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Abstract 

Tirandamycin is a small molecule natural product that has been isolated from various species 

of marine and terrestrial Streptomyces. The natural product has shown antibacterial activity 

against an array of Gram-positive and Gram-negative bacteria, showing promise as a 

pharmaceutical drug. Tirandamycin has 14 known derivatives, many of which have been 

created synthetically. Some of its derivatives are particularly potent against the high-risk 

bacteria vancomycin-resistant Enterococcus faecium, Staphylococcus aureus, Streptococcus 

agalactiae, Streptococcus pneumoniae and Escherichia coli. However, the antibacterial 

potency of these derivatives has not been tested systematically leading to the possibility of 

discovering more potent derivatives of the drug which could combat the rise of multi-drug 

resistant forms of these bacteria. Additionally, understanding tirandamycin’s structural basis 

of inhibition would allow for future manipulation of tirandamycin’s base structure to maximize 

antibacterial potency. While it is known that tirandamycin targets bacterial RNAp, there is still 

a need to determine where tirandamycin specifically binds to the enzyme, including the 

interactions between its amino acid residues and tirandamycin. A screening of the derivatives 

of tirandamycin against these high-risk bacteria is proposed to discover possibly potent but 

currently untested derivatives of tirandamycin. Additionally, x-ray crystallography of the 

tirandamycin-RNAp complex and site-directed mutagenesis of E. coli RNAp is proposed to 

determine the structural basis of inhibition by tirandamycin.  
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I. Introduction  

a. Overview of natural products  

The use of natural products produced by plants, animals, and microorganisms has been 

common throughout history, with some of the earliest known uses dating back to 1500 BCE 

Egypt.1 In the past hundred years, the science behind these natural products has developed, and 

they can now be understood in a biological and chemical context. This allows for their 

antibacterial or antifungal potency to be dramatically increased as well as their structural basis 

of inhibition to be uncovered. This information can be used to chemically manipulate their 

structure to better bind and inhibit a target resulting in more effective and less toxic medicines. 

Due to the wide range of organisms that produce these natural products, thousands have 

been categorized to date, all with unique structures that target different bacteria and fungi, and 

some even emerging as chemotherapeutic agents.2 The 3-acyltetramic acid family of natural 

products contain important microbial derived antibiotics, including tirandamycin A and B, 

tirandalydigin, streptolydigin, nocamycin, and Bu-2313 A (Figure 1).3  
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Figure 1. Structures of natural products in the tetramic acid family. The common structural 

features including the epoxide (pink), C-18 methyl (orange), ketone (blue), and pyrrolidine-

2,4-dione (green) groups are highlighted. 

 

The tetramic acid family of natural products are usually isolated from terrestrial and marine 

organisms, including bacteria, fungi, and sponges, and they exhibit antitumor, antibacterial, 

and antiviral activities.4 Each differs in the degree of oxidation of their bicyclic ketal ring 

system as well as the pyrrolidine-2,4-dione substituents (Figure 2). By comparing their 

structures and biological activities, a description of how these chemicals work from a 

microbiological stance is beginning to emerge. Possible routes for chemical modifications of 
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these products that can lead to novel, more potent, antibacterial and chemotherapeutic drugs 

with lower levels of cell toxicity are also being developed.5–8  

 

Figure 2. Pyrrolidine-2,4-dione and bicyclic ketal ring system structures of the tetramic 

acid family of natural products as seen on tirandamycin A. 

 

b. Tirandamycin as a target for pharmaceutical research  

Tirandamycin has been shown to be an antibacterial agent effective against an array of 

Gram-positive bacteria, including vancomycin-resistant enterococcus (VRE), and the Gram-

negative Escherichia coli (Table 1).9,10 Additionally, tirandamycin has been shown to have 

little to no cytotoxic activity in human cells.5,11 It is important to recognize that tirandamycin 

is not the most potent antibacterial in the tetramic acid family of natural products as 

streptolydigin is a better antibacterial agent against E. coli.10 However it offers promise for the 
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development of new medicines because the chemical synthesis of multiple derivatives of this 

compound has already been achieved.12–14 Therefore, to develop tirandamycin into a useful 

pharmaceutical drug, its potency must first be optimized. This can be done by uncovering the 

mechanism behind tirandamycins function as a generic anti-bacterial. 

 

 

Table 1. Minimum inhibitory concentration of tirandamycin derivatives against Bacillus, 

Escherichia, Enterococcus, Staphylococcus, and Streptococcus genus bacteria. Each derivative 

is represented by its letter, where Iso-B stands for isotirandamycin B.5,9,15–19  

 

Tirandamycin is a secondary metabolite that has been isolated from several species of 

marine and terrestrial Streptomyces and their mutant strains.20 As most products in the tetramic 

acid family, it features a bicyclic ketal moiety at the end of a conjugated 5 carbon chain.21 

There are currently 14 known tirandamycin derivatives existing both naturally and as 

genetically engineered intermediates (Figure 3).5,9,11,15,16,22 These derivatives all vary in their 

bicyclic ketone degree of oxidation, stereochemistry, and connectivity. Common structural 

