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Abstract 

Trans-arterial radioembolization (TARE) is a protracted modality of radiation therapy 

where radionuclides labeled with Yttrium-90 (90Y) are inserted inside a patient's hepatic 

artery to treat hepatocellular carcinoma (HCC). While TARE has been shown to be a 

clinically effective and safe treatment, there is little understanding of the radiobiological 

relationship between absorbed dose and tissue response, and thus there is no dosimetric 

standard for treatment planning. The Biologically Effective Dose (BED) formalism, derived 

from the Linear-Quadratic model of radiobiology, is used to weigh the absorbed dose by the 

time pattern of delivery. BED is a virtual dose that can be thought of as a common 

'language' with which various forms of radiation therapy can use to 'communicate'. BED 

allows conclusions to be drawn about the biological response of TARE by putting it in 

conversation with what is known about the biological response of other treatment 

modalities, namely external beam radiation therapy (EBRT). A Python program was 

developed to calculate BED from absorbed dose distributions of six HCC patients treated at 

Massachusetts General Hospital, and optimized treatment activity levels with respect to 

biological response were determined. Within the limits of the BED analysis, none of the 

patients had originally received the optimal dose, with some patients having been 

overdosed and some having been underdosed. The results show there is a disconnect 

between the current clinical treatment planning standard for TARE and the tissue's 

biological response. This study suggests the need for patient-specific TARE dosimetry 

which considers biological response, such as BED or another adaptive model.  
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1. Introduction 

The field of medical physics is focused, generally, on the application of physics 

principles and methods for human disease prevention, diagnosis, treatment, and palliative 

care. There are several branches of study within medical physics, including medical 

imaging, nuclear medicine, and diagnostic medicine. However, one of the most prominent, 

and focus of this paper, is radiation oncology.  

Radiation oncology applies the therapeutic properties of ionizing radiation, in 

various forms, to treat cancer in the human body. The goal of radiation therapy (RT) is to 

kill cancer cells and slow the growth of tumors by targeting and damaging their genetic 

material. There are a few different modalities for RTs, split into two main categories: 

external beam radiation therapies (EBRT), involving the use of a medical linear accelerator 

(LINAC) to eject high-energy particles into the human body, and brachytherapies (BT), 

involving the insertion of sealed radioactive materials into the body to provide a more 

concentrated and targeted dose to the tumor.  

 

1.1 Yttrium-90 Trans-arterial Radioembolization 

Trans-arterial radioembolization (TARE) is a form of BT wherein resin or glass 

microspheres containing Yttrium-90 (90Y) radioisotopes are lodged within a patient's 

hepatic arteries to target hepatocellular carcinoma (HCC). The 90Y radionuclides emit beta 

particles that destabilize the DNA structure of neighboring cells. This form of treatment is 

generally used for tumor downgrading as a bridge to surgery or palliation of the disease to 

provide comfort to the patient (Kim et al., 2019). 
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Currently, TARE is used to treat primary HCC, internal cholangiocarcinomas (ICC), 

neuroendocrine tumors (NETs) in the liver, and hepatic metastases. The high 

radiosensitivity of the liver parenchyma makes other EBRT treatments potentially 

dangerous, and the liver's unique vasculature structure makes TARE especially effective 

(Kim et al., 2019). The liver receives 75-80% of its blood supply from the portal vein, and 

the rest is supplied by the hepatic artery (Bierman et al., 1951). Conveniently, malignant 

hepatic tumors primarily perfuse from the hepatic artery and almost never from the portal 

vein (Van de Wiele et al., 2021). In many cases, this allows the radionuclides to be placed 

exclusively within the hepatic artery, providing dose to the roughly 20-25% of the liver 

where the tumors are located and sparing the healthy parenchyma (Kim et al., 2019).  

As with any radiation therapy, TARE has a risk of radiation-induced toxicities. Riaz 

et al. (2014) provide a comprehensive explanation of these potential post-procedure 

challenges. While TARE has been shown to generally be safe, around 20 to 70% of patients 

will experience at least one complication. The most common complication is the post-

radioembolization syndrome and is characterized by mild symptoms like fatigue, nausea, 

and abdominal pain. More severe complications are much less common, with an incidence 

rate of around 0 to 4%. Radiation-induced liver disease (RILD) can occur if the healthy 

parenchyma receives more than the tolerable dose. Another major concern is the 

development of radiation pneumonitis (RP), which is a risk when radionuclides escape into 

the lung's blood supply and provide unwanted dose to healthy lung tissue—a phenomenon 

called lung shunting. Extrahepatic radionuclide deposition also has a chance to occur 

within the gastrointestinal (GI) tract, often causing ulceration and bleeding.  
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Rigorous patient screening and pre-treatment procedures are done to avoid major 

complications like RILD, RP, and GI ulceration. The general clinical procedure, as outlined 

by Kim et al. (2019), begins with a screening process to filter out candidates with relevant 

contraindications for TARE. This includes patients with liver failure, patients who have 

previously had extensive EBRT for or around the liver, pregnant patients, and patients with 

a compromised portal vein.  

Once a patient passes the initial screening, they undergo a series of pre-treatment 

scans and procedures to understand the patient's unique anatomy. The tumor and the liver 

parenchyma are first thoroughly outlined with a computerized tomography (CT) scan and 

magnetic resonance imaging (MRI). An angiography will then provide a patient-specific 

map of the hepatic vasculature and its hemodynamics. Knowing a patient's vasculature has 

several benefits: it guides where to insert the radionuclide delivery catheter, it provides 

information about the liver's blood flow, and it allows physicians to locate variance from 

the standard liver vasculature that could result in unexpected extrahepatic deposition or 

unwanted dose to the liver's healthy parenchyma (Kim et al., 2019).  

