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Abstract 

 

The predictive mind theory proposes that brains work in a way that makes predictions about 

future stimuli to process information efficiently and accurately. Bayesian brain theory suggests 

that the brain utilizes Bayesian probability models to make predictions, while the free-energy 

minimization hypothesis proposes that these predictions are made to minimize energy or 

uncertainty, ensuring accurate perceptions. Vertechi et al. (2020) explored animal participants’ 

utilization of stimulus-bound strategy versus inference-based strategy to solve a Markov decision 

process with a 2-state environment, one of which is always active. These sites have a certain 

probability of switching to a different site and the inverse probability of staying in the same site 

for the next guess or iteration. This setup served as the basis for my experiment, where I 

employed three types of model-free artificial neural networks in the 2-state MDP environment: 

Deep Q-learning, Proximal Policy Optimization, and Recurrent PPO with long-short term 

memory architecture. Each agent was tested in three environments with varying probabilities of 

active site switching and reward allocation. 

The data showed that all but one ANN in the medium environment failed to learn with an 

accuracy above the expected rate limited to 1-back memory. In the medium and difficult 

environments, the DQN was the best performer, followed closely by the RPPO. Across past 

studies, the DQN was outperformed by the PPO agents, which is inconsistent with our findings. 

However, our findings are consistent with Vertechi et al.’s (2020) prediction that a model-free 

and stimulus-bound agent would get worse at learning the environment depending on the 

frequency at which the rewards were given. These findings also show that animals must have at 

least a mixture of model-free and model-based processing involved when problem solving and 

doing other cognitive tasks.  
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Bayesian inference in reinforcement learning neural networks in Markov 

decision processes? 
 

1. INTRODUCTION 

 

Example: One rainy day in east LA county, I ran into a crawfish on my way to my apartment. I 

was offput and confused. At first glance, it looks like a crayfish, but it would make more sense, 

given my environment, that it is a strange type of scorpion. Upon further investigation and to my 

surprise, it was indeed a crayfish.  

 I was faced with a situation that did not match my internal representation of the world; I 

did not factor in the possibility of seeing a live water creature outside my apartment in a desert 

climate, probably because I have never seen anything like this before. This situation was also 

deeply surprising to me because I had not lived in an environment with scorpions for very long, 

so I also didn’t have a trustful idea of what a scorpion experience would be like.  

 The predictive mind theory suggests that the brain makes top-down predictions about 

current and future stimuli based on some model that correlates real world stimuli to the 

experiences of them. These top-down predictions allow us to respond to stimuli quickly and to 

draw closer attention to unexpected, important information from the environment. This also 

allows us to process a large amount of information with limited resources: neurons, neural 

connections, energy, and time to name a few.   

 For these predictions to be accurate, they need to be made by appropriate models. One 

promising type of model would be a statistical one. In physics, a group of particles through a 

period of time, depending on the conditions of the environment (pressure, number of particles, 

etc.), “behave” in a Bayesian way. This means that without outside forces, particles structure 

themselves naturally in a way that follows a normal distribution of probable states; there is a 

particular state that minimizes the free energy of a system, and therefore is the state that is most 
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probable in the set conditions. However, there are many other states that also relatively minimize 

free energy, but not as much, and therefore it would be less likely to find these states randomly.  

 If brains had a Bayesian model for prediction, they would need to be able to establish 

statistical conditions of the environment and of experiences of the environment. By doing so, 

they would be able to know what action would most likely lead to finding a food source, or what 

action would most likely boost their mood. However, it is difficult to determine if this model, or 

any model, is being utilized to any extent by the brain.  

 There is evidence that suggests that the brain is scanning for new information before the 

information is present, which would support the claim that the brain makes predictions in some 

way before bottom-up processing starts. There is also evidence that shows that animals make 

inferences (predictions) in novel environments in order to maximize reward. Despite these 

findings, it is still unclear how bottom-up and top-down processing interact to form memory, 

knowledge, and experiences consistent with what exists in the world.  

 The purpose of my study is to better understand to what extent agents perform at a 

Bayesian performance level. The first section will focus on a literature review of both the 

predictive mind theories and research, as well as the background for the artificial neural 

networks that act as the agents in the experiment. The second section will describe the procedure 

and materials of the experiment where we compared the performance of artificial neural network 

(ANN) agents, measured by their average correct accuracy rate, to the optimal performance of a 

1-back memory Bayesian agent. To conclude, the calculation of the optimal performance ranges 

will be discussed along with the agents’ performances.  
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While this study doesn’t provide evidence for Bayesian inference in model-free neural 

networks, it does show support for the idea that animal brains utilize both model-based processes 

along with model-free processes to perform their complex and novel tasks.   
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2. LITERATURE REVIEW 

 

2.1 The Predictive Mind 

The traditional view of the brain is that it is a passive blob of tissue and neural circuits that 

awaits stimulus to trigger an action potential, and ultimately a perceptual experience. This is a 

natural view to instinctually believe when looking at the mechanical systems by which we gather 

information about the world external to our sack of cells. The most typical demonstration is 

sight; photons hit the retina, which are reflected through a lens and then hit receptive cells on the 

back of the eye. These cells send signals that are carried down the optic nerve, resulting in the 

excitation of neurons in the occipital lobe, primarily the primary and secondary visual cortices. 

Once this process is completed, the view claims, visual experience occurs. And this explanation 

purportedly applies to all modes of perception, as well as cognition in general and even to 

agency (Hohwy 2013, 258). Once presented with stimuli, the brain decides how to handle the 

new information. This is known as the stimulus-bound strategy, where the agent is limited to 

make actions based on this presently available information (Wilson et al. 2014). 

However, some cognitive issues arise when you take this view. How is the brain able to 

processes so much detail at once? How do dreams and imagination come about? And how do we 

have detailed representations of external objects? For example, we are able to convert the 3-D 

world through our 2-D visual system into a 3-D picture that is representational of the world; and 

we would be able to do this without our other modes of perception. In response, Helmholtz 

introduced the idea of ‘unconscious inferences’, which explained how the 2-D initial perception 

is transformed into a mental object that is 3-D, and how the representation could be imagined 

further as a different color or shape (Patton 2023).  

Unconscious inferences occur for all perceptual experiences, and perhaps even many 

other cognitive tasks, including metacognition. However, the brain does not seem to get 
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overwhelmed by the conflicting data and inferences, and also seems to be able to weigh the value 

of the perceptual information to determine which one is better to “listen” to (Yon and Frith 2021, 

1). This process is often referred to as an inference-based strategy of navigating an unknown 

environment (Wilson et al, 2014). In this model, the brain has the capabilities to somehow 

combine both bottom-up stimuli with top-down inferences, which has led people to research the 

role of the Orbitofrontal Cortex and the mechanisms used in inference making (Wilson et al. 

2014, Vertechi et al. 2020). 

It is hypothesized that the brain, or a region of the brain, follows the rules of Bayesian 

probability to make inferences, known as Bayesian inferences. These inferences influence the 

brain’s selection of information that is more reliable, or what results in the minimization of 

uncertainty. Based on the Bayesian brain theory, hypotheses are made based on the inference 

that will minimize uncertainty, which suggests that perception is a process starting with top-

down processing– which does the hypothesis calculating and selecting– and is then met with 

bottom-up data from the stimulus and combines the two processes to create a perception (Yon 

and Frith 2021, 2). The process of formulating and choosing a hypothesis is referred to as 

predictive processing which is a key signature of active inference; the example of the light 

patterns hitting the retina would be passive inference, in comparison (Smith et al, 2021). By this 

process, top-down feedback (predictions), or information from previous experiences, meet the 

signal from external stimuli to form an accurate (and sometimes inaccurate) representation of the 

world. One concern with the Bayesian brain theory is that to truly achieve minimum uncertainty, 

the brain would have to have access to unlimited resources, which is not possible. However, it 

does suggest that predictive processing could be, or include, an approximation of the Bayesian 

brain.  
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 There have been a number of approaches to understanding how the brain would be able 

to do this through the notion of rationality, which claims that people act in a way “[that 

maximizes] their expected utility, reason based on the laws of logic, and handle uncertainty 

according to probability theory” (Lieder and Griffiths 2020, 2). However, it has been proven that 

most people act in a way that deviates from these rules, which led to the development of the 

‘resource-rational analysis’ (Lieder and Griffiths 2020, 4). Resource-rational analysis accounts 

for cognitive constraints and limited time to analyze based on resource availability, such as 

energy, neurons, and memory. Therefore, it is argued that animals must be able to limit the 

information processed and stored in order to feasibly make a rational analysis. From Merleau-

Ponty’s idea that perception is always directed towards something, in addition to the resource-

rationality analysis that states that resources are limited, it is reasonable to believe that our brain 

sorts through or keeps a running average of stimuli information most important or applicable for 

survival (De Ridder et al. 2014, 5).  