  Minimum Inhibitory Concentration (μg/ml) 
Gram- 
Stain 

Bacteria A B C D K L Iso-B 

(-) Escherichia coli 10019  0.30215  39.5315   
(+) Bacillus halodurans  117      
(+) Bacillus thuringiensis  3216    12816  
(+) Bacillus subtilis 818 10017    >12816  
(+) Vancomycin-resistant 

Enterococcus faecium 
0.949 43.359 4.849 >3.619 79.0615   

(+) Staphylococcus areus 25018 >12816 4.8415  >158.1115 >12816  
(+) Multi-drug-resistant 

Staphylococcus aureus  
  9.6915  >158.1115   

(+) Streptococcus agalactiae 2.55 2.55     5.05 

(+) Streptococcus bovis 5019       
(+) Streptococcus faecalis <0.518       
(+) Streptococcus hemolyticus <0.518       
(+) Streptococcus pneumoniae <0.518       
(+) Streptococcus pyogenes 12.519       
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features include the tetramic acid, epoxide, ketone, and methyl groups, as well as a C-4 C-5 

trans conformation. 
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Figure 3. Structures of the 14 derivatives of tirandamycin with common structural features 

highlighted. The epoxide (pink), methyl (orange), ketone (blue), and pyrrolidine-2,4-dione 

(green) groups are highlighted. Additionally, the C-4 C-5 trans isomers are shown in red. The 

carbon numbering of tirandamycin is shown on structure A.  

 

Structure-activity relationships (SARs) are a key aspect of optimizing drug potency and 

represent the relationship between a compounds structure and its biological activity.23  SARs 

are particularly important to examine when comparing the potency of tirandamycin’s 

derivatives, as the different substituents on the bicyclic ketal ring of each derivative will likely 

have an effect on how potent they are. According to SARs, the most potent structures should 

have substituents or functional groups that are interacting with the target enzyme and are 

important for tirandamycins biological activity. Alternatively, some derivatives may have 

unnecessary substituents or functional groups that would have no effect on the biological 

activity of tirandamycin. This would be represented as two derivatives with equal potency 

towards a specific bacterium with only one having an extra substituent or functional group 

attached. By measuring the antibacterial potency of tirandamycin's derivatives, scientists have 

been able to uncover the importance of structure-activity relationships and come closer to 

finding the mechanism behind some of tirandamycin’s antibacterial properties.  

 

c. The antibacterial activity of tirandamycin 

Shortly after its discovery in 1971, tirandamycin A was tested for antibacterial activity 

against an array of Gram-positive bacteria of the Bacillus, Staphylococcus and Streptococcus 

genus.18 The natural product showed potent antibacterial activity towards B. subtilis, S. 
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faecalis, S. hemolyticus, and S. pneumoniae with minimum inhibitory concentrations (MICs) 

of 8 μg/ml, < 0.5 μg/ml, < 0.5 μg/ml, and < 0.5 μg/ml, respectively. Tirandamycin A and its 

many derivatives have since been tested for antibacterial activity against a wider range of 

Bacillus, Streptococcus, Staphylococcus, Enterococcus, and Escherichia bacteria. 

Tirandamycin is a known inhibitor of bacterial ribonucleic acid polymerase (RNAp), as 

shown in a study that tested tirandamycin A for inhibition of the RNAp of E. coli and the 

RNAp from rat liver nuclei.10 Bacterial RNAp is an enzyme responsible for RNA initiation, 

elongation and termination.24,25 The α, β, β’, and ω subunits make up the core enzyme. The σ 

factor is a separate protein that binds to the core RNAp to form the holo-enzyme and allows it 

to locate specific DNA promoter sequences within the double-stranded DNA (Figure 4). After 

RNAp binds to DNA, the DNA template must move through the enzyme for RNA 

transcriptions, a process referred to as translocation.26 During this process, the “F bridge helix” 

in the β’ subunit alternates between a straight and bent structure, causing a conformational 

change in the enzyme that lets each amino acid of the DNA template into the active center to 

be transcribed into the corresponding RNA amino acid.27 This process is vital for RNAp 

function. Whereas tirandamycin was able to effectively inhibit the chain initiation and 

elongation of bacterial RNAp, it had no effect on the function of animal polymerase. This 

provides evidence that tirandamycin could be safe for use on humans. Additionally, it shows 

tirandamycins likely bacterial target, and suggests that tirandamycins potency might vary for 

each species of bacteria due to differences in their RNAp amino acid sequence.  

Although the specific molecular interactions between bacterial RNAp and tirandamycin 

are still unknown, the suggested binding interactions of RNAp and the natural product 

streptolydigin have been studied. Both tirandamycin and streptolydigin have a bicyclic ketal 
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group at the end of an unsaturated 6 carbon chain and have been compared as structurally 

analogous to each other, making data collected from one natural product presumed to be 

applicable to the other.9  

The x-ray crystal structure of the streptolydigin-RNAp complex provides a picture of its 

general binding site on the enzyme. This technique was used to uncover streptolydigin as an 

allosteric inhibitor of Thermus thermophilus RNA polymerase, stabilizing the straight-bridge 

helix conformation and preventing the cycling into a bent-bridge helix conformation.4 The x-

ray crystal structure showed the natural product binding to an area on the β and β′ subunits of 

bacterial RNAp, interacting with the trigger loop region and bridge helix of the enzyme (Figure 

4). 