The final pre-treatment step is single-photon emission computed tomography 

(SPECT) with CT (SPECT/CT) using the gamma-emitter Technetium-99m (99mTc) 

macroaggregated albumin (99mTc-MAA). 99mTc-MAA is similar in width as the 90Y 

microspheres, with a diameter range of 15-150 μm, and its radioisotope component, 99mTc, 

has a short half-life of 6 hours (Gandhi et al., 2013). This makes 99mTc-MAA a good model 

for the 90Y microsphere as it's easily imaged, it lodges similarly in the arteries, and it decays 

quickly enough to leave no clinical effect on the patient. 99mTc-MAA is injected into the 

hepatic arteries at the same location and angle that 90Y radionuclides would be, and its 
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gamma rays produce an image that models how the therapeutic radionuclides would be 

distributed. A successful 99mTc-MAA image will confirm the results of the angiography and 

show any potential locations where extrahepatic deposition may occur. 

Following these pre-treatment steps, the patient is cleared for treatment and the 90Y 

microspheres are injected in an interventional procedure. The physician and physicist 

work together to prescribe and calculate the amount of radiation dose that the patient will 

receive, a field of study called dosimetry. Since 90Y microspheres are calibrated in activity 

units, the current clinical standard for its dosimetry is a series of calculations, created by 

the Medical Internal Radiation Dose (MIRD) Committee and known as the MIRD schema, 

which derives a relationship between administered activity and absorbed dose (Kim et al., 

2019). Dose to the liver is correlated to the injected activity of the radionuclides, the 

location of the radionuclides relative to the tumor, the mass of the tumor and the liver, and 

the expected amount of lung shunting.  

There are a few known issues with TARE dosimetry, stemming mainly from the lack 

of uniform microsphere distribution in the liver. Since the microspheres travel through the 

hepatic arteries and lodge within the narrow arterioles, the microspheres will settle 

heterogeneously throughout the liver in clusters. However, the MIRD schema does not take 

the patient-specific vasculature and the spacing of the radionuclides into account, rather, it 

assumes a uniform dose to larger regions (Kim et al., 2019). Additionally, due to the 

delimitations of the liver and dose distribution, microspheres located around the tumor-

tissue boundary, which may emit radiation between liver partitions, are unaccounted for in 

MIRD calculations. This phenomenon is called the ‘crossfire effect’ and is often cited to 

discredit the accuracy of the MIRD schema. As a result of the assumptions made to develop 
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the MIRD schema, its dose calculations are not always the most accurate. Nonetheless, due 

to its simplicity, MIRD is the clinical standard when treatment planning for TARE.  

Imaging-based dosimetry is a patient-specific method used to calculate dose, and it 

is generally more accurate than the MIRD schema (Kim et al., 2019). This involves the use 

of SPECT/CT or Positron Emission Tomography (PET) with CT (PET/CT) images of dose 

distributions that are scaled by the administered activity to provide absorbed dose 

information. Since SPECT/CT images of the 99mTc-MAA distribution are acquired as part of 

the pre-treatment procedure, these images are sometimes used to calculate absorbed dose 

for the 90Y treatment. While 99mTc-MAA and 90Y radionuclides are not perfect matches in 

size, it is typically assumed that the variation between the two distributions is negligible 

(Kennedy et al., 2007). To convert the 99mTc-MAA activity maps to absorbed dose 

distributions, the MIRD schema is employed on the voxel level (Bertolet et al., 2021).  

Imaging-based dosimetry is typically more accurate at measuring dose than the 

current clinical methods discussed above as it is patient-specific and does not rely on a 

generic model of dose distribution (Kim et al., 2019). By directly measuring the dose 

distribution with an image, the dose heterogeneity is accounted for, thus eliminating the 

need to worry about uniformity or crossfire effects. However, imaging-based dosimetry has 

tradeoffs, as it is limited by the resolution of the SPECT/CT image, which, with current 

technology, is not large enough to perfectly pinpoint where the microspheres are in the 

liver (Kim et al., 2019). Despite this, imaging-based dosimetry is still one of the most 

accurate ways to measure dose. As medical imaging technology advances, it is expected to 

only improve.  
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The most recent development in TARE dosimetry involves simulations of 

radionuclide activity using Monte Carlo (MC) methods. MC toolkits have been in 

development for several years, and some, like GEANT4 and TOPAS, are available to the 

public. A single simulation may perform millions of individual particle physics calculations 

to model how dose will accumulate over different geometries and mediums. MC 

simulations, when done over patient CT scans that provide information about tissue 

properties, have been shown to provide highly accurate dose distributions within clinical 

RT and are seen as the gold standard for measuring dose (Chetty et al., 2007). In addition, 

MC benefits over other forms of dosimetry as it works especially well in heterogenous 

tissue distributions, which are most accurate to the real tissues. The MC method has been 

shown to perform better than MIRD scheme-based dosimetry in TARE treatments as it 

provides more accurate dose distributions and extrahepatic deposition calculations 

(Bertolet et al., 2021).  