If one buys into the notion of resource rationality, then it is accepted that there are a 

limited number of fibers and pulses per second for a neural pathway, which puts a limit on the 

application of Bayes’ theorem. So, the next step is to understand how the vast amount of 

information that humans are confronted with is managed by the brain given its limited resources; 

how is a neuron or neural pathway able to minimize redundancy in order to minimize resource 

expenditure, but also relay a sensory message without losing its information (Barlow 1961, 223)? 

A way to understand maximizing efficiency while maintaining information is through the idea of 

minimizing energy expenditure. The idea of free-energy minimization also came from Helmholtz 

in the realm of physics but was applied to this predictive mind framework by Karl Friston 

(Friston et al. 2007).  
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 Friston claims that each neuron has the ability to process information, and all these 

neurons, or nodes, are interconnected such that the information that they relay affects how 

connected nodes respond to the information. The effect that one node has on another is often 

referred to as its weights. By the free-energy minimization theory, there is a state for that neuron 

to use the least amount of energy or do the least amount of action (Friston et al. 2012, 2). 

Another way that free-energy minimization is talked about in relation to the brain is by surprise, 

or the measure of improbability based on the Bayesian model (Friston et al. 2012, 1). 

Furthermore, because of the web of connections between all neurons, there is a state for which 

the entire system uses the least amount of energy needed to effectively process information. And, 

to maintain this type of equilibrium, the weights between nodes must constantly be updated as 

the predicting system learns how to better minimize free energy when processing information. 

This is often modeled by a Markov Model, which depicts the states as circles and arrows 

between the circles with valued weights that show the probability of the neighboring neuron 

being activated in the next state (Visser et al. 2000, 5).  

Figure 1  

Markov Model 

 

 

 Markov models can also depict a probability distribution of states in an environment, or a 

probability model of an environment. For example, in Figure 1, the ‘environment’ has two 
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possible active states that have different probabilities for staying in the same state in the next 

output, or for switching to a different state. This is useful in applications for understanding when 

and how an individual might be navigating a task using a sort of Bayesian influence, often 

referred to as a Markov Decision Process (MDP). MDPs are used to model decision making in 

stochastic, discrete, and sequential environments (Littman, 2001). By calculating an optimal 

accuracy rate, given a certain amount of memory, an individual’s performance can be compared 

to the optimal rate given Bayesian probabilities. Additionally, if an individual were to excel in a 

task beyond the optimal rate, it would suggest that it is implementing a form of prediction that is 

optimally efficient in resource dependent environments.   

2.2 Implementation 

When learning something new, it is essential that the agent have a way of knowing when 

they are right or wrong, often referred to as feedback. Feedback can be given in two forms: 

through rewarding correct behavior or through error signaling when it is incorrect behavior.  

An example that demonstrates how feedback is a constant necessity for completing any 

task is someone catching a ball (Clark 2023, 81). The brain is taking in data about where the 

initial location of the ball is, the size of the ball, and how far away you initially are from the ball. 

However, we don’t idly sit back and see where the ball could go. We have learned from 

watching people throw balls that the direction that they’re facing and the direction their arms 

move can be used to narrow down the possible places that the ball could end up. Additionally, 

we consider who the person is that is throwing the ball; do they play a sport related to ball-

throwing, and do they have a strong arm? All these factors are being processed pre-ball throw by 

the brain so that it is able to lessen the uncertainty of where the ball will end up. 
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Now, humans also don’t sit idly by once the ball is thrown and assume it is going to go 

exactly where they initially predicted it would. The predictor must also be updated as new 

information is processed and stored so that the predictor maintains minimized uncertainty. One is 

constantly reevaluating where the ball is in space and is calculating how they need to move their 

body in order to catch it. Finally, once the ball has reached them, they reflect on whether they 

were successful at catching the ball, and what they could have done differently to make their 

next encounter with this experience smoother, or more predictable. And, as one experiences 

more balls thrown in various ways, their predictive abilities will improve, thus improving their 

ability to catch thrown balls.  

In this scenario, feedback is mostly error signals updating the predictor on where the ball 

is located in space and how it is moving; at first you predict it will be at one point in space, but 

then the ball’s velocity changes and the next position that you predicted it would be at is false. 

Thus, in order to actually catch the ball, your predictor would need to take new stimuli 

information into account when predicting how to catch the ball. As further evidence for this 

updating process, when there is a mismatch between the prediction and reality, brain activity 

increases, resulting in structural changes in the neural system (Wessel 2017, 3). The weights 

within the prediction machine are recalculated based on the error. That is to also say that weights 

strengthen with the repetition of positive interactions between top-down and bottom-up data or 

signals. 

 This process is referred to as error processing. In order to form a predictive model, one 

must monitor one’s performance in order to correct their model for the next prediction given. In 

predictive mind work, there are currently two theories for error processing: maladaptive and 

adaptive error processing (Wessel 2017, 3). Maladaptive error processing poses the idea that 
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errors momentarily impair cognitive processing, resulting in increased rates of error on trials 

post-initial error. By this theory, it is understood that errors are infrequent and unexpected, which 

results in an orienting response where “a cascade of autonomic and central nervous system 

activity occurs” (Wessel 2017, 3). However, an opposite effect occurs when errors become more 

frequent in a trial, suggesting that this orienting response occurs when a response’s validity 

matches what is expected; even if it is more likely for a response to be incorrect, having a correct 

response would trigger delayed responses in following trials. This suggests that it is an implicit 

process where the individual is not in control of the evaluation of the response’s accuracy.  

 On the other hand, adaptive post-error processing, proposed by R. J. Laming (1968), 

suggests that individuals begin sampling information before imperative stimuli from the task are 

even presented, consistent with predictive processing (Wessel 2017, 2). This is supported by an 

experiment done by King et al. (2010), who found that BOLD activity in the early sensory region 

significantly increased after errors compared to accurate responses. A result of this research was 

that there was post-error slowing following an incorrect response, which was suggested by the 

authors to be explained by motor-system inhibition and thus is an explicit process where the 

individual is conscious of the error analysis.  

While it is evident that error-processing plays a role in the learning process, it is also 

evident that rewarded behavior aids in the learning of an agent, commonly understood via the 

ways in which the mesolimbic dopamine pathway is involved in learning. Additionally, the 

famous example of Pavlov’s dogs where Pavlov showed that organisms can be conditioned to 

associate a signal with a behavior (Berridge 2000, 264) is an example of reward learning. 

Reward learning is also utilized in reinforcement learning (RL) for training ANNs. Therefore, 

depending on which form of feedback is implemented, an agent with an internal Bayesian model 
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of their environment would utilize this feedback to model the probabilities of states of the 

environment. 

