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2 Abstract

Regression splines have an established value for producing quality fit at a relatively low-degree

polynomial. This paper explores the implications of adopting new methods for knot selection in

tandem with established methodology from the current literature. Structural features of generated

datasets, as well as residuals collected from sequential iterative models are used to augment the

equidistant knot selection process. From analyzing a simulated dataset and an application onto the

Racial Animus dataset, I find that a B-spline basis paired with equally-spaced knots remains the

best choice when data are evenly distributed, even when structural features of a dataset are known

and implementable. However, the residual-based knot selection outperforms both the equidistant

knot placement and structural knot placement methods when data are irregularly distributed.
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3 Literature Review

3.1 Introduction

The paper “Splines, Knots, and Penalties” (Eilers and Marx 2010) combines the concepts of spline

regression, basis function selection, knot placement, and smoothness penalizations. In this section,

I provide context from the relevant literature that allows me to expand upon the findings presented

by Eilers and Marx. For the scope of this paper, a B-spline basis in conjunction with equally spaced

knot selection is found to be the optimal foundation for expanding upon the existing literature. I

expand upon these reasons below.

3.2 Spline and Penalized Spline Regression

In the context of regression analysis, spline modelling constitutes the separation of a data set through

“knots” to facilitate fitting smooth functions onto sections of a larger data set. This technique is

classified as nonparametric because it is not predicated on the fit to a given parameter (Perperoglou

2019). The number of knots selected affects the bias-variance tradeoff: as the number of knots

increases, the model risks overfitting the data, but too few knots can produce a more restrictive

function. The splines themselves are smooth up to the given polynomial order imposed on the

model, d—i.e., they are continuous and differentiable. The implementation of regression splines

allows us to write an unknown function f from the basis functions spanning a vector space, Bk, and

the associated spline coefficients, βk, where k represents the number of knots. This function is given

in Equation 3.1.

f(X) =

K+d+1∑
k=1

βkBk(X) (3.1)

In the case of penalized regression splines, a “roughness” penalty is applied to the selection of

knots to bring more choice to the model beyond the selection of basis functions. As a result, the

statistics used for penalized spline regression are balanced for both goodness-of-fit and smoothness.

These conflicting ends necessitate some parameter to control the weighting towards either goal,

which takes the form of the smoothing parameter λ (Gu 1993).

3.3 PB-Splines and PT-Splines

In their paper, “Splines, Knots, and Penalties,” authors Eilers and Marx (2010) distinguish between

two commonly used methods for spline regression: PB-splines and PT-splines. The first of these

methods uses the B-spline basis. The B-spline basis is an extension of the commonly used cubic

basis, which generates and fits a cubic polynomial between knots. An additional parametrization is

then placed on the cubic splines, as given in Equation 3.2 (Perperoglou 2019). A difference penalty

is also applied, based on the `1 norm (Eilers and Marx 2010).

ξ1 ≤ . . . ≤ ξd ≤ ξd+1 < ξd+2 < . . . < ξd+K+1

< ξd+K+2 ≤ ξd+K+3 ≤ . . . ≤ ξ2d+K+2

(3.2)
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In contrast, PT-splines use a truncated power series as a spline basis. In this case, a basic

polynomial of degree d is chosen for the initial basis, and each successive function to the right of

the K th knot receives additional deviations. The PT-spline is taken from the basis function found

in Equation 3.3 (Perperoglou 2019).

B1(x) = 1, B2(x) = x, ..., Bd+1(x) = xd,

Bd+2(x) = (x− τ1)d, ..., BK+d+1 = (x− τk)d
(3.3)

Unlike PB-splines, a ridge penalty is used for PT-splines via the `2 norm; however, as Eilers

and Marx (2010) find, the two methods are effectively equivalent in their respective cases. As with

PB-splines, the penalty parameter λ must necessarily take a positive value.