Despite their clear advantages demonstrated in several small-scale studies, imaging-

based dosimetry, whether found from MC simulations or voxel-wise MIRD calculation, have 

not generally been used in TARE treatment planning. While some clinics, to a limited 

extent, do utilize imaging-based dosimetry, it is far from the standard. However, in 

research, imaging-based dosimetry is popularly used to better understand radiation 

therapies and to determine directions for improving treatment effectiveness, patient safety, 

and patient experience.  
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1.2 The Linear-Quadratic Model and Biologically Effective Dose 

Radiobiology is the branch of medical physics focusing on the action of ionizing 

radiation on biological tissues and their cellular and molecular components (Hall & Giacca, 

2009). As it pertains to RT, this area of research is what motivates safer and more effective 

therapeutic techniques, treatment plans, and procedures. Radiobiological research in 

radiation oncology attempts to understand and model how the body and its numerous 

components react to various RT modalities. Biological effect models either employ 

biological theories to calculate radiobiological effects or are simply phenomenological and 

model what is seen empirically (Jones & Dale, 2018). Both methodologies have provided 

promising results and are often used in conjunction in contemporary radiobiological 

research.  

There are five primary biological factors that must be taken into account when 

treatment planning, referred to as the five Rs of radiobiology: Radiosensitivity, which 

considers how different types of cells respond differently to radiation; Repair, which 

considers how DNA repairs the damage done by radiation; Repopulation, which considers 

how cells repopulate themselves in a tissue after others are killed by radiation; 

Redistribution, which considers how the distribution of cells at the most radiosensitive 

part of the cell cycle changes over time; and Reoxygenation, which considers how hypoxic 

cells become more sensitive to radiation once they reoxygenate (Herskind et al., 2017; 

Suntharalingam et al., 2005). The standard measurement of absorbed dose simply registers 

how much activity was absorbed in a tissue but does not consider these other biological 

factors that can drastically alter how the body responds.  
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The first factor, radiosensitivity, is important in treatment planning as it outlines 

how much dose a given tissue can receive within a safe limit. For example, the GI tract, 

composed of high radiosensitive cells, will have a greater response than muscle tissue, 

composed of low radiosensitive cells, if given the same dose. The last four of these factors 

describe how a tissue's radiosensitivity can change over time. In many RTs, it is standard to 

take advantage of this by fractionating the treatment into several smaller doses and 

delivering it over the course of several weeks to maximize the therapeutic potential of the 

treatment and minimize damage to healthy tissue. For example, a patient who receives 9 

fractions of 5 Gy each over the course of two months will have a better outcome than a 

patient who receives the entire 45 Gy dose in one session despite both receiving the same 

total absorbed dose.  

To understand this quantitatively, physicists have developed the Linear-Quadratic 

(LQ) model. The LQ model is the standard for modelling the effect of radiation dose on cell 

survival and tissue response (Jones & Dale, 2018). In short, it shows how the number of cell 

death events, E, has a linear-quadratic relationship with applied dose, D, and the 

radiosensitivity parameters of the tissue, 𝛼 and 𝛽: 

𝐸 =  𝛼𝐷 +  𝛽𝐷2 

The radiosensitivity parameters, 𝛼 and 𝛽, reflect the inherent radiosensitivity of the tissue, 

with higher 𝛼 and 𝛽 values denoting higher sensitivity. They are found through in vitro 

studies of artificial tumor cell lines (Leeuwen et al., 2018). These cell line cultures, taken 

from samples of various tissue structures, are subjected to radiation doses and their cell 

death events are manually counted, allowing an LQ curve to be fit to the data.  
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While the LQ model is widely accepted, because of its empirical origins, its 

parameters do not reflect the underlying biological mechanisms which govern this 

response (Sgouros et al., 2021). Regardless, it still forms the foundation of most radiation 

biological effect models. Another useful value, the probability of a cell's survival, or the 

surviving fraction (SF), assuming the cell death events are Poisson distributed from cell to 

cell, is given by: 

𝑆𝐹 = 𝑒−(#𝑒𝑣𝑒𝑛𝑡𝑠) = 𝑒−(𝛼𝐷+𝛽𝐷2) 

From this model of SF, shown in Figure 1, it is clear how fractionation of a treatment 

affects cell survival. The fractionated treatment is more sparing on the cells than the 

unfractionated treatment while still providing the same total absorbed dose to the tumor. It 

is important to note that this model assumes that there is enough time between fractions to 

allow full sublethal damage repair (Jones & Dale, 2018).  

 

Figure 1 An exaggerated model of different surviving fraction curves which 
demonstrate how fractionation increases cell sparing effects 

 

A more useful formulation of the SF model, including the effect of the irradiation 

time pattern, is Biologically Effective Dose (BED). BED intends to produce a virtual dose 
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weighting the applied dose by the time pattern of delivery (Fowler, 2010). For fractionated 

treatments, the specific radiosensitivity of the target tissue is considered by the 𝛼 and 𝛽 

radiosensitivity parameters, and the other four time-dependent biological factors are 

considered by conservatively assuming an infinitely small dose rate, or dose per fraction. 

Since cell radiosensitivity fluctuates with time, assuming an infinitely small dose rate 

theoretically maximizes radiosensitivity by always having ionizing events occur when the 

cell is most vulnerable (Hall & Brenner, 1991).  

BED has several clinical applications in fractionated treatment plans (Fowler, 2010). 