We now have predictive processing as a theoretical framework that is supported by 

computational processing and studies done on neural activity (Barlow 1961, Friston 2006, 

Wessel 2017, Lieder and Griffiths 2020, Yon and Frith 2021), and it is established that the brain 

possibly approximates predictions by a Bayesian model. However, it is still a question whether 

there is evidence that prediction is occurring. Rao and Ballard (1999) searched for evidence by 

noticing patterns in research on monkeys, where there were visual neurons that responded 

optimally to line segments of a particular length and that they had an interesting property, called 

endstopping (or end-inhibition). It was found that most neural responses in the classical receptive 

field (RF) were suppressed when the stimuli in the peripheral areas (or extra-classical RF) 

matched the stimuli in the classical RF, whether it be orientation, velocity, or direction of 

motion. By suppressing stimuli that are unnecessary or that are being double-counted, free-

energy is minimized. Additionally, it would limit the amount of prediction-stimuli matching that 

has to occur. This finding also implies a hierarchical predictive strategy for encoding natural 

images (p. 79).  

 To demonstrate the hierarchical structure of this specific visual perception, Rao and 

Ballard carried out a study based on the principle of Kalman filtering, which used linear models 

to give the computer the ability to make predictions of what information to fill in when provided 

a new image. Imagining each retinal cell input as a pixel, it is understood that closely connected 

pixels have correlating intensities and therefore the most-center image or pixel can often be 

predicted by surrounding values of other pixels. The information is given to the computer via 

basis vectors, which allow the computer to make all possible images from those vectors. Then, in 
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the trial, the computer was given images that it was not exposed to in the training. The results 

showed that the computer was much more accurate when the trial image more closely resembled 

training images, and accuracy decreased as the similarities decreased (Rao and Ballard 1999, 81).  

Furthermore, it was found that when the computer didn’t predict the image accurately, it 

removed feedback from the trained images to the trial images, caused by endstopped neurons, so 

that it was able to continue to respond to the trial image as it gathered more information about 

the length of the bar in the image (p. 82). These extra-classical effects “are interpreted as error-

detecting neurons that signal the difference between an input and its prediction from a higher 

visual area” (p. 84). This suggests that as predictive errors occur, there is an increased reliance 

and emphasis on stimuli information as top-down processes gather enough information to predict 

more accurately what matches reality.  

This transition of strategies can also be described as a transition from a model-based 

strategy where the individual had an internal representation of the environment and its 

conditions, to a model-free strategy where the agent is only making decisions based on the 

present stimuli and information. Model-based learning is useful when there is an accurate model 

of the environment’s condition. However, when an agent is not succeeding based on that model, 

a model-free strategy allows an individual to put greater emphasis on the value of the most recent 

or present information until they are able to succeed in the environment again. Humans are 

believed to use both methods of learning in parallel, which aids in their ability to apply 

previously learned information to new tasks, as well as to learn new rules of an environment 

quickly (Haith and Krakauer (2013), Doody et al (2022)).  

One may raise the puzzle of why the brain wouldn’t seek a protected and sealed place 

with no new information in order to minimize surprise and energy expenditure. Friston’s 
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response to “The Dark Room Problem” is that the brain is structured in a way to expect new 

stimuli– it searches for more information to process, and thus seeks learning (Friston et al. 2012, 

2). Because of this, when the brain receives no new stimulus, its predictions are majorly 

incorrect, and it will want to seek an environment that is more like its predictive model, such as a 

space with trees, blue skies, and the smell of grass as to minimize its future action. There is 

evidence that the brain is predicting the state of retinal ganglion cells, and specifically as it 

relates to motion (Palmer et al. 2015, 6911), which suggests that being in a space with little to no 

movement would invoke surprise in an individual, thus resulting in a heightened predictive 

uncertainty situation.  

It is valuable to establish a deeper understanding of the role prediction plays in average 

learning, and appreciation for why humans learn instead of isolate. Nagai (2019) notes that 

neonates do not have the inherent ability to control their body, but with more experience and 

learning they are able to produce accurate and purposeful actions. Additionally, the idea of 

dynamical change, where “new behaviors are thought to emerge as a result of many 

decentralized and local interactions between infants and their environment” suggests that infants 

and children learn when the new information is closely related, but not identical, to previous 

information they know (Nagai 2019, 1). This suggests that learning occurs in the space where the 

child’s predictor is able to make predictions based on previous experiences, but also experiences 

a prediction error that allows for the predictor to be updated and better calibrated. The predictor 

has also been modeled on random generator ANNs that make quite horrible predictions at first, 

but improve as they continue to make more predictions and get feedback on their accuracy 

(Clark 2023, 28).  
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Finally, much of the research focuses on understanding the distinction between implicit 

knowledge versus explicit knowledge in the context of forming predictions and responding to the 

environment. Explicit knowledge is that of which we are aware of and can consciously think of 

and draw from. For example, completing an exam for a class relies heavily on explicit 

knowledge of the topic on the exam, specific formulae, or definitions. Implicit knowledge is that 

which is ingrained in us– we don’t necessarily know that we know it. For example, walking and 

riding a bike are activities that we are able to do without thinking about it– without intentionally 

trying to remember the exact steps necessary to accomplish the goal.  

Therefore, scientists are studying whether prediction is heavily dependent on humans 

effortfully remembering the previous stimulus and consciously (to some extent) calculating 

which one is more likely to appear next, or whether it is more dependent on unconscious 

processes that have an algorithm that implements these previous experiences (Visser et al 

2007,1502). One way to study implicitly versus explicitly learned information is to present 

participants with a set of information and ask them to reproduce that information using their own 

symbols (Reber 1967).  

However, instead of depending on participants reciting what they had learned, Nissen and 

Bullemer (1987) asked participants to predict what stimulus was next in the sequence given the 

knowledge they acquired from the previous part of the sequence. This type of task is a generative 

task, which can be helpful for analyzing the encoding and recall of information learned. 

However, one limitation with generative tasks is dealing with feedback. In order to evaluate 

explicit sequence knowledge, the generation task requires feedback. However, feedback can 

provide extra time for learning to occur during the task, which can skew the measure of 

knowledge learned during the RT phase. Additionally, feedback can interfere with subjects’ 
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memory when trying to predict imminent stimuli (Visser et al. 2007, 1503). Despite these 

limitations and the importance of noting the role of them in this research, feedback is a crucial 

component of learning and important for tracking an individual’s progress.  

2.3 The Neural Network  

In order to better understand how an agent might implicitly apply Bayesian inference to 

accomplish a task, it would be beneficial to track the learning process of the agent as a MDP in a 

new environment. If an agent learns how to most likely accomplish a task or best understand its 

new environment, the learning process of the agent during this process can be compared to an 

optimal model of Bayesian prediction probabilities to see if the agent seems to be performing at a 

similar level after learning.  

Vertechi et al. (2020) created an environment to test mice and human subjects’ inferences 

where the reward was located at one of two locations, and the location had uncertainty associated 

with it to reflect “non-sensory uncertainty” (p.173). In the environment, the door that had the 

reward would only give the reward a certain percentage of the time, leading the subject to having 

to decide whether it was worth staying at the same door or if they should switch doors. The 

reward also had a set probability of being released by the active door. Researchers in this study 

found that early on “the number of consecutive failures was positively correlated with the 

propensity to leave” and that “subjects were sensitive to quantitative changes in the statistics of 

the foraging site” (p. 173), which was evidence for stimulus-bound strategy. However, with time, 

they saw a transition in both mice and humans from a stimulus-bound strategy to an inference-

based strategy where the amount of feedback didn’t affect their performance.   

Their research showed that both humans and mice use inference-based foraging to maximize 

reward and success in an environment. However, one key finding that these researchers found 
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was that humans nearly instantly completed the foraging task using inference-based processing 

while it took the mice several sessions to eventually get to the same point (p. 174).  Similar 

studies have been run on recurrent neural networks (RNNs) who have been able to succeed in 

Markov designed environments by following Markov Decision processes (MDP). RNNs are a 

category of neural networks that use sequential data to learn how to perform a task in an 

environment by assuming that there is a relationship between input and output, or that “its output 

is dependent on prior elements within the sequence” (IBM, What are Recurrent Networks?).  

