `
ÿ

JĂI,J‰I

c p´1q|J |

there are
`

|I|
j

˘

subsets of size j of |I|, so

cI `
ÿ

JĂI,J‰I

c p´1q|J | “ cI ` c

¨

˝

ÿ

0ďjă|I|

ˆ

|I|

j

˙

p´1qj

˛

‚

“ cI ` c

¨

˝

ÿ

0ďjď|I|

ˆ

|I|

j

˙

p´1qj ´ p´1q|I|

˛

‚

“ cI ` c
´

p1´ 1q|I| ´ p´1q|I|
¯

“ cI ´ c p´1q|I|

so

0 “ cI ´ c p´1q|I|

giving the desired result, that Qp~xq “ cpx1 ´ 1qpx2 ´ 1q ¨ ¨ ¨ pxn ´ 1q. �

Proof. (Theorem 8) We define each hyperplane Hi with an equation x~ai, ~xy “ bi, where ~ai, ~x P Rn

and bi P R. Consider the polynomial

P p~xq “
m
ź

i“1

px~ai, ~xy ´ biq

17



It is clear that P p~xq “ 0 for all ~x P Cz~0, and P p~0q “
śm
i“1 bi ‰ 0. We also have that

degpP q “ m, which gives us another way of viewing this problem. We wish to lower bound the

degree of polynomials of this form which satisfy P p~xq “ 0 for all ~x P Cz~0, and P p~0q “
śm
i“1 bi ‰ 0.

Further, we may replace each instance of xdi with d ě 2 with xi, without changing the behavior

of the polynomial on C. Let Qp~xq be the polynomial obtained through this procedure. Note that

degpQq ď degpP q. Qp~xq is multilinear, Qp~0q “ c ‰ 0, and Qp~xq “ 0 for x P t0, 1un z~0. Thus,

applying the lemma above, we obtain that

m “ degpP q ě degpQq “ n

�

Remarkably, this theorem can be extended to the covering arbitrary rectangles except for a

single point using similar techniques.

Let V “ V ph1, ..., hnq be the set of lattice points py1, ..., ynq such that 0 ď yi ď hi. Let ~v P V

and define U “ V z~v. In a similar manner to the result above, U cannot be covered by fewer than
ř

hi hyperplanes while avoiding ~v.

Theorem 10 (Alon and Füredi). Suppose that the hyperplanes H1, H2, ...,Hm Ă Rn avoid ~v but

H1 Y ...YHm contains V ph1, ..., hnqz~v. Then m ě h1 ` ...` hn.

For ~p “ pp1, ..., pnq P V , we define the polynomial B~pp~xq P Z px1, ..., xnq to be the following:

B~pp~xq “

¨

˝

ź

0ďj1ďh1,j1‰p1

px1 ´ j1q

˛

‚

¨

˝

ź

0ďj2ďh2,j2‰p2

px2 ´ j2q

˛

‚¨ ¨ ¨

¨

˝

ź

0ďjnďhn,jn‰pn

pxn ´ jnq

˛

‚

For each ~p, degpB~pp~xqq “
ř

hi.

Lemma 11. The polynomials B~pp~xq for ~p P V for a basis for the subspace Z spanned by the

polynomials txa11 x
a2
2 ¨ ¨ ¨x

an
n : 0 ď ai ď hiu.

Proof. B~pp~xq P Z, and dimpZq “
ś

phi ` 1q so we need only to prove that the polynomials B~pp~xq

are linearly independent. Suppose that ~x “ ~p.

