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Abstract

When it comes to women in professional hierarchies, it is important to
recognize the lack of representation at the higher levels. By modeling
these situations we hope to draw attention to the issues currently plaguing
professional atmospheres. In a paper by Clifton et. al. (2019), they model
the fraction of women at any level in a professional hierarchy using the
parameters of hiring gender bias and internal homophily on behalf of the
applicant. This thesis will focus on a key theory in Clifton et. al.’s analysis
and explain its role in the model, specifically bifrucation analysis. In order to
analyze the results from Clifton et. al., we give an introduction to bifrucation
analysis for the reader. We will then suggest and analyze expansions of
Clifton et. al.’s model and discussion of future directions.
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Chapter 1

Introduction

Ever since women entered the work place, we have been climbing the ladders
of professional hierarchies. Hierarchies are unavoidable in most professional
settings because each institution has a set of professional levels with differ-
ent requirements. Although each employee has the opportunity to climb
through the professional hierarchy, women lack representation in the higher
levels (Clifton et al., 2019a, b). The Women’s Bureau was established within
the United States Department of Labor on June 5, 1920 (Center, 1995). The
Bureau’s role is to "formulate standards and policies which shall promote the
welfare of wage-earning women, improve their working conditions, increase
their efficiency, and advance their opportunities for profitable employment”
(Women’s Buerau, 2021). As of 2021, women make up 8.1% of Fortune
500 Chief Executive Officers (Hinchliffe, 2021), less than 30% of the world’s
researchers are women (UNESCO, 2021), and 26.7% of Congress is made
up of women (Eagleton Institute of Politics, 2021). In 2021, women make
up 50.8% of the United States population, yet are still poorly represented in
professional and political settings. As positions rise within the hierarchy,
the number of women decreases. This phenomenon is called the "leaky
pipeline" effect (Shaw and Stanton, 2012). Over the years many have tried to
explain the reason for this effect using reasons including inherent differences
between the sexes, difference career/life goals, familial obligation, etc (Shaw
and Stanton, 2012). It is imperative that we begin to recognize the lack of
representation for women in professional settings and initiate change. By
initiating this change we will grow our workplaces into more efficient and
diverse communities that celebrate talent. By pointing out the gender bias
in professional settings we allow for previously unconsidered talent to enter
and enhance the company/firm. In order to understand the reasons and
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affects of the “leaky pipeline" effect, we must determine how women move
and rise within a company and illustrate the bias behind the cause.
To do this we will explore the mathematical model and analysis from "Math-
ematical Model of Gender Bias and Homophily in Professional Hierarchies"
written by Sarah Clifton et. al Clifton et al. (2019b) Clifton et al. (2019a).
Clifton et. al. cites many references on women leaders and the role that
women pay in different professional hierarchies (Clifton et al., 2019b) (Clifton
et al., 2019a). Clifton et. al. refers to the "one-third hypothesis" (Srikantan,
1968) as a basis for the homophilic theory included in her paper. The
"one-third hypothesis" suggests that an individual (male or female) feels
most comfortable in a group setting when at least 30% of the group is similar
to them in demographic. Additionally, Clifton et. al. uses bifurcation theory
in order to understand the behavior of the professional hierarchies shown in
the graphs. (Data fitting and dervies conclusions)
In Chapter 2, we provided an introduction and explanation of bifurcation
theory. Then in Chapter 3 we will analyze Clifton et. al. (Clifton et al., 2019a)
(Clifton et al., 2019b) in order to understand how bifurcation theory applies
to each of the models discussed in the paper. Lastly in Chapter 4 we will
then explore some preliminary expansions to Clifton et. al.’s model, and
discuss future directions.



Chapter 2

Bifurcation Analysis for Model
Background

A dynamical system of ordinary differential equations display some specific
behavior. Consider the following ODE taken from (Strogatz, 2018)

3G

3C
= 5 (G;�) (2.1)

which is dependent on the parameter value � ∈ ℝ. If some parameter value
of the system changes, the behavior of the system may change. We care to
investigate this because we want to see which parameters affect the system
in different ways. The transition point that marks the change of the behavior
is called the bifurcation point. The stability of the equilibria points are
used to determine the qualitative behavior of one-dimensional continuous
dynamical systems, and therefore all bifurcations are associated with the
bifurcation of the equilibria. The equilibrium bifurcation point is labeled
as (G0 , �0) and specified using the critical value of � at which the transition
occurs.

Below we give a brief overview with the aim to understand the analysis
in (Clifton et al., 2019a), for a more in depth study of bifurcation analysis we
direct the reader to (Strogatz, 2018).

2.1 One-Dimensional Bifurcations

We will focus on the following one-dimensional equilibrium bifurcations in
section 2.1 as described by their ODEs (Strogatz, 2018):
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Saddle-node: 3G

3C
= � − G2 (2.2)

Pitchfork: 3G

3C
= �G − G3 (2.3)

2.1.1 Saddle-node Bifurcations

Consider the example ODE taken from (Strogatz, 2018)

3G

3C
= G2 + �. (2.4)

First looking at � > 0 we see that there is no real solution, since there is no
value of � that would allow the above equation (2.4) to equal 0, and therefore
no equilibria:

3G

3C
= 0 = G2 + �

G2 = −�

G = ±√−�. (2.5)

Next, we look at � = 0:

3G

3C
= 0 = G2 + �

G2 = 0 (2.6)