Another specific architecture for neural networks is a Deep Q-Network (DQN). DQNs 

introduce hidden layers to the feedforward learning process between the input and output layers. 

DQNs try to create a formula that consists of hyperparameters that enable the agent to calculate a 

Q-score for the next possible moves, also known as Q-learning (Mnih et al, 2013). 

Hyperparameters consist of the learning rate, exploration rate, and the discount factor. Q-scores, 

or Q values, are evaluated to determine which output, or action, will most likely return the 

greatest reward (Equation 1).  

Equation 1 

Q-learning equation that is updated to estimate accurate Q-values.  

 

 
 

Both the DQN and RNN agents use model-free reinforcement learning and can do so in two 

ways: through action-based learning of maximizing the function value between two points, Q-

learning, and through a policy optimization method, such as Proximal Policy Optimization 

(PPO). PPO is a gradient descent method, or algorithm, that optimizes its policy by performing 

multiple gradient descent to update the network. The goal of this method is to minimize the 
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change in policy necessary between iterations, which maintains more stability in the agent. The 

most common policy-optimizer, implemented in control systems and power grids, is an Actor-

Critic (Khandelwal 2023). In this architecture, the critic is responsible for evaluating the actor’s 

optimization of the policy. 

When the PPO algorithm is implemented in a RNN, long-short term memory (LSTM) is 

implemented. LSTM keeps a running average of the reward possible for each possible output. By 

implementing this form of memory, the network is able to learn quickly in simple environments 

by using an efficient memory system. LSTM has been commonly implemented in Markov 

Decision processes to navigate image selection and maze navigation (Wang et al. 2018).  

Additionally, both DQNs and RNNs can use a Multilayer Perceptron (MLP) architecture, a 

form of reinforcement learning that implements an actor-critic algorithm. MLP architecture 

consist in an input, which is data representing the state, and a certain number of hidden layers of 

nodes that represent neurons. Based on the connections between the input and these layers, an 

output layer collects Q-scores that determine the agent’s output, or action. A key feature of MLP 

is that it is able to differentiate data that is nonlinear, which is helpful in situations where two 

factors in the environment are being adjusted and there is a nonlinear relationship between how 

they affect the conditions of the environment. MLP’s do this via forward propagation where data 

is propagated forward from the input to output, where the error is then calculated and minimized 

during the learning process. By calculating the minimum error, the DQN is then able to calculate 

Q-values and choose its actions from that (Banoula, 2023).  

2.4 Prediction and learning in neural networks: My next steps and hypotheses 

By creating an environment with a set probability of switching states and a set probability of 

rewarding the agent, such as the one used by Vertechi et al. (2020), the behavior and learning of 
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an agent in this new environment can be tracked to determine if the agent is learning or operating 

in a way that is to some degree tracking the next probability of the best next guess. This 

experiment tests the agent’s ability to learn in a MDP. If an agent were to be acting in this way, 

there would be strong evidence to support that the agent uses Bayesian inference to better 

understand the environment it is in and predict the next active state that the environment will be 

in.  

I predict that all three agents will perform above the optimal 1-back memory accuracy range 

because they all have a memory that keeps track of more than 1 trial at a time. The DQN has 

room for thousands of experiences to be remembered in “memory” that it can randomly draw on 

for establishing the Q-function. Therefore, if it has a Bayesian model for learning, I predict that it 

would be able to establish a more accurate model of the environment than if an agent only had 1-

back memory.  
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3. METHODS 

 

3.1 General Remarks 

We will use a python environment designed by Vertechi et al (2020) and the Stable 

Baselines3 agents—DQN, PPO, and Recurrent PPO—to observe the agent’s learning trend and 

compare it to the optimal Bayesian decisions or predictions given knowledge of the previous 

state (1-back memory) (Section 4.1.2). The agent will be untrained and will run 10,000 trials 

before it is terminated. In each trial, the state of the environment, the action or guess of the agent, 

and the reward given to the agent will be printed and recorded.  

3.2 Participants 

 For this experiment, 75 ANN agents were each run in three different environments: 25 

were DQNs, 25 were PPOs, and 25 were Recurrent PPOs. A 5x5 parameter spread of agents 

were run to determine the best learning agent in the category given the type of environment it 

was in.  

3.3 Materials 

3.3.1 The Environment 

The environment is designed allocentrically1, which means that the state of the 

environment (self.state) is either “left” or “right.” Another way to imagine the environment is as 

though the environment has two sites, a left and right, and one of which is always active at a 

given time. Three hidden Markov Model (HMM) environments were implemented. The first 

environment was the “easy environment” (Environment C) because it rewarded the agent almost 

every single time and had a high switching probability so that the agent could easily follow a 

 
1 In an allocentric environment, the agent moves according to the environment, such as choosing the left option or 

bottom option in the environment. In contrast, an egocentric environment is one in which the agent moves according 

to its own location in the environment. For example, the agent chooses to move up or stay where it is.  
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pattern once it learned what state it was in. The “medium” environment (Environment B) 

rewarded the agent just as often but had a lower probability of switching active states. The hard 

environment (Environment A) had both a low probability of switching and a low probability of 

rewarding the agent, making it an uncertain environment and hard to learn in (Table 1). By 

lowering the probability of the state switching (𝜚w), it requires the agent to work harder to 

determine when they need to switch from the port they are at. When the probability of reward is 

low, it adds to the uncertainty of how many errors the agent will take before it switches active 

states.  

Table 1  

Three Environments Implemented 

 

 Difficulty p (probability of switching) q (probability of reward) 

Environment A Hard 0.3 0.3 

Environment B Medium 0.3 0.9 

Environment C Easy 0.9 0.9 

 

In the original study done by Vertechi et al. (2020), the mice and humans have an extra 

factor of energy trade-off associated with an action. This is not accounted for in the artificial 

neural network agents. Therefore, the environment cannot switch states unless the agent has 

chosen the correct active site. This is built in so that the agent isn’t able to remain at the same 

site for the entire run after getting rewarded once.  

 In addition, the environment handles the reward given to the agent. At all times, one site 

is active; however, the agent will not get rewarded every time it chooses the correct site. This is 

in order to implement an additional layer of uncertainty to the environment and to replicate more 

accurately the complex uncertainty of the environment animals operate in. Therefore, if the agent 

chooses the correct port, it has an 𝜚r chance of getting rewarded and 1-𝜚r chance of not getting 

rewarded.  
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Figure 2  

Environment Python Code with descriptions of important lines.  

 
 

3.3.2 The Agents 

 The first agent is the stable baselines3 DQN (Figure 3) which is a model-free neural 

network that uses an MLP policy (Section 2.3). This agent was run in the allocentric 

environment for a given q (𝜚r) and p (𝜚w) value, and the key parameters for this DQN are the 

learning rate and hidden node layers, which are tested for parameterization that resulted in the 

best accuracy rate.  

Figure 3  

DQN Python Code 
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The second agent is the stable baselines3 PPO (Figure 4) which utilizes an optimizing 

policy predictor, which makes it a slightly more complex network than the DQN. This agent was 

also run in the allocentric environment and utilizes a MLP Policy. Verbose was set to 0 and the 

learning rate and net architecture, or layers of hidden nodes, were adjusted to optimum 

performance.  

Figure 4  

PPO Python Code 

 

 
 

The third agent is the stable baselines3 Recurrent PPO (Figure 5) which implements 

LSTM for recurrent learning. By implementing LSTM, this agent is able to keep the best running 

memory of past trials of all the agent types in this experiment. It also utilizes a MLP policy, and 

the learning rate and network architecture were adjusted to improve performance.  

Figure 5  

Recurrent PPO (RPPO) Python Code 

 

 
 

 The agents were not trained, and instead the agent’s first 10,000 timesteps in the 

environment were recorded to observe its progress of accuracy in a novel environment. This 

replicates how mice and humans in Vertechi et al.’s (2020) experiment were trained on the task. 

