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Abstract

The majority of seizures are self-limiting. Within a few minutes, the observed neuronal

synchrony and deviant dynamics of a tonic-clonic or generalized seizure often terminate.

However, a small epilesia partialis continua can occur for years. The mechanisms that

regulate subcortical activity of neuronal firing and seizure control are poorly understood.

Published studies, however, through PET scans, ketogenic treatments, and in vivo mouse

experiments, observe hypermetabolism followed by metabolic suppression. These obser-

vations indicate that energy can play a key role in mediating seizure dynamics. In this

research, I seek to explore this hypothesis and propose a mathematical framework to model

how energy may limit seizure propagation. Expanding upon existing models of neuronal

spiking and energy consumption, the model accounts for change in available energy over

time. The results of this model indicate constrained energy consumption is a plausible

mechanism for mediating seizure termination.
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Chapter 1

Introduction

Over 50 million people worldwide suffer from epilepsy [63]. Given its prevalence in soci-

ety, significant research has begun into epilepsy and seizures. In the past ten years alone

there has been the introduction of new treatment options, ways of measuring seizure be-

havior, understanding of comorbidities, and insight on seizure emergence [77]. Despite

significant progress and a flood of new pharmaceuticals in the market, one third of patients

have drug resistant medically refractory epilepsy [34]. For these patients, there has been

promising research on the effects of the ketogenic diet and brain stimulation. Yet, it is

unknown why the ketogenic diet works.

In working to treat seizures, it is critical to note that the majority of seizures are self

limiting, lasting only a few minutes. If one can gain an understanding of how seizures

self regulate, treatment options can be modeled from biological mechanisms. However,

the mathematical modeling of seizure termination is under studied [33]. Thus far, studies

on the mechanisms of seizure termination take two main approaches. The first approach

focuses on metabolic mechanisms such as ionic concentration, acidity, or neuromodulator
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release and dependence on neuronal activity [82]. The second approach employs functional

networks from electrophysiological recordings to analyze these methods without detailed

accounts of cellular biology. Little work has been done to synthesize these two approaches

to further understand seizure termination.

This thesis incorporates metabolic mechanisms into a model of neural activity in or-

der to investigate how seizures terminate. Chapter 2 provides background information on

epilepsy, energy in neuronal function, and energy metabolism during seizures. Addition-

ally, it cites existing mathematical models of epilepsy and neuronal computational expen-

ditures. Chapter 3 introduces the model (equations and parameters) and its assumptions.

Using this model, Chapter 4 explains its implications and dynamical behavior. Then, the

paper discusses how this model can be further expanded/modified to increase accuracy, as

well as its commentary on existing phenomena and treatment methods in Chapter 5.
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Chapter 2

Background

2.1 Epilepsy as a Disorder

Epilepsy is a symptom of neurological dysfunction. It comes in many forms with a vast

array of underlying causes. In literature, epilepsy is broadly classified as a central nervous

system disorder which places someone at a predisposition to generate/develop an epilep-

tic seizure. More generally, it causes paroxysmal alteration of brain activity due to the

hyper-synchronous discharge of neurons in the brain [52]. This leads to abnormal periods

of activity. The International League Against Epilepsy distinctively defines epilepsy as any

of the following: 1) two or more unprovoked seizures occurring 24hr apart; 2) one unpro-

voked seizure with a probability of future seizures (a high recurrence risk) in the next 10

years after two prior seizures occurring; or 3) a diagnosis of epilepsy syndrome [46].
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2.1.1 Prevalence

Epilepsy is one of the most common disabling neurological conditions, with 50 to 120 new

cases per year per 100,000 people [16]. Approximately three million people in the US and

50 million people world wide are affected by this disease [23]. Acute symptomatic seizures

are predominately seen in patients under one year of age and in the elderly. Within age

groups under one year of age there was 86 per 100,000 well documented cases per year, 23-

31 per year in people ranging in age from 30-59, and 180 per 100,000 cases per year in indi-

viduals over 85 [66] [7]. Incidence of epilepsy appears to be higher in low/middle-income

countries and communities due to perceived greater exposure to risk/ethological factors as

well as methodological issues [62]. Additionally, prevalence appears to be slightly higher

in men than women. While this distinction is poorly understood, it is believed that dif-

ferences may be explained by prevalence of common risk factors and the socio-cultural

reasoning in women to conceal such conditions.

2.1.2 Mortality

Standardized mortality rates are seen to be two to three times higher in those with epilepsy

compared to others [59]. This excess mortality is often attributed to the underlying cause

of epilepsy and not epilepsy itself. Some excess deaths can be attributed to seizures, the

accompanied increased risk of accidents, sudden unexpected/unexplained deaths (SUDEP),

and suicide [22]. Sudden unexpected death in epilepsy rates are correlated to the severity

of epilepsy with only 1 per 2500 in mild epilepsy to 1 per 100 in severe and intractable

epilepsy [25]. Death rates are significantly higher in the first few years after diagnosis.

Studies have suggested that life expectancy estimates are reduced by two years in those with
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idiopathic/cryptogenic epilepsy and up to 10 years in those with symptomatic epilepsy.

2.1.3 Comorbidities

Comorbid conditions are highly common for individuals with epilepsy. Mood disorders

are the most common comorbidities, but other psychiatric and physical conditions are also

frequently present [49]. This includes significantly increased rates of depression, anxiety,

attention deficit hyperactivity disorder, autism spectrum disorder, developmental delays,

Alzheimer’s disease, and conduct disorders [6]. Neurological comorbidities include mi-

graines, premature mortality, and cognitive impairments [65]. Physical disorders include

musculoskeletal system disorders, gastrointestinal disorders, respiratory disorders, chronic

pains, obesity, diabetes, infections, and allergies.

2.1.4 Causes

The causes of epilepsy are still not fully known, however they can be divided into four main

categories [67]:

1. Idiopathic Epilepsy: Idiopathic epilepsy is due to a predominately genetic origin in

which there is no prevalent underlying abnormality identified.

2. Symptomatic Epilepsy: Symptomatic epilepsy is likely due to an acquired or genetic

cause attributed with neuro-anatomical or neuro-pathological abnormalities which indi-

cates a disease or condition.

3. Provoked Epilepsy: Provoked epilepsy is due to a specific identifiable systemic or en-

vironmental factor which causes seizures.

4. Cryptogenic Epilepsy: Cryptogenic epilepsy emerges due to an unknown cause which
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has not been identified.

2.1.5 Treatment Options

Epilepsy is predominately a treatable condition. Up to 80% of individuals enter periods of

seizure remission [21] [6]. However, less than 50% of cases achieve prolonged periods of

seizure remission. These remission patterns are poorly understood. There are three primary

modes of treatment [41].

Altering Electrical Activity

Electrical activity can be altered on the microscale of ionic channels or on a network scale.