3.4 Knot Selection

Although polynomial degree and basis selection have a fairly low impact on model fit, the means by

which knots are selected can yield a substantial effect on the model. In their paper, Eilers and Marx

(2010) explore the difference between quantile placement and equidistant placement for knots. My

paper builds on their work and explores the implications of incorporating new strategies for knot

placement.

In their analysis, Eilers and Marx (2010) primarily pair the use of equally spaced knots with PB-

splines but take note of the potential for pairing PT-splines with equally spaced knots rather than the

proposed quantile spacing. This aligns with the existing literature, which indicates that penalized

splines are most often used with equally spaced knots, as quantile spacing tends to produce unevenly

distributed knots which in turn demands the use of weights to the spline functions (Perperoglou

2019).

3.5 Adaptive Knot Placement

There are multiple different approaches for adaptive spline regression, which generates optimal knot

placement for prioritizing model fit. Generally, the estimate for locally adaptive spline regression

is presented in the form given in Equation 3.4, where TV indicates the total variation operator

(Tibshirani and Wasserman 2013).

f̂ = arg min
fk

n∑
i=1

(yif(xi))
2 + λT V (f (k)) (3.4)

A widely known form of adaptive spline placement is the Multivariate Adaptive Regression

Splines (MARS), first presented by Jerome Friedman (1991). MARS functionally uses a two-step

process to produce splines, wherein sets of basis functions are progressively added to the model in

a forward stepwise procedure, while in the backward stepwise procedure, the least effective pair of

basis functions is removed. These steps continue until the model has been grown and pared to a
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point of optimality (Friedman 1991). Unlike the semi-parametric approach to penalization by the

PT-splines and PB-splines outlined by Eilers and Marx, MARS follows an entirely nonparametric

approach.

Another recent paper published by Vivien Goepp, Olivier Bouaziz, and Grégory Nuel (2018)

outlines the potential deviation from penalized spline generation towards the proposed “A-spline.”

Adaptive splines penalize using the `0 norm and produce a relatively low number of knots. In a key

difference from other methods of selecting knots, A-spline methodology is an explicit advancement

of the B-spline basis (Goepp 2018), and so it cannot be paired with other distinct methods of knot

selection such as a quantile or equidistant approach, nor other types of basis functions.

3.6 Potential Contributions

Because of the incompatibility with adaptive spline regression and the selection of a B-spline basis or

TPF-spline basis, expanding on Eilers and Marks’ work leads to the consideration of a third method

for knot placement. To this end, I argue that structural knot placement, using basic properties of

the spline functions and hybridizing between free knot selection and equidistant knot placement,

represents a viable area of furthering the existing literature. Fitting knots based on structural

attributes of the data can be paired with of B-spline bases or TPF-spline bases and can be compared

against evenly placed knot selection and quantile spaced knot selection as distinct methodologies,

allowing for the creation of a 2x3 comparison matrix.

Based on the findings of Eilers and Marx, this paper focuses on the usage of the B-spline basis

function in conjunction with different methods for knot-placement, as this method appears to yield

the best model fit. In contrast to TPF-splines, B-splines also avoid sacrificing the numerical stability

of the regression, which is particularly important for calculating derivatives from the estimated

functions. As quantile-based knot placement was deemed computationally and analytically inferior to

equally spaced knot placement, equal spacing will be used as the foundation for exploring alternative

knot placement techniques. Future research could expand upon either the usage of a quantile-based

knot selection process or the incorporation of an alternative basis, such as the TPF-spline basis used

by Eilers and Marx.
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4 Methodology

In some cases, structural features of a data set are known a priori and can be used to inform a

regression or modeling approach. Alternatively, residuals can be taken from a basic spline regression

and be used to inform the iterative placement of knots in the absence of prior information. These

features can be internalized to a spline regression either by choosing a more complex basis or by

using a B-spline basis with knot selection methodology that extends beyond equal spacing or quantile

spacing. This section explores several different strategies for incorporating structural features of data

while maintaining a B-spline basis selection.