In order to determine the most efficient learner in each category for each environment, a 5x5 

array of agents with varying learning rates (.0001, 0.001, 0.01, 0.1, 1) and varying hidden nodes 
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(0, 1, 2, 4, 16) were run. For each category in each environment a gradient array was run to 

determine the highest accuracy percentage in the last 1,000 trials run (4.1.3-5). 

3.4 Procedure 

Three environments were implemented (Table 1). The environment was based on a 

hidden Markov model (Figure 6), where the active state is determined by an underlying model 

that is not visible to the participant. The environment would start in state 1 or 0 randomly. The 

agent then randomly guesses what state the environment is in, and then the environment tells the 

agent the reward it received for its guess and what state it chose. The state of the environment 

and the state that the agent chose are printed as ‘1’ or ‘0’; however, it can help to imagine them 

as ‘left’ and ‘right.’ Once the environment was implemented, 25 agents per each RL network 

category were run in the environment. Then the optimal agent was chosen based on the highest 

accuracy rate in the last 1,000 trials for further analyzation.  

Figure 6  

Hidden Markov Model determining the underlying the active states of the environment. 
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4. DISCUSSION 

 

4.1 Results 

 

In order to determine the optimal parameters for each agent in the different environments, a 

5x5 array of agents were run in each environment (Section 3.3). The agents from each array with 

the highest accuracy, identified by the lightest shaded square, were selected and their individual 

learning progress was analyzed. In order to have a more comprehensive understanding of when 

the agent reached its threshold accuracy rate, each agent was run for 10,000 timesteps in each 

environment.  

4.1.1 1-back Memory Comparison 

 An expected performance based on Bayesian 1-back memory utilization was calculated 

(Section 4.1.2). The probability of active state switching (𝜚w) determined which conditions to use 

as the expected accuracy rates. If the probability was greater than 0.5, such as in Environment C, 

then conditions Alpha and Delta were set as the upper and lower bounds for expected 

performance. When 𝜚w was less than 0.5, such as in Environments A and B, conditions Beta and 

Gamma were set as the upper and lower bounds for expected performance. It would be expected 

that a memoryless agent would perform at about this standard (Section 4.1.2).   

4.1.2 Calculating Optimal 1-back Memory Performance  

Figure 7 is a tree diagram of the possible outcome paths available for the agent, taking 

probability of getting rewarded and probability of the environment’s active state switching into 

account. The environment is determined by a hidden Markov model that has been run long 

enough so that it can be assumed there is a 50% chance of the environment starting with the left 

site active and 50% chance of it starting with the right state active (Section 3.2.4). These are 

represented by the first arrows labeled with ‘.5’. Given that the agent has a 50% chance of being 
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correct if they guess left first and a 50% chance of being correct if they guess right first, the 

preceding probabilities do not depend on their initial guess. For ease, we assume the first guess is 

left. 

Figure 7: Probability Tree for Average Correct Guesses based on 1-back Memory 

Orange boxes indicate the agent’s guess. The green boxes indicate the active state of the environment. The 

yellow boxes indicate the status of the environment and the feedback the agent received. 

 

 

If you guess left, and the active state is the left site, then you have a probability of 𝜚r of 

getting rewarded and a 1-𝜚r probability of getting no reward. If you guess left and the active state 

is the right site, then you are guaranteed to get no reward.  

After the status update at the end of iteration one, where the agent either got a reward or 

did not get a reward, the agent can either guess left again, or they can choose to switch sites and 

guess right. The environment has 1-𝜚w probability of staying and keeping the same active site, 

and a 𝜚w probability of switching active sites. The guess of the agent is independent of what 

happens to the environment in the second iteration. Therefore, by multiplying the three steps of 

probabilities leading up to the second iteration, one can calculate the probability of the 

environment being active in the left state or active in the right state. From there, one can 
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calculate the probability of the agent guessing the correct active state of the environment in the 

second iteration.  

If 𝜚w is less than 0.5, then use Option Alpha to calculate the upper bound of the optimal 

accuracy expected by an agent with Bayesian 1-back memory. This indicates that if the agent 

gets rewarded the first iteration, the best choice is for the agent is to stick with the same guess for 

the second iteration. For the lower bound, use Option Delta to calculate the optimal accuracy. 

This indicates that if the agent does not get rewarded the first iteration, your best choice is to 

switch your guess to the other active site. This is because with a 𝜚w of less than 0.5, it is most 

likely that the environment will remain in the same active state for the second iteration.  

Option Alpha: If you get rewarded the first iteration, what is the probability you will get 

rewarded if you guess Left again?  

There are two possible states of the environment where you get rewarded iteration one, and then 

guess left: one where the active state stays at the left site and one where the active state switches 

to the right site. Out of these possible states, there is only one where you would be guessing 

correctly. Therefore, the probability of guessing correctly if you got rewarded the first iteration 

and guessed left again would be: 

 

Simplifies to...  

 

Option Delta: If you didn’t get rewarded the first iteration, what is the probability you will get 

rewarded if you guess Left again?  

There are four possible states of the environment that are possible with the conditions that the 

agent doesn’t get rewarded iteration one, and then guesses left again: one where the left state was 

active for iteration one (it just didn’t reward the agent) and then remains active for iteration two, 

one where the left state was active for iteration one but switches to the right site for iteration two, 

one where the initial active state of the environment was the right site and it switches to be active 
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at the left site, and then one where the initial active state of the environment was the right site 

and it stays active at the right site for iteration two. Out of these possible states, there are only 

two states in which the agent would be correct by guessing left being active for iteration two. 

Therefore, by choosing the left site again for iteration two, the agent has the probability below of 

being correct:   

 

Simplifies to...  

 

If 𝜚w is greater than 0.5 then use Option Beta to calculate the upper bound of the optimal 

accuracy based on 1-back memory. This indicates that if the agent gets rewarded the first 

iteration, their best guess is to switch to a different active site because the environment is most 

likely to switch active sites in the second iteration. If the agent does not get rewarded, use Option 

Gamma use to solve for the lower optimal bound. This indicates that the agent should stay at the 

same port for their second guess if they did not get rewarded the first time, because it is most 

likely that the environment will switch into the active site the agent is already at.  

Option Beta: If you get rewarded the first iteration, what is the probability you will get 

rewarded if you guess Right next time?  

There are two possible states of the environment where you get rewarded iteration one, and then 

guess right: one where the active state stays at the left site and one where the active state 

switches to the right site. Out of these possible states, there is only one where you would be 

guessing correctly. Therefore, the probability of guessing correctly if you got rewarded the first 

iteration and guessed right for the second iteration would be: 
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Simplifies to...  

 

Option Gamma: If you didn’t get rewarded the first iteration, what is the probability you will 

get rewarded if you guess Right next time?  

There are four possible states of the environment that are possible with the conditions that the 

agent doesn’t get rewarded iteration one, and then guesses right for iteration two: one where the 

left state was active for iteration one (it just didn’t reward the agent) and then remains active for 

iteration two, one where the left state was active for iteration one but switches to the right site for 

iteration two, one where the initial active state of the environment was the right site and it 

switches to be active at the left site, and then one where the initial active state of the environment 

was the right site and it stays active at the right site for iteration two. Out of these possible states, 

there are only 2 states in which the agent would be correct by guessing right as active for 

iteration two. Therefore, by choosing right, the agent has the probability below of being correct:   

 

Simplifies to...  

 

For environment A, the highest optimal bound was 70%. The lowest optimal bound was 52.53%. 

 

For environment B, the highest optimal bound was 70%. The lowest optimal bound was 66.36%. 

 

For environment C, the highest optimal bound was 90%. The lowest optimal bound was 82.72%.  

 

For calculating the optimal accuracy rate based on Bayesian probabilities of the events 

happening, the only steps necessary are the ones up to the second guess. For these optimal 

probabilities, it does not matter if the agent got a reward or not; it matters if it guessed correctly. 