Thus, when � = 0 there is one equilibrium point, G = 0. This fixed point is a
half-stable equilibrium point, since this equilibrium point is where the ODE
transforms from stable to unstable.
Lastly, we look at when � < 0 and we see that there are two equilibrium
points:

3G

3C
= 0 = G2 + �

G2 + � = 0

G2 = −�

G = ±√−� (2.7)



One-Dimensional Bifurcations

We can identify the stability of these equilibrium points using the stability
theorem (Hale, 1963):

if 5 ′(G∗) < 0 then the equilibrium G(C) = G∗ is stable (2.8)

if 5 ′(G∗) > 0 then the equilibriumG(C) = G∗ is unstable

Thus, the equilibrium point at √−� is unstable and the equilibrium point at
−√−� is stable. This bifurcation is called a saddle-node bifurcation. The two
equilibrium points converge at the bifurcation point, combine and disappear.

Figure2.1 An example of a saddle-node bifurcation where the graph changes
from stable to unstable at the shown equilibrium point. The dashed line is un-
stable while the solid line is stable.

Within the category of saddle-node bifurcations, there are subcritical saddle-
node bifurcations and supercritical saddle-node bifurcations. We define a
subcritical bifurcation as a saddle-node bifurcation point where the equi-
libria values exist below the bifurcation point. A supercritical saddle-node
bifurcation point is defined as a saddle-node bifurcation where the equilibria
values exist above the bifurcation point. In the above example [2.4], the bi-
furcation point is at (0, 0), and because we have our saddle-node bifurcation
when � < 0 we label this bifurcation as a subcritical saddle-node bifurcation.
The name saddle-node comes from the two-dimensional dynamical system
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in which two equilibria, a saddle point and a node, collide and cancel each
other out. In a one-dimensional phase plane, the saddle point equilibria will
be the stable point, and the node equilibria will be the unstable point.

2.1.2 Pitchfork Bifurcation

Consider the example ODE taken from (Strogatz, 2018):

3G

3C
= �G − G3 (2.9)

First considering the ODE when � > 0:

3G

3C
= 0 = �G − G3

�G − G3 = 0

G(� − G2) = 0

G = 0 & � − G2 = 0

G = 0 & � = G2

G = 0 & G = ±√� (2.10)

When � > 0, there are three fixed points at G = 0 and G = ±√�. Using the
stability theorem 2.8 we analyze the stability of these fixed points. The fixed
points at G = ±√� are stable equilibria, but the fixed point at G = 0 is an
unstable equilibrium. Thus, when � > 0 there are two stable equilibria.
Next, let us examine the ODE when � ≤ 0:

3G

3C
= 0 = �G − G3

�G − G3 = 0

G(� − G2) = 0

G = 0 & � − G2 = 0

G = 0 & � = G2

G = 0 & G = ±√� (2.11)

Thus, when � ≤ 0 there is only one stable equilibrium point at G = 0. This
fixed point is a stable equilibrium point that bifurcates into the two stable



Two-Dimensional Bifurcations

fixed points when � > 0.

Figure 2.2 An example of a pitchfork bifurcation where a stable graph splits
into a saddle-node bifurcation at the shown equilibrium point. The solid or-
ange line represents the stable part of the ODE prior to the pitchfork bifurca-
tion. The point represents the origin, where the bifurcation happens and spits
into the stable (solid line) and the unstable (dashed).

This bifurcation from one stable fixed point to two stable fixed points is what
creates the "pitchfork" shape of the bifurcation. We now define a pitchfork
bifurcation as the division of one stable branch into two stable branches
within a solution to an ODE.

2.2 Two-Dimensional Bifurcations

Now that we have described one-dimensional equilibrium bifurcations, we
will look at two dimensional bifurcations. Two dimensional bifurcations
occur in a planar system (Strogatz, 2018) in contrast to one-dimensional
bifurcations seen in section 2.1.

Consider
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3G

3C
= 5 (G;�) (2.12)

3H

3C
= 6(H;�)

where � ∈ ℝ is a parameter value.
In this section we will analyze two different two-dimensional bifurcations
seen in Clifton et. al. (Clifton et al., 2019b, a).

2.2.1 Hopf Bifurcation

A Hopf Bifurcation occurs when a limit cycle that surrounds an equilibrium
point appears or disappears as a parameter value, � varies. Consider the
example system of ODEs taken from (Munõz Alicae, 2011):

3G

3C
= G(� − G2) (2.13)

3H

3C
= −1

The origin, (0, 0) is the only fixed point of this system. First we look at the
system when � > 0:

3G

3C
= G(� − G2)

When � > 0 we see that 3G
3C < 0 for G ∈ (√�,∞) and 3G

3C > 0 for G ∈ (0,√�).
Thus, using the stability theorem 2.8, we can conclude that the origin is
unstable and there is a stable orbit G =

√
�. An orbit is formed here because

the solution is defined on an interval rather than a single point.
Looking at the equation above, we see that if � = 0, then:

3G

3C
= −G3

For any non-zero G, 3G3C < 0 which means there are no closed orbits, and
our trajectories will approach the origin as C −→ ∞. We know there are no
closed orbits because there doesn’t exist any point G where 3G

3C = C which
means there is no closed point of the orbit. From this we can conclude there
are no closed orbits.
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Figure 2.3 An example of a supercritical Hopf bifurcation recreated from fig-
ures in (A. Kuznetsov, 2006)

Lastly, we will consider � < 0:

3G

3C
= G(� − G2)

We see that � − G2 < 0 for all x, and therefore, as we saw above when � = 0,
there are no closed orbits. The origin is a stable focus of the system because
the system orbits around the origin. The last thing we must consider for
our Hopf bifurcation is the meaning of the second part of our system of
ODEs (2.13): 3H

3C = −1. Because 3H

3C < 0 and is negative, we can say that all
trajectories of our bifurcation will move clockwise around the origin.
We can further define Hopf bifurcations by exploring supercritical and
subcritical Hopf bifurcations. A supercritical Hopf bifurcation occurs when
a stable spiral changes into an unstable spiral that is surrounded by a small
limit cycle.
The above example 2.2.1 is classified as a supercritical Hopf Bifurcation
because when � < 0, the system is stable and when � grows and � > 0, the
system becomes unstable.
In contrast to the supercritical bifurcation, a subcritical Hopf bifurcation the
system is destabilizing and the limit cycles oscillate away from the origin.
Here we see that as � increases, the unstable cycle shrinks towards the fixed
point.
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Figure 2.4 An example of a subcritical Hopf bifurcation recreated from fig-
ures in (A. Kuznetsov, 2006)

The subcritical Hopf bifurcation occurs at � = 0 because that is where the
unstable cycle has zero amplitude and surrounds the fixed point, making it
unstable.

2.2.2 Homoclinic Bifurcation

This is a brief introduction which we will use in Section 3.8 with (Clifton
et al., 2019a)(Clifton et al., 2019b). We saw in 2.2.1 with Hopf bifurcations
a limit cycle that moves towards a fixed point of the system. Homoclinic
bifurcations are similar, except here a limit cycle moves towards a saddle
point. Consider the system example from (Strogatz, 2018):

3G

3C
= H (2.14)

3H

3C
= �H + G − G2 + GH

We say that the bifurcation occurs when � = �1 . The value �1 refers to the
bifurcation point. Looking at when � < �1 , we see a stable limit cycle that
passes close to a saddle point at the origin. As � increases towards �1 the
limit cycle grows and pushes towards the saddle, which is what creates
the homoclinic orbit. Once � > �1 , the saddle connection breaks and limit
cycle disappears. Different than the other bifurcations we discussed, the
important characteristic of homoclinic bifurcations is the unstable saddle.
This is because as a homoclinic bifurcation occurs, the orbit grows and
intersects the saddle and overwhelms it. We focus on the unstable saddle
because it is how we can spot that a homoclinic bifurcation occurs.



Chapter 3

Analysis of (Clifton et al.,
2019a)

In this section we will examine the paper by Clifton et. al., reproducing
model construction and analysis as well as including additional explanations
(Clifton et al., 2019a, b). Note that all figures included from (Clifton et al.,
2019b) are used with permission from Prof. Sara Clifton.

3.1 Introduction to Paper’s Background

Women are poorly represented in many professional disciplines, but there is
an apparent lack of representation in professional hierarchies. The paper
by Clifton et. al. defines a professional hierarchy as "a field in which an
employee enters at a designated low level and gradually moves up the ranks"
(Clifton et al., 2019a). The "leaky pipeline" effect has been around for decades
and many qualitative theories have been proposed to explain it (Shaw and
Stanton, 2012). These qualitative theories, however, are contingent on the
assumption that men and women make different decisions due to either
biological differences or social persuasion. While there have been attempts
at creating quantitative models that explain the leaky pipeline, these models
assume logistic growth and eventual gender parity which is unrealistic
(Shaw and Stanton, 2012). The Clifton et. al. paper aims to model how both
gender bias and homophilic tendencies affect the progression of women
within professional hierarchies (Clifton et al., 2019a).
Studies have shown that, taking into account work ethic and attrition,
women rise slower in professional hierarchies than men do (Kumra and
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Vinnicombe, 2008). From this we can reasonably deduce that gender is a
notable factor during the hiring process, and therefore gender bias exists
within professional hierarchies. Gender bias is defined as "all conscious or
unconscious decisions made by the employer during the hiring process that
are affected by the gender of the applicant" (Clifton et al., 2019a). We also
define homophily to be the tendency for people to look for and be drawn
towards those who are similar to themselves. This means that when an
applicant is deciding whether or not to apply for a promotion, they will
consider the demographics of the level above them and judge if they "belong"
at that higher level. With the understanding that both the applicant and the
employer play a role in promoting an applicant within the hierarchy, the
following model is proposed.

3.2 Model Set-Up

We understand that the applicant and the employer affect the distribution of
promotions through homophily and gender bias, respectively. The Clifton
et. al. paper assumes that gendered hiring bias is constant for all levels
within the hierarchy (Clifton et al., 2019a). This means that an employer will
reduce or improve female applicant’s chance of promotion uniformly at all
levels of the hierarchy. We also assume that hierarchies remain consistent
over time, meaning promotional requirements remain constant and that
each individual must rise linearly through the hierarchy.
An important assumption made in the paper is that gender bias and ho-
mophily are constant over time and within the hierarchy (Clifton et al.,
2019a). Although it is unrealistic to assume that gender bias and homophily
do not vary from lower levels to higher levels, this assumption is necessary
in order to avoid overfitting the model.
Lastly, the model ignores the fact that women and men might make different
decisions (Clifton et al., 2019a). They assume that women and men are
equally biased towards a certain gender during the hiring process and that
women and men are equally qualified for each position.