4.1 Equally Spaced Knot Selection

For this analysis, three different methods were used to generate knots: equally spaced placement,

residual based placement, and structural based placement. In all three cases, these knots were then

used to fit a B-spline. In the equally spaced knots case, k knots were selected at even intervals

throughout the data (for example, setting k to 10 resulted in knots being spaced at a distance of

0.2 apart), and a B-spline basis was applied for regression. Models were then evaluated for their

goodness of fit as evaluated through the root mean squared error statistic.

4.2 Residual Based Knot Selection

Although moving away from equally spaced knot selection sacrifices some of the established numerical

stability and quality of model fit, alternative techniques allow for the possibility of internalizing

information into the model that might yield a better fit to the underlying function. In the case

that structural features of the data are not known, the residuals of a given model fit contribute

additional intuition about where knots can be placed to further optimize model fit and fully leverage

the information available. For this approach, the following procedure was used:

1. Fit an initial regression using a B-spline basis and k / 2 equally spaced knots and recover the

residuals

2. Select one new knot using normalized exponentiation of the squared residuals

3. Fit a new spline using the accumulated knots and recover the residuals

4. Repeat steps 2 and 3 until k total knots have been selected

4.3 Normalized Exponentiation Function

In order to assess the merits of using an alternative method for placing knots, an iterative knot

placement method is used in conjunction with a normalized exponentiation, or “softmax,” function

to generate probabilities. This function is noted as Equation 4.1.

pi =
exp(ûi)∑
j exp(ûj)

(4.1)
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First, an initial regression was performed using k / 2 equally spaced knots, and the squared

residuals were calculated at each value along the x axis. Then, “probabilities” were generated at each

x value by exponentiating the squared residuals and scaling against the sum of all exponentiated

squared residuals. These probabilities could then be cumulatively summed at each xi to create

intervals such that the distance between xi and xi - 1 = pi. In turn, these pi were considered as

disjoint events in the complete probability space from 0 to 1. A random number was then selected

on the uniform distribution between 0 and 1 such that the corresponding event in the probability

space, pi, was mapped to a value xi. This x value was taken as a new knot to be added to the

existing k / 2 knots, and the procedure repeated until k knots had been chosen.

This process satisfied two goals: to help prevent over-clustering at regions where the residuals

generated from the regression with k / 2 knots would otherwise be taken directly adjacent to one

another, and to prioritize the relative extremity of the model’s residuals so as to maximize the model

fit.

4.4 Structurally Based Knot Selection

For the simulated data described in the following section, structural features of the dataset could

easily be extracted from the underlying function. This allowed for a method of knot selection that

could potentially be applied to datasets where discontinuities and derivatives are known a priori,

despite this process being less generalizable than the novel residual based knot selection process.

The structurally-based knot approach followed a similar process to the residual approach, wherein

the curvature index of the data was mapped onto a probability space from 0 to 1, and knots were

selected at regions where the second derivative held the most extreme values. Because the curvature

indices were known prior to the regression on the data, there was no need to iteratively regress 0.5 * k

times as with the residual based knot selection method. However, a softmax function was employed

to ensure that knots would not be clustered while still targeting points of structural extremity.

Additional code was appended to the selection function in R to ensure that a single value of x would

not be selected for two distinct knots.
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5 Simulated Data Application

To analyze the goodness of fit of the residual, structural, and equally-spaced knot selection methods,

simulated datasets were generated using four different functions. All of the datasets share the same

primary four variables: an x and a y variable, constituting the values generated by the given function;

a y* variable indicating the “true” value of the function without any noise; and a “curvature index,”

which scaled the absolute value of the second derivative of the function across a specified positive

range (either [0,1], [0,5], or [0,10]), so as to quantify a structural component of the underlying

function in preparation for structural knot selection.

5.1 Fifth Degree Polynomial

The first data set used for this preliminary analysis was generated from the fifth degree polynomial

function shown in Equation 5.1.

y = 5x5 + 3x4 − 10x3 − 2x2 + x (5.1)

From this function, noise was generated using a standard deviation of 0.25, and points were

created at intervals of 0.01 on the domain from -1 to 1, resulting in 201 evenly spaced data points.