First, BED allows treatment plans with varying schedules to be easily compared since it 

converts all fractionation schedules to the same infinitely small dose rate. Second, in cases 

where a few fractions of a treatment were given erroneously, the schedule can easily be 

adjusted mid-treatment to provide the same BED. Finally, BED can be used post-clinically 

to analyze the treatment outcome. 

 

BED is defined as the negative log of SF divided by 𝛼: 

𝐵𝐸𝐷 ≡
− ln(𝑆𝐹)

𝛼
=

𝛼𝐷 +  𝛽𝐷2

𝛼
= 𝐷 (1 +

𝐷
𝛼
𝛽

) 

For fractionated treatments of 𝑛 fractions with a uniform dose per fraction, 𝑑, the total BED 

is the sum of the fractional BEDs: 

𝐵𝐸𝐷𝑡𝑜𝑡 = ∑ 𝐵𝐸𝐷𝑛  = 

𝑛

𝑛𝑑 (1 +
𝑑
𝛼
𝛽

) = 𝐷 (1 +
𝑑
𝛼
𝛽

) 
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When discussing TARE treatments, however, dose is protracted over several days 

and is not fractionated. Recalling the assumption made in the SF model that, between 

fractions, the cells are given enough time to completely heal, TARE treatments cannot be 

appropriately modeled with this BED formula. To derive an equation for TARE BED, a time 

factor, Γ(𝑡), below, that considers the biological effect of partial DNA repair must be added 

to the LQ model (Brenner, 2008; Lea & Catcheside, 1942; Sgouros et al., 2021).  

Γ(𝜏) =
2

𝐷2
∫ 𝐷̇(𝑡)

𝜏

0

∫ 𝑒−𝜇(𝑡−𝑡′)

𝑡

0

𝐷̇(𝑡′)𝑑𝑡′𝑑𝑡 

The time factor is derived from the kinetic equations which govern the repair of 

double-strand breaks (DSB) in DNA (Brenner, 2008). DSBs are assumed to happen in two 

parts: the first of the breaks occurs at time 𝑡′, and the second of the breaks occurs later and 

can interact with other first-breaks. The inner integral describes the first part of the DSBs 

and is composed of the dose rate in terms of the time of the first DSB event, 𝐷̇(𝑡),  and an 

exponential term that accounts for the reduction of DSBs as they are repaired. The 

exponential term includes the first-order rate constant for DSB DNA repair, 𝜇. The outer 

integral describes the second part of the DSBs and comprises the dose rate and the inner 

integral. The 
2

𝐷2 term normalizes the time factor.  

The time factor is applied to the quadratic term of the LQ model since DSBs and 

their repair are proportional to the square of the dose (Brenner, 2008). The time-

dependent LQ model is thus: 

𝐸 = 𝛼𝐷 + Γ(𝜏)𝛽𝐷2 

And the BED formula becomes: 
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𝐵𝐸𝐷 = 𝐷 (1 + Γ(𝜏)
𝐷
𝛼
𝛽

) 

In the case of TARE, the time factor can be reduced extensively. First, it is assumed 

that the gradually decreasing dose rate, 𝐷̇(𝑡), is proportional to the exponential rate of 

decay of the radionuclides. Thus, dose rate, in terms of the decay constant, 𝜆, and the initial 

dose rate, 𝐷̇0, is represented as: 

𝐷̇(𝑡)  =  𝐷̇0 𝑒−𝜆𝑡 

Second, since TARE is protracted until the radionuclides completely decay, the time 

factor can be evaluated at the limit  𝜏 → ∞. The time factor then reduces to: 

Γ(∞) =
𝜆

𝜆 + 𝜇
 

For convenience, we can rewrite the time factor in terms of the radionuclide's half-

life, 𝑇ℎ𝑎𝑙𝑓−𝑙𝑖𝑓𝑒 , and the DNA's repair half-time, 𝑇𝑟𝑒𝑝𝑎𝑖𝑟 , using their relationships to 𝜇 and 𝜆 

respectively: 

𝑇ℎ𝑎𝑙𝑓−𝑙𝑖𝑓𝑒  =  
𝑙𝑛(2)

𝜇
 

𝑇𝑟𝑒𝑝𝑎𝑖𝑟  =  
𝑙𝑛(2)

𝜆
 

Thus, our final formulation of the time factor is: 

Γ(∞) =
𝑇𝑟𝑒𝑝𝑎𝑖𝑟

𝑇𝑟𝑒𝑝𝑎𝑖𝑟 + 𝑇ℎ𝑎𝑙𝑓−𝑙𝑖𝑓𝑒
 

And our equation for TARE BED is: 

𝐵𝐸𝐷 = 𝐷 (1 +
𝐷
𝛼
𝛽

 ∙  
𝑇𝑟𝑒𝑝𝑎𝑖𝑟

𝑇𝑟𝑒𝑝𝑎𝑖𝑟 + 𝑇ℎ𝑎𝑙𝑓−𝑙𝑖𝑓𝑒
) 
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Contrasting the multiple clinical applications of BED for fractionated treatments, 

TARE BED is rarely, if ever, used clinically as there is a severe lack of literature detailing the 

clinical benefits of BED for TARE treatment planning. However, TARE BED does have 

applications in research. By comparing the BED of better-researched radiation treatment 

modalities, like EBRT, to the BED of TARE, we can make judgements about the biological 

effect of protracted treatments, which is integral to the development of safer and more 

effective TARE treatments.  