Antiepileptic medication can affect ion channels in the cell membrane. Ion channels

play a critical role in neuronal function [10]. Voltage gated sodium channels are respon-

sible for initiation and propagation of excitatory signals. Voltage gated calcium channels

similarly mediate a neurons response to depolarization (release of neurotransmitters and

regulation of neuronal excitability). Voltage gated calcium channels mediate excitability of

a cell via establishing resting membrane potential. Voltage-gated chloride channels regu-

late excitability and acidification of synaptic vesicles.

On a network scale, energy can be altered through deep brain stimulation or trans-

cranial magnetic stimulation [71]. Primary regions targeted include the vagus nerve, thala-

mus nuclei, hippocampus, subthalamic nucleus, and cerebellum. While the exact mecha-

nisms of action is unknown, the energy requirement for neurons to respond to a stimulation

may provide a plausible theory.
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Altering Chemical Transmission

To alter chemical transmission between neurons, anti-epileptic drugs frequently target neu-

rotransmitters in synapses and their corresponding receptors. Neurotransmitter supply and

demand has played a key role in epileptic seizure dynamics.

Generally, it is believed that excitatory glutamatergic neuro-transmission may be par-

tially responsible for the initiation and spread of seizure activity. In a similar manner γ-

aminobutyric acid (GABA) synaptic inhibition is critical in regulating seizure activity by

preventing hyperactivity [8]. Thus, any dysfunction in GABA or glutimate availability

would have consequences on seizure genesis. Common pharmacological treatments for

epilepsy result in the blockade of glutamine production or uptake [68]. This is due to the

pathway where gultamine is a precursor glutimate which is a precursor for GABA synthe-

sis. Many antiepileptic drugs function via altering GABA availability [51]. A few common

drugs include benzodiazepine, barbiturates, and GABA transminase [60]. Benzodiazepine

receptor agonists function as a positive allosteric modulator. Functionally, they enhance

action of GABA via altering the frequency of channel openings which increases GABA

sensitivity. Given the mode of function benzodiazepines lead to a myriad of side effects

and have diminishing effectiveness over time. Barbiturates also act of allosteric modulators

of GABA receptors by shifting the relative proportion of GABA-induced channel openings

to favor the longest lived open state. GABA transaminase directly enhances inhibitory

neurotransmitter via aiding the breakdown of GABA.

Removal of Seizure Focus

Surgery is a last resort option for patients who have severe drug resistant seizures. Despite

its potential for complications, it is seen to most effectively prevent seizures. For those
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with focal epilepsy, if the epileptogenic zone can be located, surgical resection may be a

treatment option. A less invasive surgery may be laser interstitial thermal therapy which

uses a laser to destroy a portion of brain tissue. Corpus callosotomy, hemispherectomy,

and functional hemispherectomy are among more drastic measures of disconnecting larger

regions of the brain for seizure control.

2.1.6 Seizure Types

The classification of epilepsy seizures encompasses a vast array of neuronal activity. There

are three main categories of seizures: generalized, focal, and epileptic spasms. Generalized

seizures effect the brain bilaterally. Focal seizures originate in small neural networks and

are isolated to one region of a cerebral hemisphere.

Originally epileptic seizures were defined and classified based on the associated be-

havioral event. These behavioral events include flushing, muscle twitching, convulsions,

or shifts in attention. Based on these differentiating metrics, seizures were classified into

tonic-clonic, absence, atonic, myoclonus, or epileptic spasms. Tonic-clonic seizures typ-

ically begin on both sides of the brain with muscle stiffening and altering levels of con-

sciousness (known as the tonic phase). Once the tonic phase is complete, the clonic phase

causes rapid jerking of the limbs. Absence seizures are characterized solely by a lapse in

consciousness. In an atonic seizure muscles become weak/limp. Myoclonus seizures are

categorized by brief periods of muscle twitching. Epilleptic spasms are when the body

flexes and extends repeatedly and rapidly. However, this method of defining seizures led

to significant uncertainty due to the overlap in classification criteria and difficulties in de-

ciphering presenting symptoms. Instead today these labels are believed to be symptoms

of a seizure. The development of the Electroencephalogram (EEG), a method of mea-
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suring brain electrical activity, led to the adoption of the definition of seizures as a tem-

porary dysfunction of the brain due to excessive synchronous neuronal discharge (firing).

Thus, seizures exist on this continuum of spatial (number of channels) and rate (amplitude

and frequency) dependencies from a large seizure, small seizure, minimal seizure, and no

seizure. The dynamics of a seizure, however, vary significantly. This led to the develop-

ment of many subsequent sub classes: generalized onset seizure (effects both sides of the

brain at the same time), focal onset (starts in one area/group of cells in the brain), and

unknown onset (when the origin of the seizure is unknown).

2.1.7 Dynamical Characteristics of Epilepsy

One can define the brain as a multi-dimensional dynamical system with a random inde-

pendent set of system variables and parameters evolving in time and across different time

scales. In this context, it becomes clear how epilepsy can be described as a dynamical dis-

ease which evolves over time [40]. A dynamical disease is one in which exhibits changes

in qualitative dynamics as a parameter changes, causing a bifurcation [19]. Specific to the

nervous system, it is a disease that emerges from an abnormality in some existing neural

control mechanism [4]. Epileptic seizures are ”transient clinical manifestations that result

from an episode of epileptic neuronal activity” [72]. Epileptic neural activity references a

specific dysfunction of abnormal synchronization, excessive excitation or insufficient inhi-

bition, and can aggregate across varying spatial scales. Approaching epileptic seizures on

a broad scale of latent periods followed by seizing states, brain state transitions from one

attractor state to another within the multi-stable dynamical landscape occur due to some

perturbation in at least one parameter. Current mathematical focus of seizure onset and

offset focuses on a codimension one system where one parameter is sufficient to cause a
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bifurcation although it is possible for naturally occurring seizures to reflect changes in two

or more parameters [61] [28].

Through experimental studies, the basic building blocks to seizure like events (SLEs)

which establish these multi-stable dynamical landscapes have been established. Neurons

and neural populations are examples of “fast-slow” dynamical systems, as they involve two

types of dynamical variables evolving on very different time scales (see Figure 2.1) [45]

[27].

Figure 2.1: A sample geometric interpretation of a fast-slow dynamical system problem. y(x1,x2,u)
represents the cost exhibited at various state and input combinations. x2 represents the fast dynam-
ics, while x2 represents the slow ones. Considering this as an optimization problem, (x10,x20)
represents the initial state of the system and (x11,y21) represents the desired state [26].

Mathematically a fast-slow ordinary differential equation (ODE) can be written in the

form

ξ ẋ = f (x,y),

ẏ = g(x,y),

such that the components of x ∈ Rn are fast variables y ∈ Rm are slow variables, and ξ is a
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parameter.