Summary statistics are given in Table 1.

Table 1: Fifth Degree Polynomial Function

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

X 201 0.000 0.582 −1 −0.5 0.5 1

Y 201 −0.065 1.872 −3.328 −0.971 0.542 5.162

Ystar 201 −0.061 1.838 −3 −0.9 0.3 5

Curvature.Index 201 1.109 0.891 0.017 0.554 1.424 5.000

5.2 Polynomial Function with Discontinuity

The second data set used was generated from a third degree polynomial function with an added

discontinuity, which is shown in Equation 5.2.

y =

{
4x3 − 2x2 + 1 −0.53 ≤ x ≤ 0.03

4x3 − 2x2 − 1 else
(5.2)

From this function, noise was generated using a standard deviation of 0.25, and points were

created at intervals of 0.01 on the domain from -1 to 1, resulting in 201 evenly spaced data points.

Summary statistics are given in Table 2.

10



Table 2: Polynomial Function with Discontinuity

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

X 201 0.000 0.582 −1 −0.5 0.5 1

Y 201 0.199 1.720 −3.636 −1.078 1.120 5.112

Ystar 201 0.221 1.682 −3 −1.0 1.1 5

Curvature.Index 201 1.950 1.569 0.011 0.903 2.651 10.000

5.3 Sine Function

The third data set used was generated from the sine function, as shown in Equation 5.3.

y = sin(x) (5.3)

From this function, noise was generated using a standard deviation of 0.25, and points were

created at intervals of 0.01 * 2π on the domain from -2π to 2π, resulting in 201 evenly spaced data

points. Summary statistics are given in Table 3.

Table 3: Sine Function

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

X 201 0.000 3.655 −6.283 −3.142 3.142 6.283

Y 201 −0.014 0.716 −1.626 −0.612 0.569 1.409

Ystar 201 −0.000 0.707 −1 −0.7 0.7 1

Curvature.Index 201 0.633 0.311 0 0.4 0.9 1

5.4 Simulated Data Exponential

The fourth data set used was generated from the exponential function shown in Equation 5.4.

y = e(−(ln(x)−0.5)2) (5.4)

From this function, noise was generated using a standard deviation of 0.25, and points were

created at intervals of 0.02 on the domain from 0.01 to 4, resulting in 200 evenly spaced data points.

Summary statistics are given in Table 4.
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Table 4: Exponential Function

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

X 200 2.000 1.158 0.010 1.005 2.995 3.990

Y 200 0.644 0.392 −0.590 0.414 0.930 1.430

Ystar 200 0.664 0.293 0 0.5 0.9 1

Curvature.Index 200 0.180 0.233 0.00000 0.020 0.294 1.000

5.5 Results

Model cross-validation with a 60:40 training/testing ratio was conducted for 1000 iterations for each

technique of knot selection and spline regression. Based on preliminary analysis of RMSE reports

and values of k, models were generated using 5, 10, or 20 knots. The RMSE and RMSE numerical

standard error were gathered from each series of simulations and are listed in Table 5. Example

iterations are shown at k = 10 for each dataset and method in Figure 1.
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Figure 1:
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Table 5: Model Outputs

