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Abstract 
 

This paper attempts to quantify predictive power of social media sentiment and 

financial data in stock prediction by utilizing a comprehensive set of stock-related 

fundamental and technical variables and social media sentiments. For conducting 

sentiment analysis, this study employs a pretrained finBERT model that provides three 

different sentiment classifications and respective softmax scores. Hence, the significance 

of these variables is evaluated with XGBoost regression and Shapley Additive 

exPlanations (SHAP) frameworks. Through investigating feature importance, this study 

finds that statistical properties of sentiment variables provide a stronger predictive power 

than a weighted sentiment score and that it is possible to quantify the impact features 

make on so-called “black box” models. 

 

Keywords: Feature Importance, Machine Learning, Sentiment Analysis, Shapley Value, 

Stock Prediction, Twitter Sentiment 
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I.   Introduction 

 Predicting stock returns has been one of the contentious topics in modern 

Financial Economics. From his empirical work “Efficient Capital Markets,” Eugene 

Fama found that there is extensive evidence supporting the Efficient Market Hypothesis, 

suggesting that prices of securities “fully reflect” relevant information at any given time: 

Therefore, neither technical nor fundamental analysis is effective in seeking abnormal 

returns consistently under an efficient market condition (Malkiel, 2003). 

 Such notion has been challenged a lot more in recent years as a quick adoption of 

the internet and advancement in computational resources led to various ways to capture 

unrealized information. Such information has been captured in various ways from 

utilizing image recognition on satellite images to implementing a natural language 

processing (NLP) algorithm to capture public sentiment on social media. While a web 

scraping practice on publicly available media had been a contentious topic from a legal 

standpoint, it has been ruled from the HiQ Labs, Inc. v. LinkedIn Corporation case that 

scraping information from a public website does not violate the Computer Fraud and 

Abuse Act (Lee, 2019). As utilizing information captured from the public domain is 

becoming more accepted and adopted, it is imperative to measure the significance of 

using such data from an Economics perspective. 

While there has been extensive research in utilizing advanced machine learning 

algorithms to predict stock returns, there has been a lack of research that attempts to 

define the magnitude of contributions features make on stock predictions. Therefore, this 

paper utilizes nonparametric models to quantify and rank important features utilized in 
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stock predictions. Hence, this thesis contributes to the field of Quantitative Economics 

and Finance by: 

1. Utilizing comprehensive financial data with sentiment scores to derive key 

features for stock returns prediction.   

2. Incorporating game theory framework to quantify feature contribution to the 

predictive power of a “black box” machine learning model, such as an Extreme 

Gradient Boosting (XGBoost) algorithm. 

3. Filling gaps in understanding impacts of social media and information role on 

stock price movements.  



 8 

II. Literature Review 

 While the Efficient Market Hypothesis (EMH) has been influential throughout 

modern Financial Economics, it has been challenged numerous times. Grossman and 

Stiglitz (1980) argue that abnormal returns are present if there is a cost related to 

obtaining such information and that those returns will disappear once the costs are 

properly compensated. Hence, they further contend that the perfect information is 

impossible as there is no economic incentive for investors to search for information if it is 

fully reflected in the market, rendering financial markets obsolete.  

 As a response, Fama (1991) concedes to their arguments in his later paper that the 

strict EMH only works under assumptions of no “information and trading costs” and 

points that a more economically sensible definition suggests that the information is 

reflected in the price to the point where profit that one earns from having the information 

is not greater than the marginal costs associated with obtaining it. In other words, if the 

information is too costly to obtain, no agents in the market are willing to uncover such 

information, which allows markets to follow Random Walk. 

While the above hypothesis had been highly regarded, there have been numerous 

studies in recent years that challenged a notion of a “strong form” of efficiency in stock 

markets. Abu-Mostafa and Atiya (1996) have argued that the existence of numerous price 

trends and “undiscounted serial correlations among fundamental events and economic 

figures” are present in their findings on foreign exchange markets. Hence, Lo, 

Mamaysky, and Wang (2000) utilize a technical pattern recognition approach to conclude 

that the analysis can be beneficial in seeking excess returns. 
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Figure 8: Log Return Prediction Results of Selected Cross-Validated XGBoost Regressions 

 

 As the number of features available for making splitting decisions decreased, it 

can be observed from Figure 9 that F-scores have significantly increased for the top 

features. While the trends that I have highlighted in the baseline models are well reflected 



 31 

for the cross-validated regressions, it is crucial to delve into SHAP values to further 

investigate whether any additional insights can be gained from the cross-validation 

results. 