Typically the two time scales that arise during SLEs are due two interacting processes

involving fast-slow currents. On the most basic level of a single neuron, SLEs can be

characterized by a beginning onset, numerous sequences of rapid discharges and spike

wave events (SWEs), and the ending offset. At onset, a SLE’s abrupt appearance of fast

discharges scaling up from a non-zero value indicates either a subcritical Hopf bifurcation

or a saddle node bifurcation with a baseline shift on the time-dependent voltage [30]. The

disappearance or emergence of a fixed point due to changes in parameter values is known

as a bifurcation. A fixed point is the point at which all differential equations are equal

to zero and therefore intersect. In a subcritical Hopf bifurcation there exists an unstable

cycle surrounding a stable equilibrium point. In comparison a saddle node bifurcation has

a collision and disappearance of two equilibria in dynamical systems. These two theories

for dynamical behavior of SLE onset explain different aspects of seizure initiation [70].

During the ictal period of seizure behavior, the dynamics vary significantly and are im-

possible to accurately model with a single bifurcation diagram. Once then approaching

offset, many seizures are self terminating lasting only a few minutes in length. The termi-

nation dynamics illustrate a direct current shift back towards baseline resting state. This

indicates a saddle homoclinic bifurcation due to the maintenance of a non-constant fre-

quency towards seizure offsets [30]. Homoclinic bifurcations includes a homoclinic orbit

whose trajectory approaches a fixed point both as t → ∞ and t →−∞ which forms as the

parameter is varied. This means, as the parameter is varied a periodic orbit is either created

or destroyed.
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2.2 Role of Energy in Neuronal Function

While it has been difficult to observe the exact mechanisms of human brain energy con-

sumption, it has been determined it increases proportionally to the number of neurons

across different species. This allows for conclusions to be made from deriving data from

in vivo experiments and studies [11]. In normal states metabolic consumption of the brain

represents over 20% of the whole body oxygen uptake [37]. During these conditions, the

primary energy substrate in the brain is blood derived glucose. Via the glycolytic pathway

two pyruvates and two ATP molecules are generated from one molecule of glucose. This

pyruvate can then either be reduced to lactate or enter the Krebs cycle which will gener-

ate approximately 29 additional ATP molecules per single glucose. These ATP sources

will change dynamically in response to neuronal activity. To some extent, neuronal mi-

tochondria can raise ATP synthesis in response to increased synaptic stimuli (within max

production abilities and sufficient resources). The Na+ pump may also rapidly increase

ATP synthesis of the mitochondria. As seen via PET scans, neuronal activity may elicit

local increase in blood flow, glucose uptake, and oxygen.

ATP production for neurons is critical during signaling. It has been estimated that

75% of gray-matter energy is used in signaling to restore ion gradients [2]. Other energy

expenditures comes from the demanding process of propagating action potentials along an

axon and general synaptic activity [75].

A simple mathematical model for ATP metabolism in the brain can be proposed [76] :

dGAT P

dt
= S(t,GAT P, . . .)−C(t,GAT P, . . .) (2.1)

where S(t,GAT P, . . .) is a function representing the sum of all rate of reactions that syn-
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thesize ATP. Conversely, C(t,GAT P, . . .) is a function of the sum of all reaction rates that

consume ATP. Note, these functions will depend on both time and the level of available

ATP. At a homeostasis, 0 = S(t,GAT P, . . .)−C(t,GAT P, . . .) indicating S(t,GAT P, . . .) =

C(t,GAT P, . . .). However, how dynamic can ATP production be?

Scientists have been concerned with energy factors in seizures for quite a significant

time. Initially, as summarized in 1965, research focused on determining if energy metabolism

in a given epileptic focus varied from the rest of the brain [32]. Hughling Jackson, in 1867,

described epilepsy as a ”sudden disorderly expenditure of force and energy” comparing it

to regional palsy and spasms [29]. Recently, the limits of ATP plasticity have been ob-

served in numerous proxy species studies. In these experiments heightened firing rates, in

a seizure state or during a learning task, were presumed to require increased energy [37].

Most notably, in Mery and Kawecki’s article [39] experimental fruit flies were conditioned

to develop long term memories, meaning increased cortical computation and firing rates.

Upon starvation, these flies died 20 % quicker than the control flies presumably due to

the costs associated with increased cortical computation. A corollary study also revealed

during these periods of increased neuronal activity, fruit flies independently consumed dou-

ble the amount of sucrose [58]. While brain energy consumption does increase with brain

size, brain energy consumption increases proportionally to the number of neurons among

different species, including humans [76].
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2.3 Energy Metabolism during Seizures

2.3.1 ATP Availability

During a seizure the metabolic rate of glucose and oxygen significantly increase [78]. How-

ever, it is believed that the main aerobic pathway, the TCA cycle, does not supply enough

energy. Thus, glycolysis becomes a main supplier of neuronal ATP [79]. This hypothesis

emerged to explain the decreased levels of TCA cycle related enzymes (aconitase, malate

dehydrogenases, and succinate dehydrogenases) and the increase in anaerobic glycolytic

metabolic enzymes (phosphofructokinase and glucose kinase) [18] [1]. This increased ac-

tivity also is associated with an increase in lactic acid production. In theory, in this hypoxic

state, lactate can be harvested from sources, converted into pyruvate , and directed back

into glycolysis [42] [5]. This increase in anaerobic glycolysis could help contribute the

energy supply to sustain exaggerated seizure firing.

2.3.2 Changes in Cerebral Blood Flow: Metabolic Analysis via Positron

Emission Tomography Scans

Positron emission tomography(PET) scans are a sensitive nuclear medicine method of

imaging energy metabolism in the brain. The metabolism of the selected radio-pharmaceutical

is measured via the detection of photons emitted by a radionuclide in the organ/tissue of

interest. Radionuclide is administered through an IV line. Positrons are emitted via the

breakdown of radionuclide. When these positrons collide, they release gamma rays known

as annihilation photons. These annihilation photons are measured by a scanner. Given

the nature of their measurements, PET imaging has been particularly useful in measuring
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seizure disorders.

Neurons derive their energy exclusively from the uptake of glucose. [18F ] Fluoro-2-

deoxyglucose can be taken up by neurons, but cannot be metabolized by them. In this way,

PET provides a measurement that is proportional to metabolic requirements of the neuron.

As described earlier, during an epileptic seizure cerebral metabolism and blood flow

are significantly increased in engaged brain regions. This has been observed in PET

scan analysis of seizures. For generalized seizures, cross cortical hypometabolism and

interictal minor depression is indirectly observed using radio-pharmaceutical fluorine-18-

fluorodeoxyglucose. For focal partial seizures, FDG-PET enabled the identification of

seizure foci and subsequent relative depression states. While research has focused on this

hypermetabolism in localized brain regions as a means of detecting seizure foci, little at-

tention has been directed towards correlated regions of hypometabolism. During the ictal

period of a seizure, a region of hypometabolism accompanies the hyper-metabolism (see

Appendix A) [14]. Hypometabolism in seizures never is presented in isolation. From an en-

ergy consumption perspective, this could indicate a reallocation of energy metabolism from

one region to propagate and maintain a seizure. Supporting this hypothesis, in localized

seizures upon immediate entering the the post-ictal stage studies observed a hypometabolic

area confined to the epileptogenic zone. Yet, in widespread limbic seizures with convul-

sions, the epileptogenic zone was not the only region of hypometabolism. Other regions

with decreased activity included the cerebellum (which is the primary consumer of the

brains energy). Patients with tonic posturing, or sustained flexation of the muscles, exhib-

ited widespread cerebellar and parietal lobe reductions [64]. This observed decrease can

explain both a energy depletion causing the seizure to end and a reallocation from other

regions which enabled the seizure to be sustained for that period.
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2.3.3 Energy During Post-Ictal States

Ketogenic Diet and Seizure termination

Since the 1920s the ketogenic diet has been successfully used to primarily treat young

children with intractable epilepsy. Under the ketogenic model patients consume high fat,

low carbohydrates, and adequate protein. Despite its apparent success, it is not palatable or

sustainable. The hope is that the mechanism of the ketogenic diet can be accomplished in

an alternative way without so many severe side effects and limitations. The composition of

the four major types of ketogenic diets are illustrated in Table 2.1.