Clearly shown in the equation for BED is its dependence on the ratio of the 

radiosensitivity parameters, 𝛼/𝛽. The tissue's 𝛼/𝛽 ratio describes its responsiveness to 

fractionation (Leeuwen et al., 2018). A tissue with a low 𝛼/𝛽 ratio (𝛽 is high) benefits more 

from fractionation since its SF curve has more quadratic character and is thus steeper. 

Conversely, a tissue with a high 𝛼/𝛽 ratio (𝛼 is high) benefits less from fractionation since 

its SF curve has more linear character and is thus shallower. This phenomenon is 

demonstrated in Figure 2.  

 

Figure 2 A model of surviving fraction for two different treatments. Each 
treatment has five fractions, but the tissues have different 𝛼/𝛽 ratios. The 
large 𝛼/𝛽 ratio creates a shallow curve, while the small 𝛼/𝛽 ratio creates a 
steep curve.  
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There are a few problems to note with the radiosensitivity parameters and the 

available literature surrounding them. First, the empirical nature of their derivation and 

their lack of a relationship to fundamental biophysical concepts introduces a level of 

uncertainty that should be acknowledged when applying them in LQ models (Sgouros et al., 

2021). Second, there are few studies available that have published their findings for these 

parameters, making it difficult to obtain a good average value for most tumor types and 

tissues (Leeuwen et al., 2018). Finally, of the literature that is available of these values, 

there is a high degree of study heterogeneity (Leeuwen et al., 2018). This means that there 

is more variation between different studies of reported radiosensitivity parameters than is 

statistically expected, essentially preventing the establishment of well-defined 𝛼 and 𝛽 

values for individual tissue and tumor types. Since BED is only as accurate as the 𝛼 and 𝛽 

values chosen, it should generally only be taken as a guideline measurement. 

While 𝛼 and 𝛽 values and the 𝛼/𝛽 ratio are not conclusive measurements, there are 

a few accepted trends for 𝛼/𝛽 ratios. As explained previously, the ratio of the 

radiosensitivity parameters describes the sensitivity to fractionation. The tissues most 

protected by fractionation, known as late-responding tissues, are typically normal tissues, 

whereas the tissues least protected, known as early-responding tissues, are typically 

tumors (Williams et al., 1985). While this is not true for all types of tissues and tumors, 

most of them follow this trend (Hegemann et al., 2014; Leeuwen et al., 2018). Therefore, 

tumors will generally have a high 𝛼/𝛽 ratio (𝛼/𝛽 ~ 10) and normal tissues will have a low 

𝛼/𝛽 ratio (𝛼/𝛽 ~ 3). 
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1.3 Research Topic 

 The goal of this paper is to quantitatively demonstrate how TARE BED can be used 

to create safer and more effective treatments. To do this, I analyzed the BED of six different 

HCC patients treated with 90Y TARE at Massachusetts General Hospital (MGH) in Boston, 

MA. By analyzing the BED of past TARE treatments, it is possible to conclude ways the 

treatment might be better optimized to target the tumor and preserve the surrounding 

healthy tissue more effectively. This project was done under the guidance of Dr. Alejandro 

Bertolet, PhD, who leads a lab at MGH that studies radiation oncology physics to develop 

better outcomes, higher quality of life, and more effective treatments for patients.  

I first developed a program to calculate BED distributions from voxelized absorbed 

dose distributions. The absorbed dose distributions were previously calculated by Bertolet 

using SPECT/CT 99mTc-MAA activity-map images and TOPAS MC accumulated dose 

simulations (Bertolet et al., 2021). Once BED is calculated, BED in the normal liver was 

compared to the accepted maximum dose as set by the Quantitative Analysis of Normal 

Tissue Effects in the Clinic (QUANTEC) studies. While the QUANTEC standards are written 

for EBRT treatments given in 2 Gy fractions, by converting the standard to its equivalent in 

BED we can effectively draw conclusions about TARE dose tolerances. I used the 

relationship between dose and injected activity to retroactively determine an activity level 

that would provide this maximum tolerance dose to the liver, thus maximizing the dose to 

the tumor while still protecting the liver parenchyma.  

Since the original treatment was not planned with BED in mind, a measurable 

difference in the actual applied activity and the optimal theoretical activity was expected. 



 

 
19 

This paper is meant to provide insight into the clinical potential of BED for TARE 

treatments.  

 

2. Experimental Design and Python Application 

 This study aims to calculate BED for TARE to make claims about the effectiveness 

and safety of the treatment modality. To accomplish this, I developed a Python application 

that calculates TARE BED distributions from absorbed dose distributions. This application 

was used to calculate the BED for six HCC patients that were previously treated at MGH. 

The BED distributions and subsequent plots created to analyze them were calculated using 

the radiosensitivity parameter ratios, 𝛼/𝛽, 𝑇𝑟𝑒𝑝𝑎𝑖𝑟 , and 𝑇ℎ𝑎𝑙𝑓−𝑙𝑖𝑓𝑒 , shown in Table 1. To 

determine the appropriate radiosensitivity parameters, a brief review of current literature 

was done, and the averages for the parameter values determined in previous studies were 

calculated.  