However, one could continue down the tree to calculate how often the agent should optimally be 

getting rewarded on the second guess based on 1-back memory (Figure 8).  
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4.1.3 Environment A  

 

The data shows that all agents had the lowest accuracy rate in this environment, which is 

consistent with it being the most difficult environment. The best DQN had a learning rate of 

0.001 and no hidden layers (Figure 9). Its threshold performance was an accuracy rate of 

61.03%. This agent performed in the middle of the optimal range, suggesting that a DQN MLP 

agent has memory equivalent to an optimal 1-back Bayesian memory model (Figure 10). It 

learned in about 380 timesteps, and its progress improved significantly over timesteps 260- 380. 

For the remainder of the timesteps, its accuracy hovered between 55% and 75%, reaching its 

maximum accuracy rate of 80% once at timestep 2,220. 

Figure 8 

Probability Tree for 1-back memory calculations through the status at the end of the 2nd iteration. This tree is 

needed to calculate the optimal rate of being rewarded based on 1-back memory. Orange boxes indicate the 

agent’s guess. The green boxes indicate the active state of the environment. The yellow boxes indicate the status 

of the environment and the feedback the agent received. The bolded letters indicate the final step of each 

possible pathway, which are used to indicate the possibility of it happening calculated in Figures 1-3 in Index. 
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The best PPO had a learning rate of 0.01 and 1 hidden node (Figure 11). Its threshold was an 

accuracy rate of 56.12% (Figure 12). It took about 7,300 timesteps to learn which was much 

Figure 9 

 

DQN array in Environment A. Refer to Table 1 

(Section 3.2.1) for the specifics of the environments. 

Hidden node layers were adjusted to either 0, 1, 2, 4, 

and 16. The learning rates were set to either 1, 0.1, 

0.01, 0.001, and 0.0001. The bar to the right 

indicates the average correct guesses in the last 1000 

timesteps for each agent. These arrays were used to 

determine the best parameters for the type of agent 

given the environment conditions. 

Figure 10  

 

DQN’s progress in the run in Environment A measured by average correct guesses every 20 timesteps. The green 

region is bounded by the lower optimal 1-back memory performance and the upper optimal performance. The 

orange line indicates the average of the agent over the last 2,000 timesteps, indicating an average threshold 

performance.  
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slower than the DQN. Additionally, the data for this agent was very noisy which made it unclear 

how confident the agent was in this environment, despite showing a trend of learning.  

 

 

 

 

 

The best RPPO had a learning rate of 0.001 and 16 hidden nodes (Figure 13). Its threshold 

was an accuracy rate of 60.87% (Figure 14). When run for 15,000 timesteps the average 

Figure 11 

  

PPO array in Environment A. Refer to Table 1 

(Section 3.2.1) for the specifics of the environments. 

Hidden node layers were adjusted to either 0, 1, 2, 4, 

and 16. The learning rates were set to either 1, 0.1, 

0.01, 0.001, and 0.0001. The bar to the right 

indicates the average correct guesses in the last 

1000 timesteps for each agent. These arrays were 

used to determine the best parameters for the type of 

agent given the environment conditions. 

Figure 12 

 

PPO’s progress in the run in Environment A measured by average correct guesses every 20 timesteps. The green 

region is bounded by the lower optimal 1-back memory performance and the upper optimal performance. The 

orange line indicates the average of the agent over the last 2,000 timesteps, indicating an average threshold 

performance.  
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accuracy continued to be about 60%. It took about 5,500 timesteps to reach the threshold 

average. However, it learned nearly as well as the DQN and significantly better than the PPO.  

 

 

 

 

 

 

 

Figure 13 

 

RPPO array in Environment A. Refer to Table 1 

(Section 3.2.1) for the specifics of the 

environments. Hidden node layers were adjusted 

to either 0, 1, 2, 4, and 16. The learning rates 

were set to either 1, 0.1, 0.01, 0.001, and 0.0001. 

The bar to the right indicates the average correct 

guesses in the last 1000 timesteps for each agent. 

These arrays were used to determine the best 

parameters for the type of agent given the 

environment conditions. 

Figure 14 

 

RPPO’s progress in the run in Environment A measured by average correct guesses every 20 timesteps. The 

green region is bounded by the lower optimal 1-back memory performance and the upper optimal performance. 

The orange line indicates the average of the agent over the last 2,000 timesteps, indicating an average 

threshold performance.  
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In the difficult environment, the DQN and RPPO did significantly better than the PPO and 

also learned significantly faster than the PPO agent. The PPO agent’s data also had significantly 

more fluctuation in accuracy throughout the entire run, compared with the RPPO and DQN that 

stabilized to stay within a rough 0.2-differene window. 

4.1.4 Environment B  

In the medium-difficult environment, the best DQN had a learning rate of 0.0001 and no 

hidden layers (Figure 15). Its threshold was an accuracy rate of 75.46% (Figure 16). It did 

significantly better than the optimal bound for 1-back memory, which suggests that this model 

could possibly have a better Bayesian memory than 1-back, although more research is needed to 

determine to what extent. This agent learned in about 7,300 timesteps, with a significant jump in 

accuracy at 7,220 timesteps, evidence that the agent suddenly learned a Q-function that was 

accurate at performing in this environment.  

 

 

 

 

 

Figure 15 

 

DQN array in Environment B. Refer to Table 1 

(Section 3.2.1) for the specifics of the environments. 

Hidden node layers were adjusted to either 0, 1, 2, 

4, and 16. The learning rates were set to either 1, 

0.1, 0.01, 0.001, and 0.0001. The bar to the right 

indicates the average correct guesses in the last 

1000 timesteps for each agent. These arrays were 

used to determine the best parameters for the type 

of agent given the environment conditions. 
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The best PPO had a learning rate of 0.01 and one hidden node (Figure 17). Its threshold was 

an accuracy rate of 63.97% (Figure 18). This agent performed below the optimal bound given 1-

back memory and learned after 6,500 timesteps. This was also the only agent to perform below 

the ‘optimal’ bound.  

 

Figure 17  

 

PPO array in Environment B. Refer to Table 1 

(Section 3.2.1) for the specifics of the 

environments. Hidden node layers were adjusted 

to either 0, 1, 2, 4, and 16. The learning rates 

were set to either 1, 0.1, 0.01, 0.001, and 0.0001. 

The bar to the right indicates the average correct 

guesses in the last 1000 timesteps for each agent. 

These arrays were used to determine the best 

parameters for the type of agent given the 

environment conditions. 

Figure 16  

 

DQN’s progress in the run in Environment B measured by average correct guesses every 20 timesteps. The 

green region is bounded by the lower optimal 1-back memory performance and the upper optimal performance. 

The orange line indicates the average of the agent over the last 2,000 timesteps, indicating an average 

threshold performance.  
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The best RPPO had a learning rate of 0.001 and 16 hidden nodes (Figure 19). Its threshold 

was an accuracy rate of 67.12% which was within the optimal range based on 1-back memory 

(Figure 20). Additionally, this agent appeared to learn in about 1,220 timesteps, which was the 

fastest of all agents in this environment. There was also a period between 2,300 timesteps and 

5,060 timesteps where the agent was doing better than it did in the remaining 5,000 timesteps.  

Figure 18 

 

PPO’s progress in the run in Environment B measured by average correct guesses every 20 timesteps. The 

green region is bounded by the lower optimal 1-back memory performance and the upper optimal performance. 

The orange line indicates the average of the agent over the last 2,000 timesteps, indicating an average 

threshold performance.  
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The DQN did significantly better in the medium environment, although it learned the slowest 

of the three agents. One noteworthy observation is that while the PPO did improve its 

performance in Environment B from Environment A, it did worse in Environment B compared to 

the 1-back memory expected accuracy rate. This is surprising and requires further investigation. 