Example

Figure 3.1 This chart visualizes a professional hierarchy and how both gen-
der bias and homophily will a�ect the promotional opportunities of both gen-
ders. Recreated from Figure 2 in (Cli�on et al., 2019b)

3.3 Example

Let us consider the promotional process within a financial institution. For
the purpose of this example we assume that the institution has only 2
hierarchical levels. If the lower level is 30% women and gender is not a factor
in deciding eligibility for promotion, then 30% of women are eligible for
promotion. But, if the higher level has less women, then these 30% may be
less likely to apply for the promotion due to the lack of similar representation
above them (Clifton et al., 2019b).
If these instincts are present, then we can say that the men in the lower level
are more likely to apply for a promotion. Say they are twice as likely to
apply for a promotion to the higher level. Then, the applicant pool will
reduce to only 15% women. If again we consider that gender is not a factor
in promotion, then 15% of women will be granted a promotion. If we
now include gender bias as a factor in determining promotion, then the
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percentage of women will shrink further from 15%. As seen in Figure 3.1, we
can expand this process to multiple hierarchical levels within an institution
(Clifton et al., 2019b).

Figure 3.2 Visual representation of the example in Section 3.3. The chart de-
picts all four comobination models discussed in Cli�on et. al. using percentage
rates used in the example 3.3 Cli�on et al. (2019b, a)

3.4 Derivation

Let us assume that the probability of seeking a promotion, %(D, E), is a
function of the fraction of people at the upper level who share the applicant’s
gender, D, and the fraction of like-gendered people in the applicant’s current
level, E. The model assumes that there exists a flexible threshold of each
individual’s comfort at their current level. Including all of these factors
into the probability of seeking a promotion, we get the following function



Derivation

(Clifton et al., 2019b, a):

%(D, E) = 1
1 + 4−�(D−E)

(3.1)

where � is the strength of an individual’s homophilic tendencies. This
equation makes sense because the probability of an individual seeking a
promotion should depend on both the applicant’s similarities with those
above them as well as with those in there current level. This would be
information that a rational applicant would consider prior to applying for a
promotion. This probability function does not include gender specification,
therefore we can say that this applies to both women and men. Looking at
our example in Section 3.3 the number of people who apply for a promotion
depended on homophily which is what is being represented in this function.
From here we can calculate the fraction of women seeking a promotion at
each level by label D as the fraction of women in the higher level and E is the
fraction of women in the current level. Using these variables, we calculate
(Clifton et al., 2019b, a):

50 = (D, E) = E%(D, E)
E%(D, E) + (1 − E)%(1 − D, 1 − E) (3.2)

This function (3.2) fails to include outside bias from the hiring employers.
Therefore we incorporate the constant 1 into our function as the fraction of
women promoted if the applicant pool has an equal number of women and
men (Clifton et al., 2019b, a):

50 = (D, E; 1) = 1E%(D, E)
1E%(D, E) + (1 − 1)(1 − E)%(1 − D, 1 − E) (3.3)

Note that if bias that exceeds 1
2 , 1 > 1

2 , indicates that women are favored
disproportionately to men, and a bias less than 1

2 , 1 <
1
2 , indicates that men

are favored disproportionately to women (Clifton et al., 2019a, b).
From here we can say that the change in the number of women at each level,
G 9#9 as seen in Figure 3.1:

3

3C
(G!#!)︸     ︷︷     ︸

the change in the number of women at each level

=

the number of women promoted︷                  ︸︸                  ︷
'!#! 5 (G! , -!−1; 1) − '!#!G!︸   ︷︷   ︸

the number of women retiring

(3.4)



16 Analysis of (Clifton et al., 2019a)

This equation represents the change in the number of women at the 9Cℎ level
and is dependent solely on the women promoted from the lower level and
the women who leave the 9Cℎ level to retire. This makes sense because the
number of jobs available at any given level is dependent on the number of
people who leave that level, which is described in this equation.

3

3C
(G 9#9) =

( !∑
:=9

':#:

)
5 (G 9 , G 9−1; 1) − ' 9#9G 9 −

( !∑
:=9+1

':#:

)
5 (G 9+1 , G 9 ; 1)

where 1 < 9 < !

This equation is a generalized version of the previous equation (3.4). This
equation describes the number of jobs available at any given level and
therefore takes into account the number of people who are promoted into
that level, the number of people who retired out, and then the people who
leave the level to be promoted into the next level. The resulting constant is a
representation of the number of jobs available at that level.

3

3C
(G1#1) =

( !∑
:=1

':#:

)
5 (G1 ,

1
2; 1) − '1#1G1 −

( !∑
:=2

':#:

)
5 (G2 , G1; 1)

Next, we normalize the system by dividing each equation by the number
of people at the 9Cℎ level who retire or leave the level, ' 9#9 . We do this so
that our previous set of equations (3.4) will all be re-scaled to have a common
scale. In order to do this we dividing by a norm, which is the number of
people at the 9Cℎ level who retire or leave the level, ' 9#9 :

1
'!

3G!

3C
=

promoted from lower level j︷          ︸︸          ︷
5 (G! , G!−1; 1) −

retire out of level L︷︸︸︷
G! (3.5)

1
' 9

3G 9

3C
= (1 + A 9) 5 (G 9 , G 9−1; 1)︸                   ︷︷                   ︸

promoted into level 9 from level 9 − 1

− G 9︸︷︷︸
leave level 9

− A 9 5 (G 9+1 , G 9 ; 1)︸           ︷︷           ︸
promoted to level 9 + 1 from level 9

(3.6)

where 1 < 9 < !