  



 

 
20 

 

Table 1 Mean 𝛼/𝛽 ratios and Trepair used in BED calculation 
[Kehwar, 2005; Kirkpatrick et al., 2008; Leeuwen et al., 2018,   

Michel et al., 2017; Orton, 2001; Son et al., 2013] 

  
Site Mean 𝜶/𝜷 𝑻𝒓𝒆𝒑𝒂𝒊𝒓 

N
o

rm
a

l generic 3 2.5    

liver 2.75 
 

T
u

m
o

r generic 10 1.5    

liver 10 
 

 

The Python application was written as an addition to MGH's open-source medical 

imaging processing software. Both the original source-code and the BED application can be 

found at https://github.com/mghro/MIRDCalculation. The software handles medical 

images stored using the Digital Imaging and Communications in Medicine (DICOM) 

protocol: the clinical standard for storing, viewing, and transmitting medical images. 

DICOM files combine 2D and 3D images, image metadata, and patient-specific information 

into a single package. There are two main types of DICOM files: RTSTRUCT, which stores 

the shape and location, often called contours, of regions of interest (ROI), and RTDOSE, 

which stores dose distributions.  

MGH's original software provides the tools for reading and writing various DICOM 

files. My application utilizes these to produce the BED distributions as RTDOSE outputs. It 

has three inputs: a CT image, an RTSTRUCT, and an RTDOSE. The CT image input defines 

the voxel grid layout onto which the other two files are overlayed. The RTSTRUCT input 

contains a set of bitmaps which define the voxelized shape of each ROI and their location on 
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the CT. The RTDOSE input contains the voxelized absorbed dose distribution. Together, 

these three files provide all the information needed to calculate the BED distribution.  

Below is the script which calls the three main functions created to calculate BED: 

BEDCalculator.__init__( ), BEDCalculator( ), and WriteRTDoseBED( ). The file path to the 

input DICOM files is provided here, along with the desired dose unit for the output BED 

RTDOSE.  

 

# 1. Path to DICOM files (str) 

basepath = '/Users/mjlindsey/Documents/LiverPatients/Patient1/POSTTX/' 

 

# 2. RTDOSE filename (str) 

dosefile = 'MIRDDose.dcm' 

 

# 3. Units for BED RTDOSE file (str) (Choose from "Gy/GBq", "Gy/mCi", or 

"Gy") 

unit = 'Gy/GBq' 

 

### Main Script ### 

calc = BEDCalculator(basepath, dosefile, unit) 

calc.BEDCalculator()     

calc.WriteRTDoseBED() 

 

 

The first function, BEDCalculator.__init__( ),  initializes the BEDCalculator class. First, 

the CT metadata is read to determine the voxel dimensions. Then, the RTSTRUCT is 

converted to a dictionary of 3D arrays for each ROI, and the RTDOSE is converted to a 

single 3D array. If necessary, these are scaled to match the dimensions of the CT. This is the 

most convenient way to access the information for BED calculation as it allows each voxel 

to be indexed for its unique tissue identity and dose value. Additionally, the application 

provides a way for the unit of the input RTDOSE to be converted if it differs from the 

chosen unit for the BED RTDOSE.  

 

class BEDCalculator(dcmpat.PatientCT): 
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    def __init__(self, basepath, dosefile, unit = "Gy/GBq", maxVoxel = 

None): 

        self.unit = unit 

        if maxVoxel != None: 

            self.maxvoxel = maxVoxel 

        ctpath = basepath + '/CT/' 

        dosepath = basepath + dosefile 

        dosefile_full = os.path.basename(dosefile) 

        dosefile_split = dosefile_full.split('.')[0] 

        self.basepath = basepath 

        self.dosefilename = dosefile_split 

        self.patientObject = dcmpat.DicomPatient(basepath) 

        self.patientObject.dcmFileChosen = pydicom.dcmread(dosepath) 

        self.ctObject = dcmpat.PatientCT(ctpath) 

        self.ctObject.LoadRTDose(dosepath) 

        try: 

            structfile = os.listdir(basepath + '/RTSTRUCT/') 

            structpath = basepath + '/RTSTRUCT/' + structfile[0] 

            self.ctObject.LoadStructures(structpath) 

        except Exception as e:  

            structfile = os.listdir(basepath + '/RTSTRUCT_LUNGSANDLIVER/') 

            structpath = basepath + '/RTSTRUCT_LUNGSANDLIVER/' + 

structfile[0] 

            self.ctObject.LoadStructures(structpath) 

            print('ERROR: Could not load complete RTSTRUCT. CODE:', e) 

            print('RTSTRUCT_LUNGSANDLIVER loaded instead.') 

        self.ROIs = list(self.ctObject.structures3D.keys()) 

        print("ROI's identified:", self.ROIs) 

        self.TUMORS = [] 

        for STRUCT in self.ROIs: 

            if 'Tumor' in STRUCT: 

                self.TUMORS.append(STRUCT) 

        print("Tumor STRUCTS identified:", self.TUMORS) 

        self.BEDimg3D = np.zeros(self.ctObject.img3D.shape) 

        self.ConvertDoseUnits() 

 

 

Once the CT, RTSTRUCT, and RTDOSE have been loaded, the BED distribution is 

calculated. First, the program iterates voxel-wise through the RTDOSE array. At each index, 

the program confirms from the RTSTRUCT dictionary which ROI the voxel is within. This 

allows the program to define the appropriate 𝛼/𝛽 ratio and 𝑇𝑟𝑒𝑝𝑎𝑖𝑟  for the BED calculation 

at that voxel. The BED value is stored into a separate 3D array, and the program continues 

to the next voxel.  
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def BEDCalculator(self): 

        for i in 

range(self.ctObject.quantitiesOfInterest[0].array.shape[0]): 

            if (i % 20) == 0: 

                prog = 

i/self.ctObject.quantitiesOfInterest[0].array.shape[0]*100 

                print("Calculating BED... (" + str(round(prog,1))+"%)") 

            else: 

                pass 

            for j in 

range(self.ctObject.quantitiesOfInterest[0].array.shape[1]): 

                for k in 

range(self.ctObject.quantitiesOfInterest[0].array.shape[2]): 

                    if self.ctObject.structures3D['Liver'][i,j,k] == True 

: 