  

Figure 4. Structure of E. coli RNAp with five subunits (left) and potential tirandamycin 

binding site (right) pictured. The α subunit is shown in red, β subunit in pink, β' subunit in 

yellow, ω subunit in salmon, and the attached σ70 factor is shown in white. The proposed 

binding site of tirandamycin is shown in green with the amino acids that are presumed critical 

for streptolydigin binding labeled. 

 



 12 

In addition to this, the study did saturation mutagenesis and analysis of T. thermophilus to 

find amino acid substitutions that lead to streptolydigin-resistant RNAp. Substitution of small, 

hydrophobic amino acid residues 543 Ala and 544 Gly in the β subunit to larger, more 

hydrophilic residues Val and Arg caused RNAp streptolydigin resistance. This suggests that 

there are favorable hydrophobic interactions at C-4, C-5, C-15, and C-16. Additionally, the 

authors suggest that the amino acid substitution of residue 788 Leu to Val introduces a 

branched side chain that likely results in steric hinderance at C-18, C-10 and C-11 for 

streptolydigin binding. These interactions are likely to contribute to tirandamycins biological 

activity, as both compounds are structurally similar in these specific areas having methyl 

groups at C-4 and C-6 on their linear six carbon chain and an epoxide group at C-12 on their 

bicyclic ketal moiety. Because of the high degree of RNAp sequence conservation between 

bacteria, the T. thermophilus RNAp structure is considered an accurate model representative 

of the transcription apparatus in all bacteria.29 This allows the data collected with streptolydigin 

and T. thermophilus to be applicable to many different species of bacteria. The close 

relationship between the natural products streptolydigin and tirandamycin also suggests it is 

likely that tirandamycin binds to the same location on bacterial RNAp and uses the same 

structural basis of inhibition as streptolydigin. The results of other studies which have 

compared the antibacterial potency of different tirandamycin derivatives against other bacteria 

give further information about the structure-activity relationship presumably between 

tirandamycin and bacterial RNAp (Figure 5). 
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Figure 5. Annotated structure of tirandamycin with predicted structure-activity 

relationships shown. 

 

There are some discrepancies in the data collected on the potency of tirandamycins 

derivatives, likely due to the fact that they have been evaluated in many different experiments 

but never all together. This can provide mixed reviews on whether certain functional groups 

are important for tirandamycins biological function. It is important, however, to take all the 

data into account to understand all the current theories about the SARs of tirandamycin. 

Tirandamycins A and B were isolated and characterized from a marine-derived 

Streptomyces sp. along with intermediates C and D.9 Analysis of these metabolites occurrence 

in the biosynthetic pathway showed that tirandamycin C was the earliest intermediate, followed 

by tirandamycin D, A, and B. Due to the increasing level of oxidation on the bicyclic ketal 

rings with each succeeding derivative, the authors came to two conclusions. First, it is likely 
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that the epoxide group on carbon-11 and carbon-12 of tirandamycins bicyclic ketal rings is 

necessary for tirandamycin’s function. Second, both tirandamycin A and B are present as final 

products in which the only difference is the addition of a hydroxyl group on the carbon-18 

methyl. The authors suggest that this step may not be necessary for tirandamycin’s function, 

and therefore both derivatives are abundantly produced final products. This would suggest that 

it is the step of adding the epoxide group which is introduced after tirandamycin C in the 

biosynthetic pathway that gives these products their antibacterial properties.  

In addition, the paper looked at the activity of tirandamycin A through D against VRE, and 

the results agreed with the importance placed on the C-11 C-12 epoxide group. Tirandamycin 

A (MIC = 2.25 μM) was drastically more potent than tirandamycin B (MIC = 100 μM), C 

(MIC = 110 μM), and D (MIC > 9 μM). From the data it was inferred that the increased potency 

of tirandamycin A could be attributed to the C-10 ketone and C-11 C-12 epoxide.  The hydroxy 

group at C-18 on tirandamycin B was proposed to have an adverse effect on tirandamycin’s 

antibacterial activity, as its potency was similar to that of tirandamycin C.17 It can be 

extrapolated from this data that oxidation of carbons inside the bicyclic ketal ring system may 

help tirandamycin better inhibit VRE, while building oxygen containing substituents onto C-

18 could cause steric hindrance between tirandamycin and its binding site.  

In contrast to its poor anti-VRE activity, tirandamycin B was found to be about equally 

effective against Streptococcus agalactiae (MIC = 5.7 μg/mL) as tirandamycin A (MIC = 5.9 

μg/mL). In addition to these derivatives, a new tirandamycin analogue, isotirandamycin B, was 

tested against S. agalactiae and had a significantly weaker effect on the bacteria, with an MIC 

of 11.5 μg/mL. These results suggest that the presence of a hydroxy group at carbon-18 

increases rather than inhibits tirandamycins antibacterial potency against S. agalactiae. The 
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additional testing of isotirandamycin B suggests another interesting component of 

tirandamycins structure. Isotirandamycin B has a completely identical structure to 

tirandamycin B but has undergone E to Z isomerization of the carbon-4 carbon-5 double bond. 