B~pp~pq “

¨

˝

ź

0ďj1ďh1,j1‰p1

pp1 ´ j1q

˛

‚

¨

˝

ź

0ďj2ďh2,j2‰p2

pp2 ´ j2q

˛

‚¨ ¨ ¨

¨

˝

ź

0ďjnďhn,jn‰pn

ppn ´ jnq

˛

‚

18



so since pi ‰ ji for each of the terms, B~pp~pq ‰ 0. However, if ~x1 “ px11, ..., x
1
nq ‰ ~p, then

B~pp~x
1q “

¨

˝

ź

0ďj1ďh1,j1‰p1

`

x11 ´ j1
˘

˛

‚

¨

˝

ź

0ďj2ďh2,j2‰p2

`

x12 ´ j2
˘

˛

‚¨ ¨ ¨

¨

˝

ź

0ďjnďhn,jn‰pn

`

x1n ´ jn
˘

˛

‚

Since x1i ‰ ~pi for some i, px1i ´ jiq “ 0 for some i, ji. Thus, evaluating these polynomials

only V , it is obvious that polynomials B~pp~xq are linearly independent. Intuitively, these form a

polynomial basis for interpolation. �

We now prove Theorem 10

Proof. (Theorem 10) Consider the polynomial

P p~xq “
m
ź

i“1

px~ai, ~xy ´ biq

and let Qp~xq P Z be the polynomial obtained by replacing each instance of xhi`1i with xhi`1i ´
´

ś

0ďjďhi
pxi ´ jq

¯

, which is degree at most hi, as the xhi`1i terms cancel. For any ~x P V , xi P

t0, 1, ..., hiu so
´

ś

0ďjďhi
pxi ´ jq

¯

“ 0. Thus, Qp~xq “ P p~xq for ~x P V and degpQq ď degpP q. We

therefore have that Qp~xq “ 0 for all ~x P U and Qp~vq ‰ 0. Writing

Qp~xq “
ÿ

~pPV

α~pB~pp~xq

and evaluating both sides for each ~x P V , it is clear that Qp~xq “ cB~pp~xq for some ~p and c P R.

Thus,
ÿ

hi “ degpQq ď degpP q “ m

�

4. Sets which are difficult to cover by parallel hyperplanes

We move to counting the number of parallel hyperplanes required to cover sets of lattice

points. Define SnT “ tx P Zn : }x}8 ď T u. For T “ 1, we construct such sets in every dimension

inductively and utilize techniques inspired by Alon and Füredi’s work to prove that these cannot

be covered in fewer than three parallel hyperplanes. Because our hyperplanes are parallel, they are

all defined by a single functional, and each hyperplane may be identified with the intercept bi in

the equation x~a, ~xy “ bi defining the hyperplane. Further, this provides a different geometric angle
19



from which we may view the problem. Given a vector ~a, the number of hyperplanes perpendicular

to ~a required to cover X is equal to the number of distinct orthogonal projections of points of X

onto ~a.

Such a set in dimension 2 is given by X2 “

$

&

%

»

–

0

0

fi

fl ,

»

–

0

´1

fi

fl ,

»

–

´1

1

fi

fl ,

»

–

1

1

fi

fl

,

.

-

. The construction

in general is relatively simple. We extend our specific example in two dimensions to arbitrary

dimensions inductively in a manner similar to the construction of simplexes in higher dimensions.

Given our set X2, we demonstrate the construction of X3 before proceeding to the general case.

First, we place each of the nonzero points of X2 into the intersection of the plane defined by the

equation xp0, 0, 1q, ~xy “ 1 as a subset of S3
1 , preserving the first two coordinates. This gives us the

points. Giving us the points

»

—

—

—

–

0

´1

1

fi

ffi

ffi

ffi

fl

,

»

—

—

—

–

´1

1

1

fi

ffi

ffi

ffi

fl

and

»

—

—

—

–

1

1

1

fi

ffi

ffi

ffi

fl

. We leave keep the zero vector, and simply

make it into the zero vector in three dimensions. We now have have to add one more point, which

we choose to be

»

—

—

—

–

0

0

´1

fi

ffi

ffi

ffi

fl

. This gives us that X3 “

$

’

’

’

&

’

’

’

%

»

—

—

—

–

0

0

0

fi

ffi

ffi

ffi

fl

,

»

—

—

—

–

0

0

´1

fi

ffi

ffi

ffi

fl

,

»

—

—

—

–

0

´1

1

fi

ffi

ffi

ffi

fl

,

»

—

—

—

–

´1

1

1

fi

ffi

ffi

ffi

fl

,

»

—

—

—

–

1

1

1

fi

ffi

ffi

ffi

fl

,

/

/

/

.