                        for t in self.TUMORS: 

                            if self.ctObject.structures3D[t][i,j,k] == 

True: 

                                Trep = Trep_Tumor 

                                AlphaBeta = AlphaBeta_TLiver 

                                break 

                            else: 

                                Trep = Trep_Normal 

                                AlphaBeta = AlphaBeta_NLiver 

                    elif self.ctObject.structures3D['Lung_L'][i,j,k] == 

True or self.ctObject.structures3D['Lung_R'][i,j,k] == True : 

                        Trep = Trep_Normal 

                        AlphaBeta = AlphaBeta_NLung 

                    else : 

                        Trep = Trep_Normal 

                        AlphaBeta = AlphaBeta_Standard 

                    self.BEDimg3D[i,j,k] = 

self.ctObject.quantitiesOfInterest[0].array[i,j,k] * (1 + (( 

self.ctObject.quantitiesOfInterest[0].array[i,j,k] * Trep) / (AlphaBeta * 

(Trep + RadionuclideHalfLife)))) 

        print('BED Calculated.') 

 

 

After the BED has been calculated for each voxel, the resultant BED array is written 

as a new RTDOSE file.  

         
def WriteRTDoseBED(self, seriesdescription = None): 

        if seriesdescription == None: 

            seriesdescription = 'BED_' + self.dosefilename 

        name = 'BED_' + self.dosefilename + '.dcm' 

        self.ctObject.WriteRTDose(self.BEDimg3D, self.basepath + name, 

self.unit, seriesdescription) 
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This application was used to calculate the BED distribution for each of the six 

patients. Once these were obtained, comparative dose-volume histograms (DVH), which 

provide information about dose concentration within ROIs, were calculated using 3D Slicer 

medical imaging software. Finally, activity-dose plots showing how dose to the BED of the 

normal liver and liver tumor scale with activity were created for each patient. These were 

created by measuring the mean BED at various activity levels for each ROI. The optimal 

activity was chosen to be the activity which provided a mean BED to the normal tissue of 

70 Gy[BED], which is the level as reported by QUANTEC that will induce RILD 50% of the 

time.  

 

3. Results 

Figure 3 shows the absorbed dose and BED distributions for each patient. As 

expected, the normal tissues show a larger increase in dose value between absorbed dose 

and BED than the tumors.  
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Figure 3 Distributions of absorbed dose (left) and biologically effective dose (right) in an axial plane for 
each patient. The liver is represented by yellow contours, and tumors are represented by red contours.  

 
Figures 4 shows the DVHs comparing absorbed dose and BED for each patient. The 

non-linear transformation from absorbed dose to BED is demonstrated here, as larger 

absorbed dose values are scaled up more than lower absorbed dose values. This is seen 

further in Figure 5, which shows the absorbed dose and BED activity-dose curves for each 

patient. The absorbed dose scales linearly with increasing activity whereas the BED 

expectedly follows a linear-quadratic pattern as activity increases. Finally, Figure 6 shows 

the difference between the optimal activity and the actual activity used overlayed onto the 

BED activity-dose curves. 
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Figure 4 Dose-volume histograms for absorbed dose and biologically effective dose per activity. 
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Figure 5 Activity-dose curves for absorbed dose and biologically effective dose. 
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Figure 6 Activity-dose curves for biologically effective dose. The vertical bars represent the activity 
level that was applied, in black, and the optimal activity according to the BED treatment analysis, in gold. 
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4. Discussion  

4.1 Analysis of Results 

 The results of this study highlight the importance of considering biological effect in 

the treatment planning of TARE. As shown in Figures 3, 4, and 5, different tissue types and 

volumes scale differently when converting from absorbed dose to BED, with normal tissue 

showing the largest increase. This is as expected and confirms that the calculations for BED 

were correct. As shown in Figure 6, mixed results were found when optimizing the activity 

for each patient. Assuming that the LQ and BED models are correct and that the QUANTEC 

dose threshold values are applicable to all patients, we can conclude that none of the 

patients had originally received the optimal dose.  

 While there is no significant trend in either one direction, the wide differences 

between administered activity and the optimal activity are concerning. In patients 1, 3, and 

6, the difference between the administered activity and the optimal activity is greater than 

1 GBq, which is a substantial amount. Without data about specific patient outcomes or 

metrics like tumor reduction and prevalence of complications, it is difficult to claim the 

severity of these gaps between the activities. However, since the optimal activity was set to 

the dose which would on average induce RILD 50% of the time, it is appropriate to 

conclude that the patients who were overdosed had a much higher chance of developing 

RILD or another related complication. For the patients who were underdosed, we can 

conclude that the tumors were likely not treated to the highest extent possible, and the 

patients could have handled more rigorous treatments.  

 This study suggests the need for patient-specific treatment planning which 

considers biological effect. Had each patient initially received a personalized dosimetric 
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work-up like those performed in this study to develop a treatment plan based on the 

patient's unique biological composure, these large gaps between the administered activity 

and the optimal activity would likely be reduced or eliminated completely.  