1
'1

3G1
3C

= (1 + A1) 5 (G1 ,
1
2; 1)︸                ︷︷                ︸

hired from the general pool into level 1

− G1︸︷︷︸
leave field

− A1 5 (G2 ,
1
2; 1)︸         ︷︷         ︸

promoted to next level

(3.7)



Null Model

This system can be condensed if we take A! = 0 and G0 = 1
2 (Clifton et al.,

2019b, a). We refer to Table 1 for descriptions of the model parameters.

Variable Meaning
G 9 Fraction of people in the 9Cℎ level

who are women
! Number of levels in the hierarchy
' 9 Retirement/leave rate at the 9Cℎ level
#9 Number of people in the 9Cℎ level
A 9 Ratio of the total retiring people

above the 9Cℎ level to the retiring
people in the 9Cℎ level

%(·) Likelihood of seeking promotion
5 (·) Fraction of people promoted to next

level who are women
1 Bias toward or againstwomen (1 = 1

2
is no bias)

� Strength of homophilic tendency

Table 3.1 Model variables and parameters. Recreated from Table 1 in (Cli�on
et al., 2019b)

We refer to the normalized set of equations for the various models we will
explore in the rest of this chapter.

3.5 Null Model

First, let us consider the Null model (Clifton et al., 2019b, a) with no hiring
bias (1 = 1

2 ) and no homophily (� = 0). Therefore a woman working at a
company with this model would have an equal chance of being promoted
as a man as well as no internal bias influencing her decision to apply for
said promotion. This is called the Null model because it associated with the
"zero-value" of each parameter. We start by calculating the probability of an
applicant seeking a promotion using (3.1):
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%(D, E) = 1
1 + 4−�(D−E)

=
1

1 + 4−(0)(D−E)

=
1

1 + 40

%(D, E) = 1
2

Therefore, we have %(D, E) as a constant, specifically 1
2 which means that

the likelihood of seeking a promotion is equal for both women and men.
Next, we can use our calculated value of %(D, E) to determine the fraction of
women who are promoted to the next level:

5 (D, E; 1) = 1E%(D, E)
1E%(D, E) + (1 − 1)(1 − E)%(1 − D, 1 − E)

=
(12 )(E)( 12 )

( 12 )(E)( 12 ) + ( 12 )(1 − E)( 12 )

=

1
4E

1
4E + 1

4 (1 − E)
5 (D, E; 1) = E

This means that that the fraction of women promoted to each level is entirely
dependent on the fraction of people in the applicant’s current level that are
like-gendered. This makes sense for the Null model because it is already
assumed that the applicant does not consider the fraction of like-gendered
people in the level above them.
Lastly, we want to look at the change in the number of women at the 9Cℎ
level. To do this we take our values for %(D, E) and 5 (D, E; 1) and apply them
to our model (3.4).

1
' 9

3G 9

3C
= (1 + A 9) 5 (G 9 , G 9−1; 1) − G 9 − A 9 5 (G 9+1 , G 9 ; 1)

1
' 9

3G 9

3C
= (1 + A 9)G 9−1 − G 9 − A 9G 9

(3.8)



Homophily-Free Model

We want to understand the different components of this model:

1
' 9

3G 9

3C︸ ︷︷ ︸
Number of women hired from the (9 − 1)Cℎ level

= (1 + A 9)G 9−1︸       ︷︷       ︸
Number of women leaving the field

− G 9 − A 9G 9︸    ︷︷    ︸
Number of women promoted to the 9Cℎ level

The only steady state of this model is {G∗
9
} = { 1

2 } because that is where the
model will converge to over time. Without gender hiring bias and homophily,
every level of the hierarchy will converge towards having equal gender rep-
resentation since applicants won’t consider the fraction of like-gendered
individuals and gender won’t be considered in hiring.

3.6 Homophily-Free Model

Next, we consider the Homophily free model which has no internal bias
(� = 0). This model includes outside hiring bias which means that 1 ≠ 1

2 . In
order to explore this model we start by determining the probability of an
applicant applying for a promotion:

%(D, E) = 1
1 + 4−�(D−E)

=
1

1 + 4−(0)(D−E)

=
1

1 + 40

%(D, E) = 1
2

As we saw in the Null model (3.5), the probability is a constant. Using this
value we can calculate the fraction of women who are promoted to the next
level:
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5 (D, E; 1) = 1E%(D, E)
1E%(D, E) + (1 − 1)(1 − E)%(1 − D, 1 − E)

=
(1)(E)(12 )

(1)(E)(12 ) + (1 − 1)(1 − E)( 12 )

5 (D, E; 1) = 1E

1E + (1 − 1)(1 − E)
The model reduces to:

1
' 9

3G 9

3C
= (1+ A 9)

1G 9−1

1G 9−1 + (1 − 1)(1 − G 9−1
) − G 9 − A 9

1G 9

1G 9 + (1 − 1)(1 − G 9)
(3.9)

with the following breakdown of the components:

1
' 9

3G 9

3C
=

number of women hired from the (9 − 1)Cℎ level with bias included︷                                  ︸︸                                  ︷
(1 + A 9)

1G 9−1

1G 9−1 + (1 − 1)(1 − G 9−1
−

number of women leaving the field︷︸︸︷
G 9

− A 9
1G 9

1G 9 + (1 − 1)(1 − G 9)︸                      ︷︷                      ︸
number of women promoted to the 9C ℎ level with bias included

As we saw in the Null model (3.5), the Homophily-free model has a single
fixed point (Clifton et al., 2019b, a) which tells us that the model converges
to a single point. In this model we see that the inclusion of hiring gender
bias moves the gender away from gender parity. For a woman working
in a company where bias is included, she will have a harder time being
eligible for promotion, which will result in less women promoted. This will
ultimately lead to a biased work place in favor of men.