Polynomial Function

RMSE RMSE NSE

k=5 k=10 k=20 k=5 k=10 k=20

Equal Space 0.05306 0.074088 0.132657 0.000975 0.000829 0.001666

Structural 0.138847 0.363466 3.798587 0.172062 0.109946 1.427978

Residual 0.065054 0.095911 0.174248 0.012305 0.005517 0.009443

Polynomial Function with Discontinuity

RMSE RMSE NSE

k=5 k=10 k=20 k=5 k=10 k=20

Equal Space 0.356342 0.271221 0.271648 0.001077 0.001244 0.004004

Structural 0.363125 0.36105 1.051922 0.006364 0.015684 0.385056

Residual 0.372629 0.414613 0.307968 0.00347 0.078814 0.00895

Sine Function

RMSE RMSE NSE

k=5 k=10 k=20 k=5 k=10 k=20

Equal Space 0.086872 0.096836 0.140028 0.00074 0.00083 0.00175

Structural 0.117827 0.112368 0.286989 0.007952 0.004357 0.050808

Residual 0.121186 0.141403 0.233538 0.004661 0.012426 0.015902

Exponential Function

RMSE RMSE NSE

k=5 k=10 k=20 k=5 k=10 k=20

Equal Space 0.084563 0.107876 0.153639 0.000723 0.000764 0.00143

Structural 0.104255 0.157902 0.199571 0.003873 0.020121 0.012499

Residual 0.11965 0.124476 0.212292 0.021571 0.002348 0.018105

As can be seen in Table 5, the equidistant placement of knots outperformed the other methods at

all values of k, and across all four functions. For the polynomial function with a discontinuity, the sine

function, and the exponential function, the curvature based approach tended to produce a slightly

better fit than the residual knot selection method at low values of k ; however, the residual based

knot selection tended to outperform the structural model for these three functions as k increased

beyond 10.

Notably, the worst performance across all methods and functions was seen at high values of k

for the basic fifth-degree polynomial. The model particularly deteriorated at values of X close to

-1 and 1, partly due to the high values for the second derivative clustered at the edge. This often
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resulted in several knots being placed on the border of the dataset and led to extreme predictions

at the minimum and maximum values where data in the testing set was outside of the domain of

the training set—ultimately resulting in a poor model fit.

5.6 Analysis

Several possible explanations exist for why the equal spacing method outperformed the structural

and residual knot generation methods. In addition to the clustering of knots at the edges of the

domain of the generated functions, it is possible that too many knots were generated following the

alternative approaches. All three methods almost exclusively produced the greatest fit at k = 5,

suggesting that only the first few knots generated from the curvature index or residuals might be

of value towards generating a model. To this end, generating only a few structurally or residually

based knots might be a superior means of supplementing the equally-spaced knot approach rather

than relying on the new approaches for selecting half of the knots used for regressing.

Ultimately, these findings reaffirm the consensus of the existing literature, as the equally spaced

knots produced the best model fit when paired with a B-spline basis. In particular, when half of

the knots used for spline regression are generated based on the curvature of the underlying function,

increasing k to high values rapidly deteriorates the model fit. Figure 2 demonstrates this phenomenon

for the fifth-degree polynomial function, where the x-axis indicates the value of k and the y-axis

reflects the average RMSE over 100 models.
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Figure 2:

Future research could internalize the generation of the curvature index to the iterative knot

selection process, such that after the initial regression using equally spaced splines, the derivatives

of the piecewise functions could be evaluated and used to generate knots for further iterations.

Special attention could also be given to the generation of knots at the borders of the training set

such that knots will not clusters in areas that will ultimately yield a poor model fit to the testing

data, and for varying the proportion of knots generated using the alternative methods.
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6 Demonstrated Application

6.1 Racial Animus Data

To demonstrate how this methodology can be applied to a practical dataset, I used Professor Seth

Stephens-Davidowitz’ “Racial Animus” observations (Chae 2015). Stephens-Davidowitz measured

the percent of Google search queries that included racially charged language for a given geographical

area and used an algorithm to create the “Animus” variable. Animus is scaled between 0 and 250,

with larger values indicating higher racial animus. The variable “ObamaKerry” is calculated as

the percentage of the popular vote won by Barack Obama in the 2008 presidential election when

subtracting the percentage won by John Kerry in 2004. The ObamaKerry and Animus variables are

relatively correlated but share a nonlinear relationship, making the variables ideal candidates for

this applied methodology.

Also included in these data sets is the “BachPlus” variable, which indicates the percentage

of individuals in a given area with a bachelor’s degree or higher level of education. Under the

assumption that education levels are highly determinative of responsiveness of voting behavior to

racial animus, the BachPlus variable contains structural information about the data. Due to this

relationship, BachPlus is used similarly to the curvature index of the simulated data as an input into

the softmax function to calculate where knots should be placed under the structural knot selection

method. Summary statistics for these three variables are given in Table 6.