Table 2.1: Common ketogenic diet macronutrient compositions

Ketogenic Diet Fat (g) Protein (g) Carbohydrate (g) Fat calories (% of total)
Classic 100 17 8 90
MCTD 78 25 50 70
MAD 70 60 10 70
LGIT 60 40 40 45

Traditionally carbohydrates are the primary sources of energy production in the body.

However, when the body is denied carbohydrates it enters a catabolic state of gluconeoge-

nesis and ketogenesis due to decreased insulin secretion.

Gluconeogenesis generates glucose from non-carbohydrate carbon substraights. Each

molecule of glucose is synthesized from two pyruvate molecules, four ATP, two GTP, and

two NADH [12]. This is significantly less efficient that standard glucose breakdown.

As glucose availability drops further, the endogenous production of glucose can not

keep up with the body’s need for energy sources. In order to provide alternative sources of

energy the body undergoes ketogenesis to replace glucose with ketone bodies as a primary

source of energy. Ketogenesis produdces acetone, acetoacetate, and β - hydroxybutyrate
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molecules via the breakdown of fatty acids [12]. The reaction of the ketone bodies are as

follows:

2Acetyl CoA → Acetoacetyl CoA+ coASH,

Acetyl CoA+Acetoacetyl CoA → β −Hydroxy-β -methyglutaryl CoA,

β -Hydroxy-β -methyglutaryl CoA,→ Acetoacetate+ acetyl CoA,

Acetoacetate+NADH ↔ β -Hydroxybutyrate+NAD,

Acetoacetate → Acetone+CO2.

For as long as the body is deprived of carbohydrates, the metabolism remains in a

ketogenic state. Unlike fatty acids, which cannot pass the blood brain barrier, enzymes in

the brain make it possible for ketone enzymes to be extracted and used. In the brain ketone

bodies can be concerted into acetyl-CoA which enter the TCA cycle leading to the eventual

production of ATP. The reactions of ketone body degradation are:

β -Hydroxybutyrate+NAD ↔ Acetoacetate+NADH+H+,

Acetoacetate+ succinyl CoA ↔ Acetoacetyl CoA+ succinate,

Acetoacetyl CoA+CoASH ↔ 2Acetyl CoA.

The exact anti-seizure mechanisms of the ketogenic diet are unknown, however it is

believed polyunsaturated fatty acids and ketone bodies play a critical role.

If the energy metabolism and synaptic function hypothesis is true, energy availability

plays a clear role sustaining in seizure activity [20]. On a ketogenic diet, the blood glucose
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energy levels are extraordinarily low. The brain then uses ketone bodies for energy. Since

aerobic exercise is an inefficient process, the body has reduced energy availability. In re-

turn, this blocks seizure activity. As observed in in vivo experimental trials, anti-convulsant

effects of the ketogenic diet were immediately reversed via a glucose infusion [69]. The

sudden availability of glucose as an energy source, enables the preservation and initiation

of seizure activity.

Antiepileptics

Recently due to the widespread success of the ketogenic diet, there has been increasing

research on drugs that affect metabolic pathways as treatment options [15]. To directly

mimic the ketogenic diet, a glycolysis inhibitor 2-DG can be exployed. Its mechanism of

reducing epileptic seizures may be due to the activation of a KATP channel which decreases

intracellular ATP concentration (subsequently increasing extracellular ATP concentration).

Another potential mechanism may be due to its reduction of the brain-derived neurotropic

factor and its receptor TrkB which reduces neuron hyper-excitability. Lastly, it effects the

concentration of nicotinamide adenine dinucleotide phosphate which results in the potenti-

ating GABAergic tonic inhibition [56].

2.4 Related Literature

2.4.1 Epilepsy Models

Computational models of epilepsy exist in literature in many forms [70]. Here I model an

epileptic neuron using models that generate a burst of spiking activity of varying duration.

There are only four possible codimension one bifurcations for the onset of a burster and
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only four possible codimension one bifurcation for the offset of a burster [27]. In other

words, there are only 16 possible variations in total. One of these possibilities is exhibited

by the Chay model for a neuronal burster considered in Section 2.4.2.

From these bursters, some existing models have suggested preliminary estimates of

computational costs in neuronal spiking.

2.4.2 Energy Models

The Cost of Cortical Computation

Lennie in ”The Cost of Cortical Computation” investigates the cost of an individual spike

of a cortical neuron. He provides a rough estimate for this value [35] . Lennie’s model is

based on an earlier model proposed by Attwell and Laughlin of energy requirements for

a spiking neuron in mice [2]. Using the same calculations and formulas, Lennie adopts

parameters to explain human dynamics. His model breaks down the energy calculations

into individual biological components to a neural spike: an action potential, post synaptic

glutamate, refractory period, and glutamate recycling.

Chay Model

The Chay Model has been used to simulate bursting activities of neurons, focusing on ionic

currents of sodium-calcium mixed channel ions, voltage depending potassium currents,

calcium dependent potassium channel ions and leakage [9]. The Chay model was selected

to represent neuronal dynamics due to its bursting nature. The most common mathematical

model of epilepsy is the Epileptor. It suggests a simplifying assumption of characterizing

a seizure as an arbitrary long bursting pattern with the two states being refractory status
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Figure 2.2: Diagram of the major ion pumps and transporters in the Chay model. Red arrows are
representative of ion movement against the gradient and green is along the gradient. Black arrows
represent the hydrolysis of ATP.

epilepticus (RSE) and depolarization block (DB) [13]. Mathematically it can be repre-

sented with three differential equations:

dV
dt

= gim3
∞h∞(Vi −V )+gkvn4(Vk −V )+gkc

C
1+C

(Vk −V )+gl(Vl −V )+ I, (2.2)

dn
dt

=
n∞ −n

τn
, (2.3)

dC
dt

= ρ(m3
∞h∞(VC −V )− kCC), (2.4)

where for y∈ [m,h,n], y∞ =
αy(V )

αy(V )+βy(V ) . For y=m, αm(V ) = 0.1(25+V )/(1−e−0.1V−2.5),

and βm(V ) = 4e−(V+50)/18. For y = h, αh(V ) = 0.07e−0.05V−2.5, and βh(V ) = 1/(1 +

e−0.1V−2). For y = n, αn(V ) = 0.01(20+V )/(1−e−.1V−2) and βn(V ) = 0.125e−(V+30)/80.