/

/

/

-

. In general,

given Xn, we construct Xn`1 in the same way. We append a 1 to the end of each of the nonzero

vectors, change the point ~0 P Rn to ~0 P Rn`1, and add the point ´en`1 to the set. Following

this construction, X4 “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

»

—

—

—

—

—

—

—

–

0

0

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

–

0

0

0

´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

–

0

0

´1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

–

0

´1

1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

–

´1

1

1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

–

1

1

1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

. Note that for dimension 1,

X1 “ S1
1 “ tr´1s , r0s , r1suWe now prove that these sets cannot be covered using fewer than two

parallel hyperplanes.

Theorem 12. Xn cannot be covered in 2 hyperplanes for any dimension n.

Proof. We index the n`1 nonzero vectors of Xn as ~x1, ..., ~xn`1 so that ~xi “ ´~en´i`1`
řn
k“n´i`2 ~ek

for i P t1, ..., nu and ~xn`1 “ ~1. Suppose that Xn can be covered using two parallel hyperplanes

H1, H2. We may, without loss of generality, represent them with the equations x~v, ~xy “ 0, x~v, ~xy “ 1.

We know that one of the intercepts will be 0 becuase ~0 P Xn. Thus, we define n ` 1 multivariate
20



polynomials Pn1 , ..., P
n
n`1 with the following:

Pni p~vq “ xv, ~xiy pxv, ~xiy ´ 1q “ xv, ~xiy
2
´ xv, ~xiy

for v “ pv1, ..., vnq.

It is evident that finding a pair of parallel hyperplanes which cover Xn is equivalent to finding

a nonzero system of polynomial equations Pni p~vq “ 0 for i “ 1, ..., n.

We proceed by induction. The case n “ 1 is trivial. Suppose n “ 2, so that x1 “

»

–

0

´1

fi

fl , x2 “

»

–

´1

1

fi

fl , x3 “

»

–

1

1

fi

fl. We obtain that

P 2
1 pv1, v2q “ v22 ´ v2 “ v2 pv2 ` 1q

P 2
2 pv1, v2q “ p´v1 ` v2q

2 ` v1 ´ v2

P 2
3 pv1, v2q “ pv1 ` v2q

2 ´ v1 ´ v2

Setting P1pv1, v2q “ 0, we have that v2 must be either 0 or ´1.

Suppose that v2 “ 0. Plugging this into the other two equations, we have

P 2
2 pv1, 0q “ v21 ` v1 “ v1pv1 ` 1q

P 2
3 pv1, 0q “ v21 ´ v1 “ v1pv1 ´ 1q

This implies that v1 “ 0, which means that v2 ‰ 0 in any nontrivial solution.

Suppose that v2 “ ´1. Then

P 2
2 pv1,´1q “ p´v1 ´ 1q2 ` v1 ` 1

“ v21 ` 1` 2v1 ` v1 ` 1 “ pv1 ` 2qpv1 ` 1q

P 2
3 pv1,´1q “ pv1 ´ 1q2 ´ v1 ` 1 “ v21 ´ 2v1 ` 1´ v1 ` 1
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“ v21 ´ 3v1 ` 2

“ pv1 ´ 2qpv1 ´ 1q

Thus, there is no solution to all three polynomial equations simultaneously. Now suppose that

the system of polynomials Pn´1i p~vq “ 0, i “ 1, ..., n has no nonzero solution. We prove that the

system of polynomials Pni p~vq “ 0, i “ 1, ..., n ` 1 also has no nonzero solution. First, we examine

Pn1 p~vq. P
n
1 p~vq “ vnpvn ` 1q which implies that either vn “ 0 or vn “ ´1.