This shows the trans conformation of tirandamycins carbon chain is likely necessary for 

tirandamycin’s function.5  

When tested against Bacillus thuringiensis, tirandamycin B has significantly more potent 

antibacterial activity compared to tirandamycin L, with MICs 32 μg/mL and 128 μg/mL, 

resepectively.16 Derivative B and L are structurally identical compounds with two exceptions, 

tirandamycin L does not have the epoxide group connecting C-11 and C-12 or the hydroxyl 

group on C-18 that B has. This suggests that, similarly to S. agalactiae, the oxidative 

modification of the bicyclic ketone group on tirandamycin is important for its antibacterial 

activity against B. thuringiensis. 

Tirandamycin K, the first linear tirandamycin derivative, was isolated along with 

tirandamycin C. Both derivatives were tested for antibacterial activity against Escherichia coli, 

VRE, Staphyloccus aureus, and multidrug resistant S. aureus. In all cases, tirandamycin C 

showed significantly more potent antibacterial activity than tirandamycin K, which had no 

effect on S. aureus at up to 400 μM. Therefore, this study concluded that the bicyclic ketal 

rings are likely necessary for antibacterial function.15 

As bacteria continue to evolve and mutate, the need for new antibacterial drugs with 

different modes of action is of constant importance. The emergence of multi-drug resistant 

bacteria including VRE, S. agalactiae, group A and B Streptococcus, S. aureus, and E. coli 

have global health implications and these issues must be addressed by constantly searching for 

novel antibacterial chemicals that can combat this phenomenon.30–33 In addition to this, 
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penicillin-resistant and multi-drug resistant S. pneumoniae has become a growing issue as one 

of the leading causes of pneumonia and meningitis.34,35 It is important to capitalize on the 

discovery of tirandamycin, whose many derivatives offer another way to combat these bacteria 

while they are evolving to be immune to current medicines, which are slowly becoming less 

and less potent.36 Aim 1 will address this need by conducting a larger screening of the current 

known tirandamycin derivatives A-L against the listed bacteria. 

Additionally, the bacteria Escherichia coli seems to be a particularly good target for further 

research regarding the possible pharmaceutical implications of tirandamycin. E. coli is 

responsible for a wide range of infections including urinary tract infections and pneumonia.37,38 

In intensive care units, ventilator-associated pneumonia has a mortality rate of around 13% 

with higher rates for surgical patients.39 Escherichia coli has been shown to be one of the most 

common causes of ventilator-assisted pneumonia, second only to Pseudomonas aeruginosa.40 

With the emergence of ampicillin, cefotaxime, and multi-drug resistant strains of E. coli, the 

World Health Organization named Enterobacteriaceae, including E. coli, critical priority 

pathogens.41–43 While many of the compounds in the tetramic acid family of natural products 

have antibacterial properties against E. coli, only the mechanism of streptolydigin has been 

studied.10,19,28 Due to the structural similarities between streptolydigin and tirandamycin, it is 

likely that these two natural products use the same mechanism of action.9 However, further 

data are needed to confirm this relationship. Discovery of tirandamycin’s interaction with E. 

coli RNAp would create a further understanding of how these natural products inhibit bacterial 

RNAp and provide the information needed for the rational design of more potent antibiotics 

based on tirandamycin’s structure. Aim 2 will further the understanding of this interaction by 

using x-ray crystallography of E. coli RNAp interacting with tirandamycin to create an image 
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of where tirandamycin interacts with E. coli on bacterial RNAp and showing what amino acids 

may be present at that binding site. 

Aim 3 proposes making single amino acid substitutions at the binding site of tirandamycin 

determined in aim 2 using site-directed mutagenesis on E. coli RNAp to determine the specific 

amino acid interactions that contribute to tirandamycins SARs. Amino acid substitutions that 

cause E. coli RNAp resistance to tirandamycin would suggest there are interactions happening 

between tirandamycin and the amino acid that are crucial for tirandamycins biological activity. 

By finding these critical amino acid residues, the structure of tirandamycin could be 

manipulated to form more favorable interactions between bacterial RNAp and the natural 

product, allowing for the creation of more potent forms of tirandamycin.  
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II. Research Proposal 

a. Aim 1: Screening of tirandamycins A-L against VRE, group A and B S. agalactiae, S. 

aureus, S. pneumoniae and E. coli. 

Tirandamycins A, B, C, and K have been the main focus of research regarding the bacteria 

E. coli, VRE, S. agalactiae, and S. aureus; however, these derivatives have mainly been tested 

individually and not in comparison to one another. In addition, tirandamycins E through L have 

rarely been tested for any kind of antibacterial activity at all. To move forward in the 

development of novel chemicals to combat the drug resistant bacteria VRE, group A and B S. 

agalactiae, S. aureus, S. pneumoniae and E. coli, all tirandamycin derivatives should be 

compared on the basis of their antibacterial activity against these pathogens and their structure 

to accurately deduce how to optimize their potency. These specific bacteria have been chosen 

because tirandamycin has already been shown to be a potent antibacterial of Streptococcus, 

Staphylococcus, Enterococcus, and Enterobacteriaceae. Additionally, vancomycin-resistant 