Also, τn = 1/(λn(αn + βn)). Where V = membrane potential, n = probability of a volt-

age dependent K+ channels, and C is the intracellular Ca2+ concentration. Vi, Vk, Vc, and

Vl are reversal potentials for mixed Na+−Ca2+, K+, Ca2+ and leakage ions. gi, gk, gc,

and gl represent the maximum conductance of the same ions respectively. m∞ and h∞ are

probabilities of activation and inactivation of the mixed inward current channel. n∞ is the
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steady-state value of n, τn is the relaxation time of the voltage-gated K+ channel. kC is

the rate constant corresponding to the efflux of intracellular Ca2+, and ρ is the respective

proportionality constant. I is the stimulus current.

Using the framework of Chay model, Zhu Wang et al propose energy consumption

calculations.

P = |IkvVk|+ |IkcVK|+ |IlVl|− |IiVi|, (2.5)

such that:

Ii = gim3
∞h∞(V −Vi),

Ikv = gkvn4(V −Vk),

Ikc = gkc
C

1+C(V −Vk),

Il = gl(V −Vl).

Zhu Wang et al indicate that during spontaneous firing energy consumption arises from

active ionic transport. ATP consumed by ionic pumps is transformed into the energy in the

form of transmembrane concentration gradients of each ions, also known as reversal poten-

tial [80]. Thinking of the electrical properties of a neuron as a circuit, reversal potentials a

voltage, and as a result, Ix for x ∈ {i,k, l} as current (B.1).

In this framework, the energy calculated is solely due to the Na/K-ATPase pump. ATP

consumed by the CP-ATPase pump was ignored because it is insignificant, from the energy

consumption perspective, in the context of the Chay Model (a mixed Na+−Ca2+) with

very low changes in concentration. To obtain the total amount of energy consumed by a

bursting neuron during time t, one can calculate
∫ t

0 Pdt.
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Chapter 3

Materials and Methods

3.1 New Models

Existing models have been created to explore single neuron energy consumption in gray

matter of mice. However, little work has been made to adapt these models and their pa-

rameters to explain human seizure dynamics [2]. The model presented below will derive a

model to explain the dynamics of cortical computation and ATP availability.

3.1.1 Single Neuron Model

As a simple model, the rate of energy can be calculated by the rate of ATP production

minus the rate of ATP consumption,

dGAT P

dt
= S(t,GAT P, . . .)−C(t,GAT P, . . .). (3.1)

where S(t,GAT P, . . .) is representative of ATP synthesis and C(t,GAT P, . . .) is ATP con-

sumption. Given observed parameters, the energy allocation to a single neuron can be
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calculated. Based on experimentally observed values we can estimate this as:

% neurons in cerebral cortex· % total ATP allocated to brain(ATP synthesis per cell·total cells).

Using scaled parameters found in literature, which can be seen in 3.2:

S(t,GAT P, . . .) =

(
16
86

·0.20 ·108 · (3.72×1013)

)
t,

=

(
1.384×1020 ATP

s

)
t.

(3.2)

C(t,GAT P, . . .) includes all neuron energy consumption. This includes the cost of ac-

tively firing neurons to spike and the cost of neurons at rest. The cost of actively firing

was adopted from ”The Cost of Cortical Computation” [35]. Lennie establishes the cost of

a single spike in humans to 2.343× 109 ATP. In seizures the average neuronal firing rate

increases by 45.5% [31]. The average human spikes lasts approximately 1 ms. Making the

average seizure spike last 0.545 ms. Via unit conversion, spiking costs 4.299× 1012 ATP
s .

The energy costs for neurons at rest is hypothesized to be due to the process of pack-

ing neurotransmitters in vesicles [53]. This resting energy consumption is estimated to

be 4.7×109 ATP
s [81]. During synaptic inactivity, there is energy leakage from the vesicle

membrane creating a proton efflux and correlated energy loss. Based on this,

C(t,GAT P, . . .) =

(
4.299×1012 ATP

s

)
t +1.6×1010

(
4.7×109 ATP

s

)
t,

=

(
7.52×1019 ATP

s

)
t.

(3.3)
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Based on equations 3.1 and 3.2, 3.3 can be written as:

dGAT P

dt
=

(
1.384×1020 ATP

s

)
t −

(
7.52×1019 ATP

s

)
t,

= 6.320×1019t,

(3.4)

where t is a measure of time in seconds.

3.1.2 Network Model

A network model can be adopted from the same framework as the single neuron model.

The general form of the differential equation and synthesis equation S(t,GAT P, . . .) are the

same as in the single neuron model.

dGAT P

dt
= S(t,GAT P, . . .)−C(t,GAT P, . . .), (3.5)

S(t,GAT P, . . .) = 0.44 · .2 · c · cAT P · t. (3.6)

C(t,GAT P, . . .) can be broken down into two main components. There is the energy con-

sumption of seizing neurons and the neurons at rest. Let energy consumption of resting

neurons be represented by
dr
dt

such that

dr
dt

= 4.7×109. (3.7)

For the active seizing neuron, energy is consumed to create and propagate the spike.

Additionally, energy is required as an interaction factor for synaptic vesicle release and

re-uptake. For a single mm3 region of cortical neurons, the ATP consumption of a spike
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can be calculated via,

nε

∫ t

0

(
| dP

dt
|
)
, (3.8)

where nε is the number of neurons in a mm3 section of the cerebral cortex.

The energy requirement for neuronal interaction, required for synaptic transmission, is

represented as
dψ

dt
, such that,

dψ

dt
= vAT P f ω. (3.9)

In
dψ

dt
, v = ATP molecules consumed per vesicle released, f = failure rate, and ω =

is the number of synaptic connections per neuron. Related literature suggests there is an

decreased rate vesicle fusion failure in epilepsy [73]. Under standard conditions, vesicle

failure is measured to be 50% [35]. For the sake of this model this failure rate is estimated

to be 40%. Thus,

dψ

dt
=

(
2.3×104 ATP

vesicle release

)
(.6)(7,000 synapses).

Making the ATP consumption in firing neurons due to synaptic transmission of ε = 1 mm3

sections equal to,

nε

∫ t

0

dψ

dt
.