Figure 19  

 

RPPO array in Environment B. Refer to Table 1 

(Section 3.2.1) for the specifics of the 

environments. Hidden node layers were adjusted 

to either 0, 1, 2, 4, and 16. The learning rates 

were set to either 1, 0.1, 0.01, 0.001, and 0.0001. 

The bar to the right indicates the average correct 

guesses in the last 1000 timesteps for each agent. 

These arrays were used to determine the best 

parameters for the type of agent given the 

environment conditions. 

Figure 20  

 

RPPO’s progress in the run in Environment B measured by average correct guesses every 20 timesteps. The 

green region is bounded by the lower optimal 1-back memory performance and the upper optimal performance. 

The orange line indicates the average of the agent over the last 2,000 timesteps, indicating an average 

threshold performance.  
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4.1.5 Environment B  

The best DQN had a learning rate of 0.1 and 4 hidden layers (Figure 21). Its threshold was an 

accuracy rate of 89.01% (Figure 22). This agent performed at about the same rate as the upper 

optimal bound. Although it started guessing at this rate at around 750 timesteps, it leveled out 

and appeared to learn after about 1,480 timesteps. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21  

 

DQN array in Environment C. Refer to Table 1 

(Section 3.2.1) for the specifics of the 

environments. Hidden node layers were adjusted 

to either 0, 1, 2, 4, and 16. The learning rates 

were set to either 1, 0.1, 0.01, 0.001, and 0.0001. 

The bar to the right indicates the average correct 

guesses in the last 1000 timesteps for each agent. 

These arrays were used to determine the best 

parameters for the type of agent given the 

environment conditions. 
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The best PPO had a learning rate of 1 and no hidden nodes (Figure 23). Its threshold was an 

accuracy rate of 90.40% (Figure 24). This agent’s accuracy plateaued at the upper optimal 

bound. It learned in about 2,180 timesteps and made considerable improvement at timestep 

2,060-2,180.  

 

Figure 23 

 

PPO array in Environment C. Refer to Table 1 

(Section 3.2.1) for the specifics of the 

environments. Hidden node layers were adjusted 

to either 0, 1, 2, 4, and 16. The learning rates 

were set to either 1, 0.1, 0.01, 0.001, and 0.0001. 

The bar to the right indicates the average correct 

guesses in the last 1000 timesteps for each agent. 

These arrays were used to determine the best 

parameters for the type of agent given the 

environment conditions. 

Figure 22 

 

DQN’s progress in the run in Environment C measured by average correct guesses every 20 timesteps. The 

green region is bounded by the lower optimal 1-back memory performance and the upper optimal performance. 

The orange line indicates the average of the agent over the last 2,000 timesteps, indicating an average 

threshold performance.  
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The best RPPO had a learning rate of 0.01 and 16 hidden nodes (Figure 25). Its threshold was 

an accuracy rate of about 90.40% which was just at the upper optimal bound (Figure 26). It 

appeared to have learned after about 2,420 timesteps and hovered between an accuracy rate of 

85% and 100%.   

Figure 24  

 

PPO’s progress in the run in Environment C measured by average correct guesses every 20 timesteps. The 

green region is bounded by the lower optimal 1-back memory performance and the upper optimal performance. 

The orange line indicates the average of the agent over the last 2,000 timesteps, indicating an average 

threshold performance.  
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Again, we see the RPPO had a higher accuracy rate in the middle of the run, and then drops 

slightly for the remainder of the timesteps. This is slightly surprising, given that it would be 

expected that the accuracy rate would increase in the last 5,000 timesteps. Additionally, while 

the RPPO plateaued in performance in the upper optimal bound, it guessed multiple 20-step  

Figure 25 

RPPO array in Environment C. Refer to Table 1 

(Section 3.2.1) for the specifics of the 

environments. Hidden node layers were adjusted 

to either 0, 1, 2, 4, and 16. The learning rates 

were set to either 1, 0.1, 0.01, 0.001, and 0.0001. 

The bar to the right indicates the average correct 

guesses in the last 1000 timesteps for each agent. 

These arrays were used to determine the best 

parameters for the type of agent given the 

environment conditions. 

Figure 26 

RPPO’s progress in the run in Environment C measured by average correct guesses every 20 timesteps. The 

green region is bounded by the lower optimal 1-back memory performance and the upper optimal performance. 

The orange line indicates the average of the agent over the last 2,000 timesteps, indicating an average 

threshold performance.  
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periods perfectly, which is noteworthy. 

4.2 General Take Aways 

In this experiment, an untrained DQN, PPO, and Recurrent PPO were run in three 

environments of varying difficulty, which was varied by changing the probability of the 

environment switching active states and by changing the probability of the environment 

providing a reward to the agent. In the easy environment, both PPO agents performed better than 

the DQN agent. However, as difficulty of the environment increased, the DQN outperformed the 

PPO agent significantly, and performed comparable to the RPPO agent.   

The first main observation was that all agents did not perform as well as initially predicted. 

However, the data does support most of the research regarding model-free neural networks. The 

agents’ performance is consistent with their inability to create an internal model of the 

environment, and thus were very limited in the ways they could learn the environment and did 

not perform exceedingly well. Notably, given their inability to represent the environment through 

an internal model, these ANNs performed optimally well compared to an agent with optimal 

Bayesian 1-back memory.  

Second, across all three environments, the DQN appeared to have a moment where it figured 

out the environment, and within a few timesteps had learned the environment. By looking at the 

progress of all three DQN agents (Figures 10, 16, 22), there is a clear jump from a guessing 

accuracy rate to an optimal accuracy rate. This is a signature of DQNs, as it takes them time to 

explore different pathways or options as it develops an algorithm to calculate the Q-scores, and 

once they find a pathway that works, the algorithm for calculating the Q-scores becomes quite 

accurate. On the other hand, both PPO agents started off performing at a rate higher than the 

DQN and slowly increased in accuracy to the threshold.  
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The third observation was that their performance decreased with the change in reward 

frequency, a signature of stimulus-bound strategy being utilized. This was described and 

predicted by Vertechi et al. (2020). Additionally, the difference in accuracy in the last 2000 

timesteps for each agent is much greater in Environment A than it was in Environment B, and 

even more so than Environment C. This is another signal that these agents have no internal 

model of the environment.  

Finally, I found it most surprising that the DQN performed better than the RPPO in the 

medium-difficult environment. Given that the DQN had a limited memory, and the RPPO had an 

LSTM architecture that should have been able to utilize nearly all of the timesteps the agent 

experienced, I would expect that it would be easier for the RPPO to learn in a more difficult 

environment.  

4.3 Possible Explanations for the Data and Deeper Dives 

One explanation for why the PPO agents did worse is that they were not trained. PPO 

updates its policy after every epoch; however, in this experiment the PPO did not update its 

policy until the end of the timesteps recorded. To explore this further, one could add a parameter 

n_steps that identifies how many timesteps are measured in an update for each environment 

(n_env). Additionally, one could add a parameter that defines what timestep the agent should 

start learning on. We did explore adding an original timestep parameter and include 2 and 10,000 

n_steps, and the agents did considerably worse with these parameters added. However, one could 

run a different array with these parameters to see if the PPO agent could learn better.  

It was also interesting that none of the agents exceeded the 1-back (essentially memoryless) 

memory expected performance, besides the DQN one time, especially given that the DQN and 

Recurrent PPO both have a memory capability. The DQN had a buffer size set to 1,000, which 
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meant that these DQN agents had 1,000 experiences to pull from when calculating the Q-values, 

and the RPPO utilized LSTM. This could partly also be explained by the minimal parameters 

implemented in both PPO agents. Regardless, further investigation is necessary to determine the 

discrepancy.  

This behavior is also consistent with a stimulus-bound strategy described by Vertechi et al. 

(2020). The agents seem to only be affected by the current stimulus or information present to it, 

instead of it drawing on a prediction based on an internal model of the environment’s structure. 