For the first case, suppose that we fix vn “ 0. Then Pn1 p~vq “ 0 is solved, and examining the

remaining n equations,

Pni pv1, ..., vn´1, 0q “ xpv1, ..., vn´1q, pxi,1, ..., xi,n´1qy pxpv1, ..., vn´1q, pxi,1, ..., xi,n´1qy ´ 1q

Now notice that because

Xn “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

»

—

—

—

—

—

—

—

–

0
...

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

–

0
...

0

´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

–

0
...

´1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, ...,

»

—

—

—

—

—

—

—

–

´1

1
...

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

–

1

1
...

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

Taking each of the nonzero nonzero elements of Xn and deleting the last coordinate produces

Xn´1. Thus, solving Pni p~vq “ 0, i “ 1, ..., n ` 1 after fixing vn “ 0 is equivalent to solving

Pn´1i p~vq “ 0, i “ 1, ..., n which has no nonzero solution.

For the second case, suppose that we fix vn “ ´1. Then for i “ 2, ..., n,

Pni pv1, ..., vn´1,´1q “

C

pv1, ..., vn´1,´1q,´en´i`1 `
n
ÿ

n´i`2

ei

G˜C

pv1, ..., vn´1,´1q,´en´i`1 `
n
ÿ

n´i`2

ei

G

´ 1

¸

“

˜C

pv1, ..., vn´1q,´en´i`1 `
n´1
ÿ

n´i`2

ei

G

´ 1

¸˜C

pv1, ..., vn´1q,´en´i`1 `
n´1
ÿ

n´i`2

ei

G

´ 3

¸

where the ei representing standard basis vectors become one dimension smaller. This gives

us a system of n ´ 1 polynomials in n ´ 1 variables, as we would require Pni pv1, ..., vn´1,´1q “ 0

for i “ 2, ..., n. Now notice that
!

´en´i`1 `
řn´1
n´i`2 ei

)n

i“2
“ Xn´1z~0. What this means, is that

for any solution ṽ “ pv1, ..., vn´1q where Pni pv1, ..., vn´1,´1q “ 0 for i “ 2, ..., n, we will have
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either xṽ, ~xy “ 1 or xṽ, ~xy “ 3 for all ~x P Xn´1. Suppose that such a solution ṽ exists. Then ṽ

gives a pair of hyperplanes defined by the pair of equa tions xṽ, ~xy “ 1 and xṽ, ~xy “ 3 above which

together, cover Xn´1z~0. This implies that Xn´1z~0 is contained in the halfspace B “ t~x : xṽ, ~xy ą 0u.

Further, the convex hull conv
´

Xn´1z~0
¯

is contained in H. This, however, produces a contradiction

as conv
´

Xn´1z~0
¯

contains an open ball around the origin, and can therefore not lie on one side

of a hyperplane which passes through the origin. Thus, there is no solution ~v to the system of

polynomial equations Pni p~vq “ 0 for i “ 1, ..., n. By the induction hypothesis, Xn cannot be

covered in two parallel hyperplanes for any n. �

5. Applications to compressed sensing

Sets of vectors with the above property have applications in compressive sensing. In particular,

sets of k vectors in Rn which cannot be covered by fewer than k´n`1 parallel hyperplanes can be

used to construct certain types of sensing matrices for which are useful for sparse signal recovery.

An n ˆ d real matrix A is said to be a sensing matrix for `-sparse signals, 1 ď ` ď n, if, for every

nonzero vector ~x P Rd with no more than ` nonzero coordinates, A~x ‰ ~0. This is equivalent to

saying that every combination of ` columns of A are linearly independent. Such matrices A “ paijq

are extensively used in the area of compressive sensing, where the goal is to have |A| :“ max |aij |

small and d as large as possible with respect to n.