C(t,GAT P, ...) can be compiled from equations 3.7, 3.8, and 3.9 to be,

C(t,GAT P, . . .) = ε

(
nε

∫ t

0

(
| dP

dt
|
)
+nε

∫ t

0

(
dψ

dt

))
+(α − ε)

(
nε

∫ t

0

dr
dt

)
. (3.10)

Thus, equation 3.5 can be rewritten as the system of equations,
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dGAT P

dt
= 0.44 · .2 · c · cAT P · t −

(
ε

(
nε

∫ t

0

(
| dP

dt
|
)
+nε

∫ t

0

(
dψ

dt

))
+(α − ε)

(
nε

∫ t

0

dr
dt

))
,

dP
dt

= |IkvVk|+ |IkcVK|+ |IlVl|− |IiVi|,

dψ

dt
= 9.66×107,

dr
dt

= 4.7×109

(3.11)

where t is a measure of time in seconds, ε is a mm3 region of firing cortical neurons, α is

total volume of the cerebral cortex, and nε is the number of neurons in a mm3 region. Ix

and Vx for x ∈ {i,kv,kc, l} are defined by [80]. Key additional parameters are summarized

in the table below.

Parameter Interpretation Value

gx, x ∈ {i,kv,kc, l} maximum conductance of respective ion channels [80]
Vx, x ∈ {i,kv,kc, l} reversal potentials of respective ion channels [80]
α total cerebral cortex volume ≈ 5.03512×105mm3 1

ε , ε ∈ [0,α] number of mm3 unit regions seizing varied
c number of cells in the human body 3.72×1013

cAT P total number of ATP molecules synthesized per human cell varied ≈ 108 ATP
ms

nε number of neurons in a mm3 cortical region 50,000

Table 3.1: Key Model Parameters
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3.1.3 Parameters

Scaling a Rat to Human Model

Neurons in the human neocortex are larger than that of a rat and have more synaptic con-

nections. However, their basic organization and structure is not known to differ. Cell body

size remains approximately constant at 15 µm in diameter. In scaling a rat brain up to a

human brain, its believed that increasing brain size linearly increases cortical thickness,

dendrite/axon length and proportionately lowers the density of neurons. An overview of

key statistics for the human neurocortex can be seen in 3.2. On the singular synaptic level,

they are assumed to be the same in both rat and human neurons.

Table 3.2: Statistics of the Human Brain

Brain Region Property Value Source

Whole Brain Number of Neurons 86,000,000,000 [24]
Mass (g) 1508 [24]
Energy Allocation (%) 20 [54]

Neocortex Number of Neurons 21 [50]
Mass (g) [38]
Surface Area (mm) 190,000
Thickness (mm) 2.5
Glucose Consumption 0.40
Glia/mm 38,000
Neurons/mm 40,000
Synapses/mm 7 x 10 8

Average Axon Length m/mm 4,000
Dendrite Length m/mm 400
Average Dendrite Diameter 0.9

Cerebral Cortex Number of Neurons 16,000,000,000 [74]
Mass (g) 1233 [24]

Cerebellum Number of Neurons 69,000,000,000 [24]
Mass (g) 154

Cell ATP Production
(ATP

s

)
107 [17]
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Scaling Normal Parameters to Seizure State

Changes in membrane voltage brought about by ion fluxes are the foundation to single

neuron activity. Electrochemical gradients drive the flow of ions, directly effecting other

critical features such as synaptic transmission and signal propagation. During an epileptic

seizure these activities become severely perturbed. This deviation from normal electro-

chemical signaling had to be incorporated mathematically into the normal bursting model.

Reversal Potential

Reversal potential is a function of the transmembrane concentration gradients. In pa-

tients with epilepsy experiments using ion specific electrodes demonstrated altered base-

line extra- and intra- cellular concentrations. There was a particularly large shift (25-fold

decrease) in baseline extracellular K+ concentration which consequently created a rela-

tively large increase in the reversal potential for K+ from approximately -85mV to -55

mV [55]. In addition, in vivo experiments observed a dissipation of transmembrane Ca2+

which would cause a negative shift in reversal potentials. This shift was estimated to alter

the reversal potential from 137 mV to 66 mV [36]. Due to these two changes, there is likely

also a corresponding shift in Na+, Cl−, and HCO+
3 reversal potentials estimated to be 25

mV, -47 mV, and -25 mV respectively [55].

Channel Conductance

Channel conductance constants can be calculated via g = GmaxO where Gmax is the

maximum channel conductance and O is the probability that the channel is open. In

epilepsy, exome sequencing identified minor gain-of-function variants [43]. However,

these findings are controversial and small in magnitude. Thus, largely the channel con-
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ductance parameters do not need to be adjusted.

Synaptic Activity

In epilepsy the release probability and re-uptake probability increase [73]. Thus, the

failure rate decreases.

3.1.4 Assumptions

Several key assumptions are needed for the validity of the model and to make subsequent

conclusions about energy limitations. First, in order to build the model, assumptions had

to be made regarding some similarities between mouse and human neuro-anatomy. The

most important of which is that human circuitry and network dynamics are linearly scaled

from mouse circuitry [3]. This allowed for the derivation of certain parameters that have

been yet to be measured in the human brain. Recognizing the variation among parameters

and seizure presentations amongst age groups, this model is limited to represent adults.

Furthermore, in order to make any assumptions about energy limitations, the model is

limited to represent only convulsive seizures. In the absence of this assumption, the brain

could simply pull energy from other regions of the body. Due to limitations in current

methods of measuring and observing neuronal activity, this model also only accounts for

cortical behaviors.

In order to scale the model to a network, it is assumed that neurons fire concurrently

in excitatory patterns with synchrony. Although a simplification of realistic biological sys-

tems, it is plausible to make these simplifying assumptions due to the nature of seizure

dynamics. Recurrent epileptic seizures have been shown to have pathological synchronous

behavior of neurons. Via electrocardiogram imaging, patients during epileptic seizures
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exhibited a increase in synchronization during the seizure, with the maximal synchroniza-

tion immediately before seizure termination [38]. Additionally, the volume of 1 mm3 of

neuronal region was selected for ε due to the propagation of seizures occurring in both

transverse and longitudinal directions [57].
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Chapter 4

Results

4.1 Single Neuron Model

For a single neuron model, the membrane potential (voltage over time) phase portraits were

established for a single burst, and adopted to epileptic parameters found in literature. This

(Figure 4.1) was compared to a multi-burst phase portrait of a normal neuron.

This enabled a comparative analysis of power phase planes. Under seizure conditions,

with adapted parameters, power continuously increased and within the first millisecond of

spiking increases exponentially. To derive ATP consumption from Figure 4.1 and 4.4, the

integral or the area under of the curve was calculated. In seizing state, the area under the

curve continually grows substantially compared to normal bursting.

However, despite the expensive energy cost, a seizing neuron can be preserved for a

long period of time. In theory, a single bursting neuron could fire infinitely. Given the

model:
dGAT P

dt
= 1.384×1020t −7.52×1019t, (4.1)
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Figure 4.1: A single burst voltage over time phase plane for a bursting Chay model neuron with
Vi = 100, Vk = −75, Vl = −40, Vc = 100, gi = 1800, gkv = 1700, gkc = 11.5, gl = 7, kc = 0.03,
ρ = 0.27, λ = 400, gk = 37

lim
t→∞

(
dGAT P

dt
= 1.384×1020t −7.52×1019t

)
,

= 1020 · t −1019 · t,

= ∞.