3.7 Bias-Free Model

After considering a Homophily-free model Section 3.6 we now want to
consider a model where people self-segregate based off of gender, but an
employer has no hiring bias (1 = 1

2 ).
First we want to derive the probability function we will use in this model:

%(D, E) = 1
1 + 4−�(D−E)



Bias-Free Model

In the previous models we saw that the probability was constant; however,
in this model, the probability is not constant since � ≠ 0. This means that
the probability of a woman seeking a promotion in a unbiased environment
is no longer constant. This means that the probability of a woman applying
will depend on the fraction of like-gendered individuals in levels above her.
This fraction changes depending on the individual and the level which is
what causes the probability to not be constant. This is most likely due to the
fact that there is wavering homophily within each individual. We now want
to calculate the fraction of women promoted to the next level:

5 (D, E; 1) = 1E%(D, E)
1E%(D, E) + (1 − 1)(1 − E)%(1 − D, 1 − E)

=
(12 )(E)%(D, E)

(12 )(E)%(D, E) + ( 12 )(1 − E)%(D, E)

5 (D, E; 1) = E%(D, E)
E%(D, E) + (1 − E)%(D, E)

From this, the model reduces to:

1
' 9

3G 9

3C
= (1+A 9)

E%(G 9 , G 9−1)
G 9−1%(G 9 , G 9−1) + (1 − G 9−1)%(G 9 , G 9−1)

−G 9−A 9
G 9%(G 9+1 , G 9)

G 9%(G 9+1 , G 9) + (1 − G 9)%(G 9+1 , G 9)

1
' 9

3G 9

3C
= (1 + A 9) 5 (G 9 , G 9−1; 1) − G 9 − A 9 5 (G 9+1 , G 9 ; 1) (3.10)

for1 ≤ 9 ≤ !

As we alter the homophily (�) we see three different models with different
qualitative behaviors. The paper describes mild homophily as � = 2, moder-
ate homophily as � = 3, strong homophily as � = 4.5, and finally strongest
homophily � = 5 (Clifton et al., 2019b, a). We will investigate each of these
homophilic tendencies in order to better understand the bifurcation that
occurs. First let us evaluate the fraction of women at the 9Cℎ level for each
of the homophily levels listed. Note that Figures 3.3, 3.4, 3.5, and 3.6 are
replications from (Clifton et al., 2019b, a) using Supplementary Material
MATLAB codes.
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Figure 3.3 We see that when mild homophily (� = 2) exists, all levels of
the hierarchy converge towards gender equity a�er oscillating above and be-
low gender equity for some time. This figure is a replication from (Cli�on et al.,
2019b, a) using Supplementary Material MATLAB codes.

Figure 3.4 We see for moderate homophily (� = 3), the fraction of women
oscillate about gender equity except for the lowest level which rises towards
gender equity. This figure is a replication from (Cli�on et al., 2019b, a) using
Supplementary Material MATLAB codes.



Bias-Free Model

Figure 3.5 For strong homophily (� = 4.5), we see a preference towards
men until an individual reaches the top level and then the fraction of women
continues to rise. This figure is a replication from (Cli�on et al., 2019b, a) using
Supplementary Material MATLAB codes.

Figure 3.6 For the strongest homophily (� = 5), we look at the tendencies of
both men and women. The dotted lines represent the behavior of men and the
solid lines represent the behavior of women. This figure is a replication from
(Cli�on et al., 2019b, a) using Supplementary Material MATLAB codes.
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Notice how as the amount of homophily increases, the fraction of women
moves from stable equilibrium about gender equity to an unstable oscillation
around gender equity and then settles with strong preference toward either
gender (Clifton et al., 2019b, a). For a woman at a company with this model
the fraction of women and men will eventually trend towards favoring one
or the other. This is what creates our bifurcation. We can see this trends
put together in Figure 3.7 from (Clifton et al., 2019b). We can see that
as homophily increases from � = 3 to � = 4 that the oscillations become
unstable which is why our Hopf bifurcation happens around � = 3.4. We
interpret this to mean that when homophily is below 4, the fraction of
women at a given level is estimated to be 1

2 . This leads us to believe that
any homophily under 4 is not strong enough to deter a woman for applying
for a promotion which would explain the gender equity seen. We then see
that as homophily grows further to � = 4.5, the oscillations create a limit
cycle and a pitchfork bifurcation happens. We interpret this to mean that
homophily becomes strong enough to influence an applicant’s decisionwhen
homophily is greater than 4. The pitchfork bifurcation can be interpreted as
an applicant’s non-constant decision to apply for a promotion. The model
bifurcates because if a the (9 + 1)Cℎ level has a large fraction of women, then
the applicant will apply. But, if the (9 + 1)Cℎ level has a small fraction of
women then the applicant will be deterred from applying. Finally when
� = 5 we see that the two genders become stable again which is shown in
Figure 3.7 from (Clifton et al., 2019b).
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Figure 3.7 Bifurcation graph of the bias-free model from (Cli�on et al.,
2019b) included with permission from Prof. Sara Cli�on.