 From Figure 10, we can observe that the effects of sentiment variables are much 

more pronounced for Apple, Amazon, Microsoft, and Tesla. For instance, high 

score_max_neutral values have significant positive and negative impact equally in 

predicting Amazon returns. However, high score_count_neutral values seem to have a 

negative impact on logarithmic return prediction, suggesting that there could be a high 

degree of ambivalence in public sentiment. Interestingly, score_min_positive is shown to 

have a positive impact on logarithmic returns, another notion that the finBERT variables 

well reflect the public sentiment of Amazon. Similar to the baseline models, the cross-

validated models have strong inverse relationships for high previous days’ log returns, 

volume, and P/E Ratio (except for Tesla).  
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Figure 9: Feature Importance Plot of Selected Cross-Validated XGBoost Regressions 

 

(a) Apple (b) Amazon

(c) Microsoft (d) PayPal
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Figure 10: SHAP Plot of Selected Cross-Validated XGBoost Regressions 
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V. Conclusion and Future Direction 

 As a goal of this paper is to identify how different variables impact stock 

prediction given stock-related sentiment, it clearly has shown that sentiments have 

predictive power and that both fundamental and technical analyses provide a significant 

impact on stock returns. Notably, all three sentiment classifications well reflect their 

presumed impact on stock returns, and some fundamental variables (e.g., P/E Ratio) have 

firm-specific effects in which their influence on the return predictions needs to be 

evaluated based on the qualitative aspects of the assets. 

 There are several implications from this research project. First, we have seen that 

it is more meaningful to assess statistical properties of sentiment variables than a 

weighted average measure. Second, it is possible to quantify the magnitude of impact 

features have on “black box” models, allowing quantitative researchers to incorporate 

qualitative metrics in gauging a firm’s value. Lastly, this study strengthens the notion that 

both fundamental and technical analyses are critical in identifying asset pricing. 

 Despite some success in measuring the impact of certain features on predicting 

stock returns, several issues need to be addressed. First, it is essential to have a larger 

dataset to ensure that we have enough observations for the training and test sets. Second, 

as the Twitter dataset utilized in this study is solely composed of geotagged tweets, it 

would be crucial to acquire non-geotagged tweets to guarantee that they represent the 

tweet population. Lastly, utilizing recurrent neural network techniques (e.g., LSTM) 

could be helpful as they can store memories of past observations, which is crucial in 

working with time-series data.  
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VII. Appendix 

 
Figure A1: Financial Ratios and Fundamental Variables Formulas 

 

 

1. Return on Equity (ROE) =
Net Income

Shareholders’ Equity

2. Return on Invested Capital (ROIC) =
Net Operating Profit After Tax

Total Debt + Shareholders’ Equity

3. Return on Research Capital (RORC) =
Gross Profit

R&D Expenset�1

4. Profit Margin =
Net Income

Total Revenue

5. Asset Turnover =
Total Revenue

Total Asset

6. Financial Leverage =
Total Asset

Shareholders’ Equity

7. Working Capital Turnover Ratio =
Total Revenue

Average Working Capital

8. EBITDA Margin =
EBITDA

Total Revenue

9. Gross Margin =
Total Revenue�Cost of Goods Sold

Total Revenue

10. Operating Margin =
Operating Income

Total Revenue

11. Inventory Turnover =
Cost of Goods Sold

Average Inventory

12. PPE Turnover =
Total Revenue

Average PPE

13. Receivables Turnover =
Total Revenue

Average Accounts Receivable

14. Payables Turnover =
Cost of Goods Sold

Average Accounts Payable

15. Current Ratio =
Current Assets

Current Liabilities

16. Quick Ratio =
Cash and Cash Equivalents+Accounts Receivable

Current Liabilities

17. Opreating Cash Flow Ratio =
Cash Flow From Operations

Current Liabilities

18. Debt Ratio =
Total Debt

Total Asset

19. Debt/Equity Ratio =
Total Debt

Shareholders’ Equity

20. P/E Ratio =
Closing Price

Reported EPS

21. Market Capitalization =
Closing Price

Shares Outstanding

22. Enterprise Value = Market Capitalization+Total Debt�Cash and Cash Equivalents

1