(4.2)

The energy supply continually accumulates, creating the necessary stores for a neuron

to continuing firing despite its consumption.
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Figure 4.2: A multi-burst firing simulated by the Chay model (Vi = 100 mV, Vk = 75 mV, Vl =−40
mV, Vc = 100 mV, gi = 1800 nS, gkv = 1700 nS, gkc = 11.5 nS, and gl = 7 nS).

Figure 4.3: This is the graph of the energy corresponding to the spike diagram 4.1. The power
phase plane shows continuous energy absorption in a seizing state. As a single burst, this diagram
does not account for the energy needed to recover to resting potential.
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Figure 4.4: This is the graph of the energy corresponding to the spike diagram . P is an alternation
between electrical energy release and absorption. Between bursts the neuron requires longer energy
to recover to resting potential. Parameters correspond to those in 4.2

4.2 Neural Network Model

In its entirety, the neural network model is governed by the following system of equations

dGAT P

dt
= 0.088c× t × cAT P −

(
εnε

∫ t

0

(
| dP

dt
|+dψ

dt

)
+(α − ε)nε

∫ t

0

dr
dt

)
,

dP
dt

=| IkvVk |+ | IkcVK |+ | IlVl | − | IiVi |,

dψ

dt
= 9.66×107,

dr
dt

= 4.7×109.
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From the Chay Model:

dn
dt

=
n∞ −n

τn
,

dC
dt

= ρ
(
m3

∞h∞(Vc −V )− kcC
)
,

dV
dt

= giM3
∞h∞(Vi −V )+gkcn4(Vk −V )+gkc

C
1+C

(Vk −V )+gl(Vl −V )+ I,

m∞ =
2.5+ .1V

2.5+ .1V +(4e−(V+50)/18)(1− e−.1V−25)
,

h∞ =
(.07e−.05V−2.5)(1+ e−0.1V−2)

(.07e−.05V−2.5)(1+ e−.1V−2)+1
,

n∞ =
.01V + .2

(1− e−.1V−2)(.125e−(V+30)/80 + .01V + .2)
,

τn =
1

λn(.7e−.05V−2.5)( 1
1+e−.1V−2 )

.

The network model yields three plausible conditions, each dictating discrete seizure events.

1.
dGAT P

dt
< 0: indicating that, 0 > S(t,GAT P, . . .)−C(t,GAT P, . . .). In order for this to

be true it follows that,

S(t,GAT P, . . .)<C(t,GAT P, . . .). (4.3)

In this case, the neuronal behavior is consuming energy at a greater rate than it is

produced. As a result, there are insufficient resources for firing to continue at the

existing rate and spatial scale.

2.
dGAT P

dt
= 0: indicating that, 0 = S(t,GAT P, . . .)−C(t,GAT P, . . .). In order for this to
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be true it follows that,

S(t,GAT P, . . .) =C(t,GAT P, . . .). (4.4)

This is an equilibrium state. In these conditions, the rate at which ATP is being

consumed is equal to the rate at which it is being produced. This means a seizure can

sustain existing dynamics. However, the system does not have the resources to scale

neuronal behavior either via increasing firing rates or the number of firing neurons.

3.
dGAT P

dt
> 0: indicating that, 0 < S(t,GAT P, . . .)−C(t,GAT P, . . .). In order for this to

be true it follows that,

S(t,GAT P, . . .)>C(t,GAT P, . . .). (4.5)

Under these conditions, there is an energy surplus. This means some energy that

is produced, and that is traditionally allocated to the brain, is not being used. This

energy may either be stored or reallocated to alternative function. The excess energy

indicates the rate of neuronal firing could be increased or the seizure could further

propagate to a larger region of the brain.

4.2.1 Maximum Seizing Volume Calculations

The maximum volume of cortical region that could sustain seizing dynamics for time t was

calculated for two seizure dynamics based on energy availability.
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Maxi-Min Approximation

The maximum constraints can be approximated by inserting Lennie’s calculated cost of

a single spike, the average firing frequency, and seizure time into the established model.

Lennie estimates the cost of a single spike to be, 2.4× 109 molecules of ATP [35]. As

stated earlier, the average seizure spike last approximately .545 ms. This indicates spiking

alone will cost 4.404×1012 molecules of ATP per second.

dGAT P

dt
= 0.0880c× t × cAT P −

(
εnε

∫ t

0

(
4.404×1012 +

dψ

dt

)
+(α − ε)nε

∫ t

0

dr
dt

)
,

= 3.274×1020t −
(
εnε

(
4.404×1012t +9.660×107t

)
+(α − ε)nε4.700×109t

)
,

= 3.274×1020t −
(
ε
(
2.202×1017t +4.830×1012t

)
+(α − ε)2.350×1014t

)
,

= 3.274×1020t −
(
ε
(
2.202×1017t

)
+(2.350×1014tα −2.350×1014tε)

)
,

= 3.274×1020t −2.200×1017tε −1.183×1020t,

= 2.0903×1020t −2.200×1017tε.

At equilibrium the equation above simplifies to 2.090×1020t = 2.200×1017tε . Thus,

regardless of time duration t, there is a steady state when ε = 950.3mm3 or 95.03cm3 .

Following the three states established earlier:

1.
dGAT P

dt
< 0 when ε > 950.3mm3 indicating the seizure runs out of energy,

2.
dGAT P

dt
= 0 when ε = 950.3mm3 indicating the seizure can not grow and,

3.
dGAT P

dt
> 0 when ε < 950.3mm3 indicating there is excess energy.
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Model Estimation

The power component to the generalized model was solved using MATLAB’s ODE45 al-

gorithms where the starting conditions (Vinit ,ninit ,Cinit) of 1 mV, 0.1, 0.1 nmol/L are fixed.

Unlike in the maxi-min approximation, here the t value will effect the calculation since P

is a non-linear function of time.

dGAT P

dt
= 0.088c× t × cAT P −

(
εnε

∫ t

0

(
|dP

dt
|+ dψ

dt

)
+(α − ε)nε

∫ t

0

dr
dt

)
.

Simplifying all of the parameters

dGAT P

dt
=−2.0903×1020t +50000ε

∫ t

0
| dP

dt
| −2.3017×1014tε.

Energy constraints were first calculated for a complex partial seizure. The average duration

of a complex partial seizure is between 30 and 120 seconds. Thus, to represent a complex

partial seizure t is estimated to be equal to 75.5 seconds. In setting t = 75.5,

dGAT P

dt
=−2.0903×1020(75.7)+50000ε

∫ 75.5

0
| dP

dt
| −2.3017×1014(75.5)ε,

=−1.5824×1022 +50000ε

∫ 75.5

0
| dP

dt
| −1.7424×1016

ε.