3.8 Model with Homophily and Bias

To explore the full model including both homophily (� ≠ 0) and bias (1 ≠ 1
2 )

understand that the the long-term dynamics are similar to the bias-free
model. Similar to the bias-free model Section 3.7, the probability that an
individual will apply for a promotion is not constant.

%(D, E) = 1
1 + 4−�(D−E)

We then look at the fraction of people promoted to the next level who are
women and see that we cannot substitute in our bias because we do not have
a constant value for 1.

5 (D, E; 1) = 1E%(D, E)
1E%(D, E) + (1 − 1)(1 − E)%(1 − D, 1 − E)

Thus, the model reduces to the full model (3.4). Now, we want to alter the
homophily and the hiring bias in order to explore how it affects the behavior
of the fraction of women in each level. To do this let gender bias be 1 = 0.45
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so that we have a slight bias against women and then homophily will vary
to mild (� = 2), moderate (� = 3), strong (� = 4.5), and strongest (� = 5).
Note that Figures 3.8, 3.9, 3.10, and 3.11 are replications from (Clifton et al.,
2019b, a) using Supplementary Material MATLAB codes.

Figure 3.8 Here � = 2 and all hierarchies are stable below gender equity.
This figure is a replication from (Cli�on et al., 2019b, a) using Supplementary
Material MATLAB codes.
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Figure 3.9 Here � = 3 and the model becomes unstable and oscillates
around gender equity. This figure is a replication from (Cli�on et al., 2019b, a)
using Supplementary Material MATLAB codes.

Figure 3.10 Here � = 4.5 and the model remains unstable oscillating
through a limit cycle. This figure is a replication from (Cli�on et al., 2019b, a)
using Supplementary Material MATLAB codes.
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Figure 3.11 Here� = 5 and the model starts o� unstable but reaches stabil-
ity at a small fraction of women. This figure is a replication from (Cli�on et al.,
2019b, a) using Supplementary Material MATLAB codes.

As we did with the bias-free model, we can look at the trends of this model
on a larger graph in order to see how they interact. Point (A) on Figure 3.12
is representative of the stable behavior we see when � = 2. For a woman
in the company this means that there is a very short period of time where
homophily is not strong enough to influence her decision. There is a Hopf
bifurcation that occurs in the same place that we saw in the bias-free model.
After the Hopf bifurcation at point (B), there is an unstable limit cycle that
stems from the oscillations we see about gender equilibrium when � = 3.
We interpret this as a steady decline in the fraction of women at an given
level. This is when the model becomes unstable and the homophily begins
to affect an applicant’s decision. The limit cycle continues on through point
(C) where the behavior mirrors the behavior at � = 4.5. We see another Hopf
bifurcation occur and the model becomes stable again. Point (D) is labeled
to be the stable behavior seen when � = 5. If we were to change our initial
conditions to be larger, then point (D) would move up to the saddle-node
bifurcation seen at the top of the graph. If we were to do this, we would see
the saddle-node bifurcation that shows the strong preference towards either
gender that we saw previously.
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Figure 3.12 The pitchfork bifurcation we saw in the bias-free model degen-
erates and unfolds itself into a saddle node bifurcation and a fixed point curve.
Graph included from (Cli�on et al., 2019b) with permission from Prof. Sara
Cli�on.

3.9 Data and the Model

Now that we have seen all the different variations of gender bias and
homophily within a professional hierarchy. We can look at how these two
variables compare within different fields.
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Figure 3.13 Comparison of homophily and gender bias within di�erent pro-
fessional fields. Figure included from (Cli�on et al., 2019b) with permission
from Prof. Sara Cli�on.

This figure showsus a breakdownof different professional fields by analyzing
their bias and general homophily. We see that as homophily increases
gender becomes more of a factor when an applicant is deciding to apply for a
promotion. We see in the colored graph on the side that when we take these
two factors into account we can determine the average long term fraction
of women in the given professional field. Professions with warmer color
identification have a much smaller long term fraction of women at the top
level of the hierarchy.
Many of these professional fields gather around 1 = 1

2 and � = 4, but some
fields fall to extreme values. Nursing has low bias and high homophily
meaning that there is extreme hiring bias towards women and gender is
a large factor when an applicant is deciding whether or not to apply for
an application. In contrast, politics has a high bias meaning it’s favorable
towards women and a slightly lower homophily than nursing.
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3.10 Discussion

This model makes several assumptions that inhibit its application to the
real world (Clifton et al., 2019a, b). The first assumption is that men and
women can make different decisions when it comes to hiring and promo-
tional decisions. We can not realistically assume that men and women on
hiring committees have the same bias towards a specific gender. A possible
extension to this model would be to split up the decisions made by men and
women on hiring committees.
The extension we will focus on in the next part of the paper addresses the
issue of a linear hierarchy, in Section 4.1. The Clifton et. al. model assumes
that each individualmust ascend linearly through the hierarchy (Clifton et al.,
2019a, b). This means that everyone enters at the lowest level and can only
be promoted one level at a time. This is unrealistic because there are many
instances where people are hired from the outside to fill positions with high
authority. In Section 4.1, we explore possible extensions to address this issue.