Enterococcus faecium, Staphylococcus aureus, Streptococcus pneumoniae, and Escherichia 

coli have been labeled as "global priority pathogens" by the World Health Organization, and 

Group A and B S. agalactiae have been listed as a "concerning threat" by the CDC due to their 

growing resistance to erythromycin and clindamycin.43–46  

Aim 1 will determine the most potent structure of existing tirandamycin derivatives using 

drug screening of tirandamycins A through L against VRE, group A and B S. agalactiae, S. 

aureus, S. pneumoniae, and E. coli. Vancomycin-resistant enterococcus would be spread on 

m-Enterococcus Agar in 96-well plates and spotted with 100 μl serial dilutions of the 

derivatives of tirandamycin listed above, including isotirandamycin B in dimethyl sulfoxide 

(DMSO). Dilutions will start at 200 μg/ml, going down by a concentration of 10 μg/ml until 
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the minimum inhibitory concentration (MIC) of each derivative is reached (Figure 6).42–45 

MICs would be calculated by finding the smallest concentration of tirandamycin that still has 

a clear zone of inhibition. This process would be repeated for S. agalactiae, S. pneumoniae, 

and S. aureus on Blood Agar, and E. coli on Nutrient Agar.9 All bacteria would be incubated 

for 24 hours at 35 °C  to facilitate bacteria growth.49,51–54  

 
Figure 6. Serial dilutions shown in μg/ml of tirandamycin to 20% DMSO solution. 

 

DMSO would be an optimal solvent to use, as it has been successfully used as a solvent in 

studies with Streptococcus pneumoniae and Staphylococcus aureus previously and has been 

tested against Escherichia coli, showing no inhibition of the bacteria when using up to 20% 

DMSO by volume to solid medium agar.55–57 Additionally DMSO is known to be a strong 

organic solvent which can dissolve both hydrophobic and hydrophilic compounds making it 
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ideal for the derivatives of tirandamycin, a compound with hydrophilic bicyclic moiety and 

tetramic acid structure and a hydrophobic carbon chain.58 While DMSO has been used as a 

solvent for the Gram-negative E. coli and three of the five selected Gram-positive bacteria, the 

toxicity effects of various organic solvents has been shown to vary across Gram-positive 

bacteria based on their specific species making the effect of DMSO on group A and B S. 

agalactia, and VRE unknown.59 Due to this variation, DMSO could have an inhibitory effect 

on  these Gram-positive bacteria. Therefore, the agar plates would also be spotted with 100 μl 

of 20% DMSO as a negative control to ensure the solvent is not contributing to inhibition of 

growth. If DMSO at 20% concentration by volume is shown to inhibit growth of the bacteria, 

the serial dilutions should be repeated using an alternative solvent such as methanol which has 

also been shown to have low levels of toxicity against various Gram-positive bacteria and can 

dissolve organic materials.56 The concentration of DMSO and methanol to water can also be 

increased in the case of low tirandamycin solubility or decreased due to bacterial inhibition.  

The previously studied tetramic acid streptolydigin would also be spotted on agar plates of 

S. aureus and E. coli using the same serial dilutions and solvent concentrations, as a positive 

control. This would allow the effect of experimental conditions such as the chosen solvent or 

solvent concentration on the antibacterial potency of streptolydigin and therefore tirandamycin 

to be evaluated. Streptolydigin would be a good positive control as it has been previously tested 

for antibacterial activity against S. aureus and E. coli.19 Tirandalydigin, another tetramic acid 

analogue, would be used as a positive control for VRE because it's MIC for vancomycin-

resistant Enterococcus faecalis is also known.19 Besides tirandamycin, there are no products 

in the tetramic acid family that have been tested against S. pneumoniae and S. agalactiae. 

Therefore ceftriaxone, a known antibacterial agent for both, would be used as a positive control 
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for these bacteria.60,61 The solvent type and concentration would be the same as used for the 

tirandamycin derivatives across all positive controls.  

The inhibitory effects of tirandamycin would be measured using the MICs of each 

derivative for the 7 bacteria tested, providing a total of 91 MIC values. Due to potential 

differences in the RNAp amino acid sequences of each individual bacteria, it is likely that the 

most potent tirandamycin derivative will not be the same for all 7 bacteria. Organizing the 

derivatives of tirandamycin in order of potency for each individual bacterium would make it 

possible to analyze the affect certain functional groups and substituents have on tirandamycin 

potency. Because each derivative would be tested using the same experimental conditions, this 

data would provide a far clearer and more accurate picture of the structure-activity 

relationships of tirandamycin than the fragmented data currently available. Specifically, a 

comparison of tirandamycins A and H with the tirandamycin derivatives D and L could provide 

information as to whether the C-11 C-12 epoxide group is necessary for tirandamycins 

biological activity. A comparison of tirandamycin A and isotirandamycin B would also show 

how a trans to cis conformation change on the C-4 C-5 double bond affects tirandamycin 

potency. As previously mentioned, the hydroxyl group on C-18 of tirandamycin B has been 

predicted to have an adverse effect on tirandamycins antibacterial activity against vancomycin-

resistant Enterococcus due to steric hindrance. This proposal could be tested by comparing the 

minimum inhibitory concentrations of tirandamycin A, B, and J. If added functional groups at 

C-18 cause steric hindrance between tirandamycin and bacterial RNAp, then derivatives A, B, 

and J should exhibit decreasing potency with functional groups of increasing size.  
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b. Aim 2: X-ray crystallography of tirandamycin in complex with E. coli RNA polymerase 

Knowing the location of tirandamycin's binding site on bacterial RNAp is necessary to 

increase tirandamycin’s potency, as it can identify key interactions between the functional 

groups of the antibiotic and the amino acid residues of the enzyme. Structural studies be done 

using x-ray crystallography of a E. coli RNAp in complex with tirandamycin. In order to 

determine where the most favorable interactions take place between tirandamycin and RNAp, 

the tirandamycin derivative that had the lowest MIC for E. coli RNAp in aim 1 should be used. 