From MATLAB’s ODE45 program
∫ 75.5

0 | dP
dt

|≈ 1013. Thus,

dGAT P

dt
=−1.5824×1022 +5×1017

ε −1.7424×1016
ε,

=−1.5824×1022 +3.258×1017
ε,

(4.6)

40



where ε = mm3 volume of seizing neurons. Establishing the conditions from Section 4.2,

1.
dGAT P

dt
< 0 when ε > 32790.69 mm3,

2.
dGAT P

dt
= 0 when ε = 32790.69 mm3,

3.
dGAT P

dt
> 0 when ε < 32790.69 mm3.

As a function of ε and t, with knowledge of the volume of seizing neurons, one could

calculate time t that the seizure could last from the model as well.
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Chapter 5

Discussion

The proposed model provides insight on the role of energy in mediating seizure termina-

tion. It validates the hypothesis that energy can act as a limiting reagent. An individual

neuron was seen to be rather computationally expensive, however energy will only cause

termination in seizures characterized by wide-spread neuronal hyper-activity. This indi-

cates there may be another additional factor besides energy mediating seizure termination.

These results are consistent with experimental studies which observed on average simple

partial seizures had the longest duration while generalized tonic-clonic seizures lasted the

shortest. Mathematically, it illustrates how a small focal seizure in the lip can last for days,

while a tonic-clonic seizure effecting both hemispheres of the brain will likely not last more

than a few hundred seconds.

Calculated results re-open a long standing debate regarding the implications of a single

spike-wave discharge on cortical energy management. In prior literature, it was estimated

that 10− 20cm2 of cortex was necessary to generate a single spike-wave discharge, mak-

ing the generation of a single spike-wave discharge the activity of 108 neurons [47] [48].
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However, the research proposed in this paper argues that a single-spike wave discharge has

significant implications to all cortical energy management, which is traditionally only seen

as a signature of an epileptic focus. In the maximum estimation case, there is barely enough

energy to form a single spike wave. The model estimates approximately 20.82cm2 to be

the maximum amount power consumption, due to hyper-active neuronal spikes, that the

brain can support. This re-introduces a phenomenon prior urged by pediatric neurologists

towards aggressively treating even a single spike-wave discharge in children.

Increased knowledge of seizure termination mechanisms will undoubtedly have criti-

cal implications for the development of anti-seizure therapies. Seizure termination is in-

credibly difficult to study experimentally since the manipulation of potential terminating

mechanisms will also likely directly manipulate traits responsible for seizure initiation and

propagation. Also during a post-ictal phase, complex mechanisms effect each other in

non-isolatable complex ways. Thus, models like the one established in this paper, provide

critical insight into plausible mechanisms.

Although the present results suggest that energy plays a role in seizure termination

mechanisms, it is impossible to definitively make this statement without further validation

through in vivo experiments and more advanced modeling. As stated earlier, there were

several key assumptions underlying the model. Most notably, the model simplifies neurons

to a point mechanism with the absence of a time delay. Due to the lack of research and

definitive data, many of the parameters also had to be estimated. With further research

there is hope to provide a more exact model of these dynamics. Furthermore, the model

does not account for many complex interactions that occur during seizures and in neural

control. Further research using PET scan analysis in post-ictal states may shed light on the

lack of precise knowledge of seizure state ionic, metabolic, and synaptic behavior. Despite
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these limitations, this research can be seen as a key step towards integrating mathematical

modeling and metabolic processes to enhance our understanding of seizure termination

mechanisms.
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Appendix A

Normal and Seizure State PET Scan

Comparison

Figure A.1: PET imaging in normal and epileptic brain [44].
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Appendix B

Ionic Channel Circuitry Schematic

Diagram

Figure B.1: Schematic diagram of an electrical circuit model of the neural membrane, whose prop-
erties establish the foundation for the power function. Voltage sources (Vi,Vk,Vl ) correspond to
reversal potentials and (Ii, Ik, Il ) correspond to voltage sources [80]
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Appendix C

XPP Code For Chay Model

# EQUATIONS

dv/dt = gi*m(v)^3*h(v)*(vi - v) + gkv*n^4*(vk - v) + gkc * c/(1+c) * (vk - v) + gl

*(vl-v) + I

dn/dt = (ninfty(v) - n)/taun(v)

dc/dt = rho*(m(v)^3*h(v)*(vc - v) - kc*c)

# PARAMETERS

param vi=100, vk=-75, vl=-40, vc=100

param gi=1800, gkv=1700, gkc=11.5, gl=7

param I = 0
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param kc = 0.03

param rho = .27

param lambda = 400

# infinity

m(v) = alpham(v)/(alpham(v)+betam(v))

alpham(v) = 0.1*(25+v)/(1-exp(-.1*v-2.5))

betam(v) = 4*exp(-(v+50)/18)

h(v) = alphah(v)/(alphah(v)+betah(v))

alphah(v) = 0.07*exp(-0.05*v-2.5)

betah(v) = 1/(1+exp(-0.1*v-2))

ninfty(v) = alphan(v)/(alphan(v)+betan(v))

alphan(v) = 0.01*(20+v)/(1-exp(-.1*v-2))

betan(v) = 0.125*exp(-(v+30)/80)

taun(v) = 1/ (lambda*(alphan(v) + betan(v)))

@ TOTAL=40,DT=0.01,XLO=0,XHI=40,YLO=-60,YHI=0

done
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Appendix D

XPP Code For Chay Model on Energy

Consumption

# EQUATIONS

dv/dt = gi*m(v)^3*h(v)*(vi - v) + gkv*n^4*(vk - v) + gkc * c/(1+c) * (vk - v) + gl

*(vl-v) + I

dn/dt = (ninfty(v) - n)/taun(v)

dc/dt = rho*(m(v)^3*h(v)*(vc - v) - kc*c)

dp/dt = abs(ikv(v)*vk)+abs(ikc(v)*vk)+abs(il(v)-vl)-abs(ii(v)*vi)

# PARAMETERS

param vi=100, vk=-75, vl=-40, vc=100
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param gi=1800, gkv=1700, gkc=11.5, gl=7

param I = 0

param kc = 0.03

param rho = .27

param lambda = 400

# infinity

m(v) = alpham(v)/(alpham(v)+betam(v))

alpham(v) = 0.1*(25+v)/(1-exp(-.1*v-2.5))

betam(v) = 4*exp(-(v+50)/18)

h(v) = alphah(v)/(alphah(v)+betah(v))

alphah(v) = 0.07*exp(-0.05*v-2.5)

betah(v) = 1/(1+exp(-0.1*v-2))

ninfty(v) = alphan(v)/(alphan(v)+betan(v))

alphan(v) = 0.01*(20+v)/(1-exp(-.1*v-2))

betan(v) = 0.125*exp(-(v+30)/80)

taun(v) = 1/ (lambda*(alphan(v) + betan(v)))

#current

ii(v) = gi*m(v)^3*h(v)*(v-vi)

ikv(v) = gkv*n^4*(v-vk)

ikc(v) = gkc*(c/(1+c))*(v-vk)

il(v) = gl*(v-vi)

@ TOTAL=40,DT=0.01,XLO=0,XHI=40,YLO=-60,YHI=0

done
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