Indeed, given such a matrix A and two vectors ~x and ~y with no more than `{2 nonzero

coordinates each, then it is easy to see that A~x “ A~y if and only if ~x “ ~y. Integer nˆ d matrices

A with d ą n and all nonzero minors were recently studied in [4], [5], [6] in the context of integer

sparse recovery. In this situation, the advantage to using integer matrices and integer signals is

that if A~x ‰ ~0 then }A~x} ě 1, which allows for robust error correction. We provide a first example

of a construction of some sensing matrices.

Theorem 13. Let k ą n and ~x1, . . . , ~xk´1 P Rn be distinct nonzero vectors. Let

S “
!

~0, ~x1, . . . , ~xk´1

)

Ă Rn

and A be the nˆ pk ´ 1q matrix, whose columns are these vectors, i.e.

A “
´

~x1 . . . ~xk´1

¯

.
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If S cannot be covered by fewer than k´ n` 1 parallel hyperplanes, then A is a sensing matrix for

n-sparse signals.

Proof. Arguing towards a contradiction, suppose that some minor of A is zero. This means that the

corresponding n vectors are linearly dependent, without loss of generality assume it is ~x1, . . . , ~xn.

Hence they all lie in some subspace of dimension m ď n´ 1, call this subspace V . Naturally, ~0 also

lies in V , since V is a subspace. If all of the points ~xn`1, . . . , ~xk´1 also lie in some pn´1q-dimensional

subspace V 1 containing V , then ~x1, . . . , ~xk´1 all project to one point on the line orthogonal to V 1,

which is a contradiction. Hence assume that

spanRtV, ~xn`1, . . . , ~xk´1u “ Rn.

Then there exists some pn´ 1q ´m points among ~xn`1, . . . , ~xk´1 which do not lie in V . Let V 1 be

the pn ´ 1q-dimensional subspace spanned by V and these points. This means that V 1 contains a

total of

n` pn´ 1q ´m` 1 ě n` 1

points of the set S. Let L be the line through the origin orthogonal to V 1, then all of these points

project to one point on L. Since the number of remaining points in our collection is k´pn`1q, the

total number of distinct projections of points of S onto L is at most k ´ n. However, the number

of hyperplanes required to cover a set is equal to the minimum number (over the set of lines) of

distinct projections of the set onto a line, as lines define functionals, and therefore hyperplanes. This

produces a contradiction because S cannot be covered by fewer than k´n`1 parallel hyperplanes.

Thus, all minors of A must be nonzero. �

This is not a particularly strong result. Because there can be at most n` k` 1 points in a set

which cannot be covered by k ´ n hyperplanes, this does not produce particularly useful sensing

matrices. Rather than using the point sets themselves, we can increase the size of the matrices

by taking difference sets at the expense of decreasing the sparsity level `. For a set of k points

S “ t~x1, . . . , ~xku Ă Rn define a partition of S into two disjoint subsets

(1) Im “ t~xi1 , . . . , ~ximu, Jl “ t~xj1 , . . . , ~xjlu “ SzIm,
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so that Im X Jl “ H and S “ Im Y Jl, where m, l ě 1 are such that k “ m` l. For this partition,

define the corresponding set of pairwise difference vectors

DpIm, Jlq “ t~xi ´ ~xj : ~xi P Im, ~xj P Jlu ,

so |DpIm, Jlq| “ ml “ mpk ´mq. For a subset D Ď DpIm, Jlq define support of D to be the set of

all distinct vectors ~xi that appear in the differences in D. For instance, support of the difference

set

t~x1 ´ ~x2, ~x3 ´ ~x2, ~x1 ´ ~x4, ~x3 ´ ~x4u

is t~x1, ~x2, ~x3, ~x4u. Let us write cpDq for the cardinality of the support of D. Let us also write ApDq

for the matrix whose columns vectors are elements of the set D. We can now state our main result

of this section.