X-ray crystallography would be ideal for E. coli RNAp because crystallization of the enzyme 

has been successfully achieved using the E. coli  σ70 holoenzyme.62  This not only proves that 

the crystallization of E. coli RNAp is possible but removes the need for a "crystal screen" as 

the most effective choice of precipitant, buffer, protein concentration, temperature, and 

crystallization technique are all known.63–67  

While the x-ray crystal structure of the E. coli RNAp-tirandamycin complex has not yet 

been determined, an E. coli RNAp-benzoxazinorifamycin complex and T. thermophilus 

RNAp-streptolydigin complex has been crystallized.28,68,69 From looking at the binding site of 

streptolydigin on T. thermophilus it can be assumed that tirandamycin binds at the same 

location between the β and β' subunits of E. coli RNAp.28 Both studies regarding  

benzoxazinorifamycin and streptolydigin used the same technique to form the enzyme-

compound complex crystal structures however, it is possible that small differences between 

the compounds or enzymes previously used could cause issues to arise when using the same 

procedure for E. coli and tirandamycin. Specifically, benzoxazinorifamycin binds to a different 

area on the β subunit of E. coli RNAp than where tirandamycin is presumed to bind.69 While 

there is evidence that tirandamycin acts as an allosteric inhibitor of bacterial RNAp and forces 
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a conformational change in the enzyme, benzoxazinorifamycin is not an allosteric inhibitor 

and instead blocks the active site of RNAp.70 Additionally, T. thermophilus and E. coli share 

many conserved residues; however, there are some differences between the two enzymes that 

could affect the ability for the RNAp-tirandamycin complexes to form.28 To account for this, 

suggested changes to the procedure for RNAp-tirandamycin complex crystallization are given. 

Aim 2 will locate the tirandamycin binding site on E. coli RNAp using x-ray 

crystallography of both the bacterial RNAp alone and tirandamycin interacting with bacterial 

RNAp. As described in previous studies, E. coli RNAp core and σ70 holoenzyme would be 

prepared and purified by creating a polycistronic plasmid, pGEMABC, for expressing the rpoB 

and rpoC genes responsible for encoding the β and β′ subunits.64 The core RNAp subunits 

would be transformed with pGEMABC and pACYCDuet-1_Ec_rpoZ. Column 

chromatography would be used for purification of E. coli RNAp after adding excess σ70 to core 

RNAp. The RNAp crystals would be obtained using hanging drop vapor diffusion. A 50/50 

mixture of protein solution and crystallization solution would be incubated at 22 °C over the 

reservoir.69  

For crystallization of E. coli RNAp in complex with tirandamycin, RNAp crystals would 

be soaked in crystallization solution containing 20 mM MES, 13 mM magnesium formate, 2 

mM spermine, 2 mM DTT, 5% PEG400, 10% MPD, and 0.1 mM of tirandamycin overnight 

at 22 °C and flash frozen by liquid nitrogen. This procedure has been used previously for the 

enzyme-crystal structures using rifamycin and streptolydigin. The two procedures used the 

same concentration of drug (0.1 mM) but varied in the period of time which the crystals were 

soaked. The T. thermophilus crystal was soaked in streptolydigin for only 15 minutes while 

the E. coli crystal was soaked benzoxazinorifamycin overnight. Previous studies have shown 
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that if the desired compound is not binding to the crystallized enzyme, increasing the period 

of time which crystallized enzymes are soaked in the desired compound as well as increasing 

the concentration of the compound in solution can help the complex crystals form.71 Therefore, 

if the procedure mentioned above does not result in crystals with tirandamycin bound to E. coli 

RNAp, E. coli RNAp holoenzyme should be soaked in tirandamycin using higher 

concentrations of the compound for longer periods of time. As a negative control, E. coli RNAp 

crystals should also be soaked in a crystallization solution without the added tirandamycin to 

ensure the solution does not cause any conformational change of E. coli RNAp on its own. 

The crystal structures of E. coli RNAp and the E. coli RNAp-tirandamycin complex will 

be compared first to observe any conformational change induced by tirandamycin. A straight-

bridge helix conformation would be expected for the RNAp-tirandamycin complex, as was 

seen in the T. thermophilus RNAp-streptolydigin complex. The crystal structure will also show 

the location of tirandamycin’s binding site, allowing for the visualization of all amino acids in 

contact with the structure of tirandamycin. Interacting hydrogen, oxygen, and nitrogen atoms 

between tirandamycin and the amino acid residues of E. coli RNAp would be examined for 

bond length, as an estimated 1.5-2.5 Å between a hydrogen atom and a nitrogen or oxygen 

atom would indicate possible hydrogen bonding.72,73 Hydrophobic interactions and possible 

sources of steric hindrance could also be studied using the crystal structure. This information 

would provide a basis for the structure-activity relationships of tirandamycin. 