Table 6: Racial Animus

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Animus 196 99.073 30.599 39.799 78.875 113.164 239.492

ObamaKerry 196 4.511 4.030 −10.975 2.448 7.056 18.602

BachPlus 196 23.415 5.747 12.491 18.782 26.761 42.534

6.2 Results

Model cross-validation with a 60:40 training/testing ratio was conducted for 1000 iterations for each

technique of knot selection and spline regression. Models were fitted using different values of k and

sample RMSE statistics were generated to evaluate model fit. Due to the presence of outliers on the

domain of Animus, models were generated twice over the dataset: once using the complete data,

and once using only points where Animus was between 40 and 200. Model results are given in Table

7, and visualizations for these methods over the complete data set are shown in Figure 3.
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Figure 3:

Table 7: Racial Animus Application

Complete Dataset

RMSE RMSE NSE

k=5 k=10 k=20 k=5 k=10 k=20

Equal Space 17790.35 1958577 4630451 13154.85 1387927 1548361

Structural 388.419 5299.983 7.13E+08 282.3573 3117.584 4.3E+08

Residual 4.880723 2612.166 3.09E+09 0.151593 1448.408 1.72E+09

Filtered Dataset

RMSE RMSE NSE

k=5 k=10 k=20 k=5 k=10 k=20

Equal Space 4.635144 171.883 406790.3 0.130496 54.20774 124123.2

Structural 180.9906 1413.328 45837.93 110.4831 966.0656 17463.37

Residual 3.969452 11.02572 20690.83 0.084653 4.299016 10461.88

6.3 Analysis

The results given in Table 7 reveal the benefit of the residual knot placement technique. Although

all three methods again produced the best model fit at lower values of k, the residual method

outperformed the equidistant knot placement models. Unlike in the simulated data, the “X” variable

of the Racial Animus dataset is irregularly distributed across the x-axis, resulting in regions on the

domain where data are relatively thin. In these cases, the residual model proportionately places

fewer knots relative to the equidistant knot placement model, ultimately minimizing the root mean

squared error of the regression.
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These model outputs also reinforce the prior explanation for the structural knot placement

method underperforming. The most extreme values for the BachPlus variable are concentrated

at the edges of the data, resulting in a higher density of knots in areas that do not benefit the model

fit.
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7 Conclusion

Based on the combined findings from the simulated application and Racial Animus application

of these methodologies, the structural method should not be used in any case. Instead, either the

equidistant or residual knot spacing methods should be used at low values of k depending on whether

data is regularly or irregularly distributed. The equidistant method is particularly sensitive to the

presence of outliers in a data set, which substantially reduce the model’s goodness of fit.
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8 Appendix I: R Code

e q u a l S p l i n e F i t <− f unc t i on ( df , k , f u l l d f=df ){
knots <− equa lknots ( c ( min ( df$X ) ,max( df$X ) ) , k )
model <− lm (Y ˜ bs (X, knots = knots ,

Boundary . knots = c ( min ( f u l l d f $ X ) ,max( f u l l d f $ X ) ) ) ,
data = df )

p r e d i c t i o n s <− model %>%
p r e d i c t ( df )

df <− df %>%
a d d p r e d i c t i o n s ( model )

model
}

s t r u c S p l i n e F i t <− f unc t i on ( df , k , f u l l d f=df ){
knots <− equa lknots ( c ( min ( df$X ) ,max( df$X ) ) , k%/%2)
inds = c ( )
whi l e ( l ength ( knots ) < k ){

df <− df %>%
mutate ( o r i g i n d = row number ( ) )

i f ( ! l ength ( inds )==0){
df1 <− df [− inds , ]