 
 

4.2 Limitations 

The conclusions drawn from this study are restricted by the limitations of the LQ and 

BED models. As discussed previously, the LQ model was created through empirical analysis 

of radiation-induced cell deaths. While the model does closely predict the rate of cell 

deaths, the formulation and associated 𝛼 and 𝛽 radiosensitivity parameters have no 

underlying biophysical definition. Additionally, within the available literature, there is still 

significant variance in the 𝛼 and 𝛽 values derived through experimental approximation. As 

the BED model relies on the accuracy of these radiosensitivity parameters, any conclusions 

drawn from it must consider this uncertainty.  

A second limitation of this study is its scale. While the study of six patients 

demonstrated several key trends of TARE BED, a larger study is necessary to make claims 

about the clinical necessity of considering BED when planning TARE treatments. Studying 

more patients would provide a better average outcome and strengthen the efficacy of the 

BED analysis. Additionally, without patient outcome data, the conclusions made from this 

study were only general claims. For example, we might expect patients who were 

underdosed to have had less tumor reduction and patients who were overdosed to have 

experienced more post-procedure complications. However, without this information there 

is no way to confirm or deny these expectations. To draw more definite conclusions about 

the efficacy of TARE BED treatment planning, a large, multi-year study that tracks key 
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patient outcome and quality of life information, including fraction of tumor reduction, 

fraction of parenchyma sparing, rate of tumor recurrence, and rate of post-treatment 

complications, is necessary.  

 

4.3 Conclusions and Future Work 

 This study made clear the benefits of radiobiological considerations in treatment 

planning for TARE patients. Since the BED of a given TARE treatment can vary significantly 

from the absorbed dose, the evidence supports the clinical use of BED in TARE dosimetry 

as a method for better treatment optimization. Further, as shown by the variations in 

biological effect between each of the six patients, individualized biological effect analyses 

should be done for each patient to account for their unique biology.  

 To increase the use and efficacy of BED in TARE treatment planning, a more robust 

understanding of the radiobiology of the liver and other human tissues is necessary. A 

model of biological effect that is based in radiobiological principles could provide a level of 

accuracy that is not currently possible within the standard LQ model. However, there are a 

few problems with the derivation of this approach. As discussed previously, the five most 

important radiobiological factors that would need to be considered are radiosensitivity, 

repair, repopulation, redistribution, and reoxygenation. The LQ model provides a good 

approximation for the average of these effects, but to produce a more accurate result it 

would be necessary to consider each of these factors individually. Even within a single cell, 

this proves difficult to compute (Cruz, 2016). This approach becomes nearly impossible 

when considering how many single-cell computations would be needed to account for the 

entire treatment area of the patient.  
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Analytically, the LQ model provides the most practical method of deriving BED. 

However, there is a developing project to predict the biological effect of a RT at the cellular 

and DNA level using MC simulations. This method completely circumvents the need for 

complex microdosimetry by allowing the accumulated behavior of the simulation to 

precisely show what will happen within the cell. Toolkits like GEANT4-DNA and TOPAS-

nBio, which are publicly available addons to the GEANT4 and TOPAS softwares, provide the 

capability to simulate the effects of individual radiation moments to many different cell and 

DNA types (Schuemann et al., 2018). In this way, these toolkits can quantitatively 

determine the number of DSBs, thus deriving the number of cell deaths and radiosensitivity 

of a set of cells. Further, these toolkits can simulate DNA repair kinetics, directly measuring 

the relationship between DNA damage and repair—a key component of BED. Future 

versions of these toolkits have the potential to simulate the other radiobiological factors as 

well. 

In addition, the cellular simulation models avoid the resolution limitations of the CT 

scan for imaging-based models. While a standard CT voxel will have a minimum width of 

about 0.5 mm, the size of a geometry in TOPAS-nBio can be scaled as small as desired, 

down to the width of a single DNA strand (Scheumann et al., 2018). Moreover, TOPAS-nBio 

implements cellular geometries that are curved, which is a more accurate depiction of 

tissues and tumors than the jagged, voxelized edges of a CT.  

While it would incur a large processing cost, in theory, large-scale models of tissues 

could be built with each individual cell rendered separately. With a human body modeled 

in this hyper-realistic way, it would be possible to simulate a RT from the bottom-up, 

quantitatively measuring the exact biological effect, in terms of DSBs or cell deaths, of each 
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radiative transfer. A toolkit of this precision would be invaluable to the study of 

radiobiology, and many radiobiologists see its development as one of the next main goals of 

the field.  

 Although progress has been made with the GEANT4-DNA and TOPAS-nBio projects 

in creating bottom-up radiobiology toolkits, there is still much more research that must be 

done and many regulatory barriers to tackle before this type of treatment modeling could 

be applied clinically. Even when based in the LQ and BED models, which are applied often 

in EBRTs, there still is no standard to account for biological effect in TARE treatment 

planning. Considering all the time, effort, and money that would need to be invested in 

clinical trials to alter the standard procedure for TARE, it would require a significant 

breakthrough in the radiobiology of the treatment that substantially betters outcomes or 

quality of life. Due to this, it is highly unlikely TARE BED will be implemented anytime soon. 

However, as more is discovered about the biological effect of TARE treatments, changes in 

its clinical procedure are inevitable.   
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