 

c. Aim 3: Site-directed mutagenesis of E. coli RNAp 

Site-directed mutagenesis is a valuable tool that can be used to determine structure-function 

relationships between enzymes and inhibitors.74 This can be readily done to make mutants of 



 25 

E. coli RNAp because the primary DNA sequence encoding each individual subunit of the wild 

type enzyme, which is required for site-directed mutagenesis, is already known.75 Once the 

binding site for tirandamycin on E. coli RNAp is confirmed, site-directed mutagenesis can be 

used to verify the amino acids that are crucial to tirandamycins binding affinity and its function 

as an antibacterial. On the enzyme’s five subunits, it is likely tirandamycin would bind on the 

β and β' subunits, interacting with the trigger-loop region and bridge helix.28 By comparing the 

amino acids of T. thermophilus RNAp that streptolydigin binds to with the corresponding 

amino acid residues in E. coli RNAp, it is possible to predict what type of interactions 

tirandamycin has with E. coli RNAp (Figure 7). The effect each amino acid mutation has on 

tirandamycins antibacterial activity will be evaluated by testing the MIC of tirandamycin for 

each E. coli mutant RNAp, as described below. 

 
Figure 7. Streptolydigin-thermophilus crystal structure, with critical amino acids around 

streptolydigins bicyclic ketal ring and C-4 C-6 methyl groups labeled (green). Streptolydigin 

is shown in pink, interacting with the β (blue) and β’ (orange) subunits of T. thermophilus.  
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Based on the known crystallography data, it is likely that amino acid residues 543 Ala, 544 

Gly, and 545 Phe on the β subunit of E. coli RNAp have hydrophobic interactions with the C-

4 through C-6 carbon chain and methyl groups on tirandamycin. To test this assumption, Asn 

should be substituted for residue 545 Phe, introducing a relatively large polar amino acid in 

the place of the wild type hydrophobic benzyl group at this position. Additionally, the much 

smaller hydrophobic amino acid Ala should be substituted at this position. If this substitution 

causes an increase in tirandamycin potency it could be possible that steric hindrance with the 

C-4 and C-6 methyl groups interferes with tirandamycin’s ability to bind to bacterial RNAp, 

and removing one or more of these groups would result in a more potent form of the drug. Two 

mutations should also be made for both 543 Ala and 544 Gly to test for hydrophobic 

interactions and steric hindrance at this position by substituting each with the larger amino acid 

Leu and the polar amino acid Ser. 

The conserved β' subunit residues 784 Asp, 787 Leu, and 788 Leu on T. thermophilus 

RNAp were also shown to be important for streptolydigin’s binding affinity and should be 

examined for possible interactions between E. coli RNAp and tirandamycin. Specifically, 

substitution of Leu 788 to Val caused streptolydigin resistance in the bacterial RNAp, most 

likely due to steric hindrance at the β carbon. It is important to note that this residue is near the 

epoxide group on streptolydigin which is attached solely to C-12, while on tirandamycin this 

epoxide group is attached to both C-11 and C-12. It is possible that this attachment to both 

carbons changes the positioning of the epoxide resulting in decreased steric hindrance between 

tirandamycin and amino acid residue Leu 788. This mutation should therefore be done when 

testing E. coli to see if it leads to tirandamycin resistance. If hydrophobic interactions between 
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the 788 Leu and C-12 and C-18 are important for tirandamycins binding affinity, substituting 

Ala at this position should decrease tirandamycin potency.   

The backbone of residues 784 and 787 are thought to interact with the C-12 epoxide group 

as well as C-11 and C-10 on streptolydigins bicyclic ketal moiety. It is possible that hydrogen 

bonding between the peptide backbone at this position and the oxygen groups on tirandamycin 

may be a crucial part of tirandamycins structural basis for inhibition, as increased oxygenation 

of this region of tirandamycin has previously shown to cause an increase in potency. Single 

amino acid mutations of each of these residues to Pro would change the structure of this 

backbone and could potentially remove the possibility of hydrogen bonding and lead to 

tirandamycin resistance.  

Using this information, new and improved tirandamycin analogues could be created by 

examining which functional groups are interacting with these amino acids and how the 

structure could be manipulated to create more favorable interactions between the wild type 

enzyme and tirandamycin analog. The amino acid substitutions of tirandamycin resistant E. 

coli RNAp mutants would correspond to specific residues that effect tirandamycins ability to 

bind or inhibit the RNAp, further explaining tirandamycins structural basis for binding.  