}
e l s e {df1<−df }
denom = sum( exp ( df1$Curvature . Index ) )
df1 <− df1 %>%

mutate ( Pvals = exp ( Curvature . Index )/denom) %>%
mutate ( Cvals = cumsum( Pvals ) )

rn = r u n i f ( 1 , 0 , 1 )
f o r ( i in 1 : l ength ( df1$X )){

i f ( i == 1){
i f ( rn < df1$Cvals [ i ] ) {

index = i
}

}
e l s e i f ( rn < df1$Cvals [ i ] & rn >= df1$Cvals [ i −1]){

index = i
}

}
ind = d f 1 $ o r i g i n d [ index ]
inds <− c ( inds , ind )
newknot = df$X [ ind ]
knots <− c ( knots , newknot )

}
model <− lm (Y ˜ bs (X, knots = knots ) , data = df )
df <− df %>% a d d p r e d i c t i o n s ( model=model )
model

}
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r e s i d S p l i n e F i t <− f unc t i on ( df , k , f u l l d f=df ){
knots <− equa lknots ( c ( min ( df$X ) ,max( df$X ) ) , k%/%2)
inds = c ( )
whi l e ( l ength ( knots ) < k ){

model <− lm (Y ˜ bs (X, knots = knots ) , data = df )
df <− df %>% a d d r e s i d u a l s ( model=model ) %>%

mutate ( uhatsq = r e s i d ˆ2 , o r i g i n d = row number ( ) )
i f ( ! l ength ( inds )==0){

df1 <− df [− inds , ]
}
e l s e {df1<−df }
denom = sum( exp ( df1$uhatsq ) )
df1 <− df1 %>%

mutate ( Pvals = exp ( uhatsq )/denom) %>%
mutate ( Cvals = cumsum( Pvals ) )

rn = r u n i f ( 1 , 0 , 1 )
f o r ( i in 1 : l ength ( df1$X )){

i f ( i == 1){
i f ( rn < df1$Cvals [ i ] ) {

index = i
}

}
e l s e i f ( rn < df1$Cvals [ i ] & rn >= df1$Cvals [ i −1]){

index = i
}

}
ind = d f 1 $ o r i g i n d [ index ]
inds <− c ( inds , ind )
newknot = df$X [ ind ]
knots <− c ( knots , newknot )
}

model <− lm (Y ˜ bs (X, knots = knots ) , data = df )
df <− df %>% a d d p r e d i c t i o n s ( model=model )
model

}
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9 Appendix II: Sample RMSE Statistics for Simulated Data

Sets

Table 8: Model Outputs

Polynomial Function

RMSE RMSE NSE

k=5 k=10 k=20 k=5 k=10 k=20

Equal Space 0.252101 0.261458 0.272785 0.000533 0.000686 0.00123

Structural 0.319492 0.532675 3.922286 0.014932 0.109395 1.427476

Residual 0.257363 0.277179 0.3154 0.001376 0.004968 0.008793

Polynomial Function with Discontinuity

RMSE RMSE NSE

k=5 k=10 k=20 k=5 k=10 k=20

Equal Space 0.450699 0.389712 0.38091 0.001128 0.00105 0.00377

Structural 0.458122 0.470025 1.153672 0.006227 0.015253 0.384834

Residual 0.464759 0.517483 0.415557 0.003231 0.078759 0.008509

Sine Function

RMSE RMSE NSE

k=5 k=10 k=20 k=5 k=10 k=20

Equal Space 0.260221 0.264732 0.290236 0.000519 0.000616 0.001194

Structural 0.281409 0.277879 0.426513 0.007683 0.003905 0.050408

Residual 0.282384 0.303956 0.37125 0.004119 0.011954 0.015198

Exponential Function

RMSE RMSE NSE

k=5 k=10 k=20 k=5 k=10 k=20

Equal Space 0.254392 0.262608 0.277108 0.000448 0.000582 0.001113

Structural 0.267755 0.303832 0.320606 0.003335 0.019748 0.012118

Residual 0.284524 0.268743 0.332782 0.021297 0.001853 0.017723
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