Chapter 4

Current and Future Directions

4.1 Extensions from (Clifton et al., 2019a)

In this section we will explore the idea of allowing individuals to be hired at
all levels of the hierarchy instead of only being able to enter at the lowest
level. To do this let us label � 9 to be the rate at which individuals are hired
directly into 9Cℎ level. We are now allowing employees to be hired at any
level. This means that the number of people entering at each level is #9G 9� 9
where �G 9 represents the fraction of people hired at the 9Cℎ level. Then we
can say that the number of people who have the opportunity to be promoted
from the 9 − 1 level to the 9Cℎ level is:

the number of the number of
people who leave - people who are hired

the 9Cℎ level into the 9Cℎ level

But, this addition to the model creates a waterfall effect. For example, let us
explore a 5 tier professional hierarchy. The number of jobs available at the
3A3 level can be calculated as follows:

the number of the number of the number of people
people who leave - people who are hired directly - promoted from the

the 3A3 level into the 3A3 level 2=3 level
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If then we want to know how many women are up for promotion at the
9Cℎ level then we would multiply this number by the fraction of women in
the (9 − 1)Cℎ level. Using these equations we have created using the new
variable � 9 , the Figure 4.1 flow chart represents an employee’s potential
movement throughout a professional hierarchy.

Figure 4.1 A new model flowchart using � as the rate at which people enter
the 9Cℎ level directly.

We have altered the previous set of equations to now include the rate,
� 9 , at which individuals are hired directly into the level. We did this by
breaking up the equation 3.4 and replacing every ' 9 with ' 9 − � 9 . This
changes the fraction of women promoted to include the number of women
that are hired into the level directly. This leaves uswith a new set of equations:
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3

3C
(G!#!)︸     ︷︷     ︸

the change in the number of women at each level

=

the number of women promoted︷                            ︸︸                            ︷
('! − �!)#! 5 (G! , -!−1; 1) − ('! − �!)#!G!︸            ︷︷            ︸

the number of women retiring

(4.1)

3

3C
(G 9#9) =

( !∑
:=9

(':−�:)#:

)
5 (G 9 , G 9−1; 1)−(' 9−� 9)#9G 9−

( !∑
:=9+1
(':−�:)#:

)
5 (G 9+1 , G 9 ; 1)

where 1 < 9 < !

3

3C
(G1#1) =

( !∑
:=1
(':−�:)#:

)
5 (G1 ,

1
2; 1)−('1−�1)#1G1−

( !∑
:=2
(':−�:)#:

)
5 (G2 , G1; 1)

To normalize these equations we want to divide both sides by our similar
constant, (' 9 − � 9)#9 :

1
'! − �!

3G!

3C
=

promoted from lower level j︷          ︸︸          ︷
5 (G! , G!−1; 1) −

retire out of level L︷︸︸︷
G!

1
' 9 − � 9

3G 9

3C
= (1 + A 9) 5 (G 9 , G 9−1; 1)︸                   ︷︷                   ︸

promoted into level 9 from level 9 − 1

− G 9︸︷︷︸
leave level 9

− A 9 5 (G 9+1 , G 9 ; 1)︸           ︷︷           ︸
promoted to level 9 + 1 from level 9

(4.2)

where 1 < 9 < !

1
'1 − �1

3G1
3C

= (1 + A1) 5 (G1 ,
1
2; 1)︸                ︷︷                ︸

hired from the general pool into level 1

− G1︸︷︷︸
leave field

− A1 5 (G2 ,
1
2; 1)︸         ︷︷         ︸

promoted to next level

This new set of equations is similar to the previous model (3.4). The only
difference is now our normalized set of equations depends on ' 9 − � 9 rather
than just ' 9 . Because the only thing differentiating these two models is
our constant � 9 , if we were to run a simulation we would not be able to
tell the difference between the two models. � 9 would simply act as another
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parameter constant in our model so the behavior at each hierarchical level
would be the same.
In order to see a change in the model simulation, we would have to make
� dependent on our bias, 1. This would allow us to alter the bias at each
hierarchical level rather than having an overall bias for the entire company.
�(1)would still act as a constant, but the change in bias would allow us to
simulate a more realistic version of a professional hierarchy.

4.2 Other Future work

The first unrealistic aspect of this model is the assumption that gender bias
and homophily do not vary from lower levels of the hierarchy to higher levels.
Clifton et. al. makes this assumption to avoid over-fitting the model, but an
interesting extension would be allowing both hiring bias and homophily to
vary at each hierarchical level.
Our second idea for an extension would be to parameterize the model and
analyze a specific financial firm. From doing this we hope to be able to
apply this model and analyze how applicable it is to real life. To do this we
would have to gather data about a firm’s gender breakdown at each level
of the hierarchy, number of levels in the hierarchy, the retirement rates, the
promotion rates for women, etc. Due to time constraints we were unable to
find sufficient data in order to properly simulate the model. But without
this time constraint we would have been able to analyze a firm and discuss
the bias that exists within that firm.
Another extension would be to create a new variable to describe the fraction
of men. We would also hope to include the fraction of non-binary employees
of the company in order to study the bias towards them. This extension
opens up a larger discussion of diversity which is important to highlight.
The current model has the fraction of men as 1 − G 9 which is dependent on
the fraction of women. By creating this new variable, male, female, and
non-binary employees would not have perfect symmetry and both the the
male and non-binary employees in the company would have their own
behavior meaning they would be making decisions separate from female
employees. This would also allow us to apply bias separately to men which
would change the behavior of the model significantly.
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