It is important to consider the effect which these single amino acid mutations would have 

on the conformation and enzymatic activity of E. coli RNAp in the absence of tirandamycin 

when evaluating the results of site-directed mutagenesis. It is possible that certain single amino 

acid residue changes affect the conformation of E. coli RNAp enough to cause the enzyme to 

lose its function in the absence of tirandamycin. In one study, a mutation which caused a single 

amino acid substitution of the β subunit on E. coli RNAp blocked E. coli cell growth at 42 °C, 

the temperature at which E. coli RNAp must be heated to for transformation to occur.76 
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Because there is evidence that tirandamycin binds to the β subunit of E. coli RNAp, it is likely 

that the β subunit would be targeted in site-directed mutagenesis. Therefore, a control 

experiment to ensure enzymatic activity after each single amino acid substitution would be 

needed. Additionally, a mutation in the enzyme could allosterically block the binding site of 

tirandamycin.77 Crystallization and x-ray crystallography of each tirandamycin-resistant E. 

coli RNAp enzyme should be evaluated for conformational changes that might block the 

tirandamycin binding site. Additionally, it is possible that by artificially packing the enzyme 

in a crystal structure, its natural conformation is altered. These control experiments are further 

described in the procedure below. 

Aim 3 would use site-directed mutagenesis to locate the amino acid residues that are crucial 

for tirandamycin binding affinity to E. coli RNAp. The appropriate oligonucleotide primers 

would be ordered for the amino acid substitutions described above. Site-directed mutagenesis 

would be performed using standard procedures.78 To control for enzymatic function, each E. 

coli mutant would be spread in 96-well plates on Nutrient agar and spotted with 100 μl serial 

dilutions starting with a 200 μg/ml concentration of the tirandamycin-DMSO solution 

described in aim 1. Furthermore, 100 μl of 20% DMSO by volume would also be spotted as a 

control. Any E. coli mutants that cannot grow in the 20% DMSO solution would be assumed 

to have a mutation that renders the enzyme inactive. The procedure explained in aim 2 would 

be used to recrystallize each tirandamycin-RNAp complex for the E. coli mutants that become 

tirandamycin-resistant to ensure allosteric changes in the enzyme are not the cause of any 

change in the antibacterial activity of tirandamycin. By including these control experiments, 

the mutations that cause tirandamycin resistance can be assumed to contribute to necessary 

interactions for bacterial inhibition between the drug and RNAp amino acid residues.                   
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III. Significance 

As an RNAp inhibitor, tirandamycin has an advantage over currently used antibacterials. 

Rifamycin’s are currently the only class of RNAp inhibitors that have been approved for 

clinical use.79 Rifamycin-resistant strains of S. aureus, S. pneumoniae, and E. coli have also 

begun to evolve.80–84 This leaves relatively few competitors for antibacterials that act as RNAp 

inhibitors. Additionally, because bacterial RNAp is an essential enzyme and highly conserved, 

it is likely that antibacterial agents targeting this region would be potent against a wide variety 

of bacteria.85 Bacterial RNAp are also vastly different from eukaryotic RNAp, so drugs that 

target this enzyme have no effect on human RNAp, making this enzyme a key antibacterial 

target.86 Tirandamycin also has shown little to no cell toxicity in human cells, making it a 

promising option for further pharmaceutical research.5,11 

Tirandamycin has a complex structure, like many natural other products, and many of its 

derivatives have already been obtained by chemical synthesis.12–14 Comparatively, structure-

based drug design commonly used in pharmaceutical research often lacks the ability to create 

drugs that are as effective antibacterials as those produced through thousands of years of 

evolution.87 It is therefore advantageous to utilize the naturally produced antibiotic 

tirandamycin by uncovering its mode of action and making synthetic improvements upon the 

compound to create the optimal molecule.  

As bacteria continue to mutate and grow resistant to previously used antibacterial 

compounds the need for a novel drug is always of great importance. Currently, the bacteria 

vancomycin-resistant Enterococcus faecium, group A and B S. agalactiae, S. aureus, S. 

pneumoniae and E. coli are all considered high-risk bacteria because they have continued to 

evolve and become resistant to many of the commonly used antibacterials. While tirandamycin 
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has shown antibacterial activity against all of these bacteria, many of its derivatives have not 

yet been tested for antibacterial activity. This leaves a large gap in the knowledge of the impact 

the natural product could have as a novel antibacterial drug. By exploring the varying 

antibacterial activity of its derivatives against an array of high-risk bacteria, the full potential 

of this promising antibacterial could be uncovered and lead to finding more potent naturally 

occurring forms of the drug. The drug screening proposed in aim 1 would provide this 

information.  

Understanding the mechanism of action of tirandamycin would allow for the elucidation 

of the structure-function relationship of tirandamycin and its many derivatives. Having this 

information could lead to improving on the structure of tirandamycin to become a more potent 

antibacterial. E. coli is a great target for this research as the need for a new, more potent 

antibacterial against this bacterium is critical due to the sudden rise in multidrug resistant E. 

coli. Aim 2 and 3 would allow for a deeper understanding of how tirandamycin and the other 

related natural products in the tetramic acid family function. Assuming tirandamycin is an 

allosteric inhibitor similar to streptolydigin, this could include increasing tirandamycins 

binding affinity to the β and β' subunits of E. coli RNAp. Due to the increased risk associated 

with E. coli, VRE, group A and B S. agalactiae, S. aureus, and S. pneumoniae and the high 

potential of tirandamycin as a pharmaceutical drug, this research is a necessary next step for 

antibacterial exploration. 
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