Additionally, all three types of model-free agents’ performance decreases by at least 7% across 

all types of agents between the medium state to the hard state where only the frequency of 

rewards (q) changes. Thus, these agents never seemed to learn at the same level as the humans 

and mice in Vertechi et al. (2020), and instead persist to perform in dependence with the 

frequency of rewards. This is also expected by the architecture of model-free agents who only act 

based on rewards associated with actions (Section 2.3). 

It would be of use to do a deeper analysis of the agents’ data. One could analyze how many 

no-reward steps it took before the agent switched sites, and if that number changed based on the 

probability of rewards being given (Vertechi et al. 2020, 170-171). Given that the probability of 

reward affected how well these agents did in the environment, even with the same environmental 

conditions, I would predict that the length of time spent at a port would increase for these agents 

as the probability of reward decreased. Additionally, in future experiments it would be 

interesting to run a trained Recurrent PPO in this environment to see how it learns. By training 

the RPPO, it could provide a better understanding of the agent’s strategy; would it use a more 

inference-based strategy and perform better, or is the model-free architecture is a limitation 

regardless of training and memory of agent?   
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  Another observation was that the DQN learned significantly quicker than both agents 

utilizing PPO—by nearly 1,000 timesteps. One factor that would be worth exploring further is 

the effect that exploration rate had on the speed of the agent’s learning. The exploration rate was 

set to 0.05, so it was relatively low, which could have helped the agent quickly choose the 

maximum Q-scores, or one reliable one. This would be supported by the minimal noise evident 

in the learning progress of the DQN agents. Once the agent reaches its threshold accuracy, it 

hovers within +/- 0.1 of that average rate. By increasing the exploration rate, I would expect to 

see an increase in time it takes the agent to learn the environment but could also improve the 

agent’s ability to perform the task.  

 Both of these last findings regarding how well the DQN performed are surprising. In 

research done by Kozlica et al. (2023), they found that the PPO outperformed the DQN in a 

sorting task across several evaluation metrics. When looking at the accuracy rate of their DQN 

and PPO compared to ours, the performances seem opposite of our findings. One difference 

between the research methods is that the sorting task involved an action space of much higher 

dimensions, which could explain why the DQN outperformed the PPOs in our study. Given the 

low state and space dimensions of our task, the benefits of policy optimizations might not have 

been helpful.  

4.5 Proposals  

 In future work, this procedure could be done with an additional element for tracking 

reaction times to see how predictive processing and updating could be affecting performance. A 

proposed experiment would be to create a computer game task, similar to the one used by 

Vertechi et al. (2020), but with a much simpler structure. Participants would be given a computer 

game where they are asked to guess 0’s and 1’s as accurately as possible, instead of guiding a 
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figure to different active ports. They will receive feedback after each guess and will be asked to 

guess as quickly as they can while being accurate, and to continue this process until the game is 

over.  

 The computer would act as the environment and the game would use either a preselected 

pattern or a hidden Markov model, similar to the one run on the neural networks, that generates 

numbers as the game continues. These numbers will represent an active state of the game’s 

environment and would follow the same probabilistic constraints. The computer will also track 

the reaction time between it giving the participant feedback and their next guess.  

By tracking reaction time, one could better understand when an individual might be 

feeling more confident in their understanding of the environment, and how a surprising input 

might slow down the computation or decision-making process for the next trial or guess. If 

reaction times were roughly the same throughout a series of correct guesses, and never shortened 

with familiarity or lengthen with confusion, then there would be more evidence for stimulus-

bounded decision strategy. In this case, it might suggest that the participants are only taking the 

current state into account when making a guess. On the other hand, if reaction times were 

significantly different, this could suggest that individuals are developing a policy for decision 

making that develops a perceptual expectation and is surprised and delayed in the next state 

when confronted with unexpected information. This would be consistent with studies done by 

King et al. (2010) on increased classical RF neural activity when prediction errors occur, and 

studies by Palmer (2015) that show that there is an increase in neural activity when preceding 

information is new to the retinal ganglion cells.   

 Both the executed and proposed experiments have tasks that are simpler than those done 

by Vertechi et al (2020). On one hand, this has its downsides because it is not able to directly 
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track the minimization of energy, proposed by Friston (Section 2.1) and supported by Vertechi et 

al. (2020). On the other hand, these experiments would be a good comparison to show the effects 

of energy trade-off in decision making and learning processing.  

Additionally, if one wanted to make the environment for the neural networks resemble 

Vertechi et al.’s (2020) experiments closer, one could implement an egocentric environment. 

This way, instead of the agent choosing left or right site being active, they would choose to either 

stay at the same port or switch ports. This would simulate a similar choice that the mice and 

humans were having to make, and would better match the selection of easy, medium, and hard 

environment conditions.  Furthermore, it would be interesting to see if the egocentric 

environment would be better suited for the PPO agents compared to the allocentric environment.  

An alternative direction is to implement a DQN that utilizes an LSTM architecture to see 

how it would learn in this environment. Because the DQN and Recurrent PPO outperformed the 

regular PPO, it would be interesting to see if combining the recurrent learning with the DQN 

MLP policy would improve the performance of the neural network on this task.  

Finally, as previously noted, it appears to take the PPOs much longer to learn the 

environment than DQNs. However, it still performs at a level nowhere close to a human. An 

explanation for humans’ abilities to learn tasks so speedily is that they utilize both model-free 

and model-based learning in parallel. By doing so, they are able to learn new information about a 

novel environment by learning associations between actions and rewards (thus implementing a 

model-free function) while also building on what they have experienced and learned in other 

tasks (implementing a model-based function).  

A next step could be to implement the model-based DQN that Gou and Liu (2019) 

proposed. This would combine both model-free and model-based approaches that could better 
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replicate how a human uses the two in parallel (Chapter 2.2). I predict that this DQN would learn 

faster, and perhaps perform better in a difficult environment when the rewards are scarce. 

4.6 Conclusion 

This study showed that exclusively model-free neural networks are limited in the inferences 

they are able to make, which makes it difficult, and perhaps impossible, for them to learn novel 

environments anywhere close to the level that animals can. From this, there are at least two 

positive takeaways.  

For one, these results suggest that more focus in this field of research should go towards 

designing agents with both model-free and model-based components. This research is difficult 

because just like it is difficult to know how top-down and bottom-up processing interact in 

animals, it is very difficult to figure out the optimal combination of model-free and model-based 

processes. However, by improving these types of agents, I would predict that the field would be 

able to create more dynamic ANNs that have varying capabilities that resemble the abilities of 

animals and humans. 

The second positive takeaway is that this provides insight into the complexity of the brain’s 

prediction model, if there is one. In order to both learn through a reward system, and then to go 

beyond that learning strategy to not be dependent on the rewards, but to pick up on the 

underlying statistical structures of novel environments is an incredibly complex ability that 

animals have. The fact that it takes humans a fraction of the amount of time to learn these 

systems suggests that there might be an extra process for efficiency that would be worth 

exploring deeper.  
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Appendix 

 

A. Link to the workbook of python code used for the entire methods section and for the 5x5 

agent arrays: https://colab.research.google.com/drive/1Wl-7EkicWSlp9u-

a2CP9RKTtjS_3MvvX?usp=sharing 

 

B. Figures B1-B3: Probability of each 2nd guess outcome. Useful for calculating how often 

an agent should be getting rewarded for optimal 1-back memory.  

 

 
Figure B1: Environment A probabilities of outcomes. The letters refer to the ending step of each possible outcome labeled in 
Figure 8.  
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Figure B2: Environment B probabilities of outcomes. The letters refer to the ending step of each possible outcome labeled in 
Figure 8.  

 

 
Figure B3: Environment C probabilities of outcomes. The letters refer to the ending step of each possible outcome labeled in 
Figure 8.  



 

 

 

56 

 

 
 


	Bayesian Inference in reinforcement learning neural networks during a Markov decision processes?
	Recommended Citation

	tmp.1714056915.pdf.xalqB