Theorem 14. Let S “ t~x1, . . . , ~xku Ă Rn be a collection of k ą n points, m, l ě 1 integers such

that k “ m` l, S “ Im \ Jl partition of S, and D Ď DpIm, Jlq. Let 1 ď ` ď n´ 1. The following

two statements are true:

(1) If S cannot be covered by fewer than k´ n` 1 parallel hyperplanes and for every subset D1

of ` vectors of D, cpD1q ą `, then ApDq is a sensing matrix for `-sparse vectors.

(2) If for every m ` l “ k and partition S “ Im \ Jl, ApDpIm, Jlqq is a sensing matrix for

n-sparse vectors, then S cannot be covered by fewer than k ´ n` 1 parallel hyperplanes.

Proof. First, suppose that at least k ´ n ` 1 parallel hyperplanes are required to cover S, and

for every subset D1 of ` ď n ´ 1 vectors from D, cpD1q ą `. To prove that ApDq is a sensing

matrix for `-sparse vectors, we simply need to establish that no ` vectors of D lie in the same

p`´ 1q-dimensional subspace of Rn. Suppose they do, say some ` vectors

(2) ~y1 “ ~xi1 ´ ~xj1 , . . . , ~y` “ ~xin´1 ´ ~xj`

are in the same p` ´ 1q-dimensional subspace V , where ~xi1 , . . . , ~xi` P Im and ~xj1 , . . . , ~xj` P Jl.

Assume that s ě 1 out of the ~xiu vectors are distinct and p ě 1 of the ~xju vectors are distinct: let

S1 be the set of these s` p distinct vectors. Without loss of generality assume that s ď p. Let U

be the pn ´ ` ` 1q-dimensional subspace of Rn orthogonal to V , then each pair ~xir , ~xjr lies in the

same parallel translate of V along U . So if, for instance, ~x1 ´ ~x2, ~x1 ´ ~x3 and ~x4 ´ ~x2 are in V ,
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then ~x1, ~x2, ~x3, ~x4 all must lie in the same parallel translate of V along U . Hence the number of

parallel translates of V along U needed to cover the set S1 is at most

t :“ s´ p`´ pq ě 1,

since for every subset D1 of ` ď n´ 1 vectors from D, cpD1q ą `, and so s` p ą `.

Let V1 be the parallel translate of V along U containing the pair ~xi1 , ~xj1 . Since k´n` 1 ě 2,

S cannot be covered completely by any single pn´ 1q-dimensional hyperplane containing V1. Since

dimension of V1 is ` ´ 1, there must exist a set Z Ă SzV1 consisting of n ´ ` points in general

position. Let H1 be an pn ´ 1q-dimensional hyperplane in Rn through Z and V1 and let L Ă U

be the line through the origin orthogonal to H1. Let us write Z “ Z1 \ Z2, where Z1 “ Z X S1:

here it is possible for Z1 or Z2 to be empty. Then H1 covers all the points of S1 in V1 plus at least

|Z1| more, and so H1 together with at most t´ |Z1| ´ 1 additional parallel translates of H1 along

L cover S1. Now at most k ´ ps` pq ´ |Z2| additional parallel translates of H1 along L will cover

the rest of S. Hence a total of at most

pt´ |Z1|q ` pk ´ ps` pq ´ |Z2|q “ t´ |Z| ` k ´ ps` pq

“ s´ p`´ pq ´ pn´ `q ` k ´ ps` pq “ k ´ n ă k ´ n` 1

parallel hyperplanes covers S. This is a contradiction, and hence ApDq is a sensing matrix for

`-sparse vectors.

In the opposite direction, suppose that every ApIm, Jlq is a sensing matrix for n-sparse vectors,

so no n vectors in the set DpIm, Jlq are linearly dependent. Suppose S can be covered by some

collection of t ď k ´ n parallel hyperplanes. Out of these hyperplanes, let H1, . . . ,Hs be those

that contain more than one point of S, then the remaining t´ s hyperplanes Hs`1, . . . ,Ht (if any)

contain just one point of S each, 1 ď s ď t. Then

ˇ

ˇ

ˇ

ˇ

ˇ

S X

˜

s
ď

i“1

Hi

¸ˇ

ˇ

ˇ

ˇ

ˇ

“ k ´ pt´ sq ě k ´ pk ´ n´ sq “ n` s.

For each 1 ď i ď s, let

S XHi “ t~xi,1, . . . , ~xi,jiu ,
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hence
řs
i“1 ji ě n ` s. Let It be the set consisting of all the vectors ~xi,1 for 1 ď i ď s, and all

the vectors from S XHj for s ` 1 ď j ď t. Let l “ k ´ t, and let Jl “ SzIt. Consider the set of

difference vectors

D1 “ t~xi,1 ´ ~xi,2, . . . , ~xi,1 ´ ~xi,ji : 1 ď i ď su Ď DpIt, Jlq.

Since all of the vectors ~xi,1, . . . , ~xi,ji , 1 ď i ď s lie in parallel hyperplanes, all the vectors of D1 lie

in the same pn´ 1q-dimensional subspace of Rn. The total number of these vectors is

|D1| “
s
ÿ

i“1

pji ´ 1q ě n` s´ s “ n,

hence they are linearly dependent. This is a contradiction, so S cannot be covered by any collection

of fewer than k ´ n` 1 parallel hyperplanes. �

While this theorem gives a construction of sensing matrices, it is still not at all clear as to

the potential size these can be. The question then becomes the following: given a set S which

cannot be covered by fewer than k ´ n ` 1 parallel hyperplanes, how large can the cardinality of

D Ă DpIm, J`q be, subject to the constraint that cpD1q ą ` for all subsets D1 of D which are size `.

The following corollary provides the answer.

Corollary 15. For all sufficiently large n, there exist nˆd integer sensing matrices A for `-sparse

vectors, 1 ď ` ď n´ 1, such that |A| “ 2 and

d ě

ˆ

n` 2

2

˙1` 2
3`´2

.

If ` ď plog nqε for any ε P p0, 1q, then d{nÑ8 as nÑ8, meaning that d is superlinear in n.

The problem is most naturally phrased in the setting of bipartite graphs. In particular, given

such a set D Ă DpIm, J`q, we may construct an associated bipartite graph ΓpDq with vertices

corresponding to cpDq, and two vertices connect to form an edge if their associated vectors appear

together as a difference vector in D. Returning to the problem at hand, we wish for all subsets

D1 of D with cardinality ` to have cpD1q ą `. This can occur if and only if there are no cycles of

length less than ` in ΓpDq. The construction of such graphs has been extensively studied by various

authors. See [11] for a survey of known results in this direction. In particular, Theorem 3 of [11]
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guarantees that for large enough k there exist such graphs k vertices and

(3) ě

ˆ

k

2

˙1` 2
3`´2

edges. An explicit deterministic construction of such bipartite graphs can be found in [8] and [9]

(also see [7]). We can now use this result to prove our corollary.

Proof. For sufficiently large n, let Sn be the set of n` 2 vectors with t0,˘1u coordinates obtained

in Section 4, hence Sn cannot be covered by pn` 2q ´ n` 1 “ 3 parallel hyperplanes. Let Γ be a

bipartite graph on the n` 2 vertices corresponding to the vectors of Sn with the number of edges

satisfying (3). Let D be the set of difference vectors corresponding to the edges of Γ, then for every

subset D1 of D consisting of ` vectors cpD1q ą `. Therefore by Theorem 14, ApDq is a sensing

matrix for `-sparse vectors, and we have |ApDq| “ 2. Furthermore, ApDq is an nˆd integer matrix

where

d ě

ˆ

n` 2

2

˙1` 2
3`´2

,

by (3). Notice that if ` ď plog nqε for any ε P p0, 1q, then d{n Ñ 8 as n Ñ 8, meaning that d is

greater than linear in n. �
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