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HOW MACHINE LEARNING AND PROBABILITY CONCEPTS
CAN IMPROVE NBA PLAYER EVALUATION

HARRISON D. MILLER

Abstract. In this paper I will be breaking down a scholarly article, written

by Sameer K. Deshpande and Shane T. Jensen, that proposed a new method

to evaluate NBA players. The NBA is the highest level professional basketball

league in America and stands for the National Basketball Association. They

proposed to build a model that would result in how NBA players impact their

teams chances of winning a game, using machine learning and probability con-

cepts. I preface that by diving into these concepts and their mathematical back-

grounds. These concepts include building a linear model using ordinary least

squares method, the bias variance trade off, regularization and three methods

of regularization, Gibbs samplers, and kernel density estimation. Furthermore,

I explain how each of these concepts affect the process of building their model.

Lastly, I explain the effectiveness of their methodology, as well as its flaws and

how I would improve it.

1 Introduction

The ultimate goal of an NBA franchise is to win the NBA Championship, being

crowned the best team in the NBA. In order to achieve this goal, an NBA franchise

must build the best possible roster. This an extremely difficult task, because of

the complicated issue of player evaluation. It is a difficult task to decide whether

raw statistics and advanced statistics paints a better than how a player appears

to play while watching when evaluating a player’s effectiveness. Furthermore,

when analyzing a player from a statistical standpoint it is a challenge to build

a model or a statistical metric that accurately expresses a player’s effectiveness.

This results in the necessity of an accurate method of player evaluation, when
1
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analyzing a player from a statistical standpoint. Player evaluation in the NBA

has been an ever evolving competition with NBA general managers always trying

to find a better way to view performances of NBA players. While statistical

player evaluation has become much improved, Deshpande and Jensen proposed

a fatal flaw with player evaluation, from a statistical standpoint, context. With

the goal of winning in mind, a player statistical output has significantly less

meaning without the context of when it occurs. If a player were to score 10

points, in the 5 minutes of the game, while his team is losing or winning by

30, his production would hardly change the chances of a win or loss. On the

other hand if the same time and scoring production occurred during a tie game,

that would significantly alter the chances of a team winning. Because of this,

Deshpande and Jensen proposed using the change in winning probability as its

main predictor in evaluating a player.

In this paper, I will first be discussing the mathematical theories behind the

methodology of the player analysis done by Deshpande and Jensen. I will then

be discussing the actual methodology behind the attempt to improve how one

views player performances, from a evaluation standpoint. In section 2, I briefly

explain what a general linear regression is, and its properties. The ordinary least

squares method of building a linear model will be briefly discussed as well. In

section 3, the concepts of bias and variance, resulting from training a model, will

be explained. On top of that, the bias variance trade off will be explained, one

of main reasons behind the creation of regularization. In section 4, I introduce

the concept and explain the motivation behind regularization. I also introduce

how to apply the idea of regularization to a linear model. More specifically, in

section 4.1, I explain the method of a ridge regression, its positives and short-

comings. In section 4.2, I explained a regularization method, lasso regression,

that was made with the intent to improve on the ridge regression. I also discuss

its origins, flaws and when it excels. In section 4.3, I further explore further
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improvements on the regularization techniques discussed in section 4.1 and 4.2.

This improved method is called the elastic net, and it fixes the inherent flaws

of lasso and ridge regressions. In section 5, I introduce the concept and theory

of a Gibbs sampler. A Gibbs sampler is used to find the posterior distribution

from the prior distribution. In section 6, I explain the concept and use of ker-

nel density estimation. The kernel density estimation is a method that is used

to create an estimated probability function for a random variable from outputs

from that random variable. In section 7, I discuss previous attempts to evaluate

NBA players, from a statistical standpoint, and explain how they fell short. In

section 8, I introduce the methodology, created by Deshpande and Jensen, used

to evaluate NBA players’ effect on winning probability. In section 8.1, I dive into

the creation and components of the model built by Deshpande and Jensen. In

section 8.2, I explain the process of creating a model for probability of an NBA

team winning, conditioned on current point differential and amount of the game

that has been played. In section 8.3, I explain the process of how Deshpande and

Jensen built their model. Specifically, how they applied regularization methods in

order to create an accurate model. In section 9, I discuss how, after creating the

Bayesian linear model, Deshpande and Jensen used the model and a Gibbs sam-

pler, built for a lasso regression, to generate independent samples for each player.

Furthermore, I discuss their method of estimating a posterior distribution for

each player, describing the effect each NBA player has on winning probability.

Lastly, I explain Deshpande’s and Jensen’s method to compare players.

2 Building a Linear Model

Creating a linear model is one the simplest and the one of the most widely

used statistical technique for predictive and descriptive modeling. The goal of it
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is to acquire an equation in the form of:

(2.1) [15]ŷ = w0x0 + w1x1 + · · ·+ wnxn + b

This is the general form of a linear model based on n number of variables, or also

known as predictors or independent variables. In equation 2.1 the ŷ represents

our dependent variable, the data we are trying to predict using out indepen-

dent variables. Next, b represents our y-intercept. Lastly, the wn represents the

coefficients of our model, the variables we are trying to manipulate to create a

predictive model. The overall goal of using a linear model is to minimize the

equation by finding wj’s:

(2.2) [15]
m∑
i=1

(yi − ŷ)2 =
m∑
i=1

(yi − (
n∑
j=1

wjxij))
2

In this equation, m represents the amount of data points we have, and n represents

the number of features the linear model has. When using the equation 2.2 in order

to fit the linear model in equation 2.1, it is called using the ordinary least squares

method for fitting a model. This equation (2.2) has many names: sum of squares

of the residuals, the ordinary least squares, Root Mean Square Error, and lastly

the cost function. I will be referring it to the cost function for ordinary least

squares for the remainder of this paper.

3 Bias Variance Trade Off

While creating a linear model from data is a great way to represent the data

and as a prediction tool, it is not perfect. This method, at its core, has flaws

that can lead to overfitting and underfitting. Overfitting occurs when a model,

generated from the given data, models the data too well without taking into

account the possibility of more data. This is a bad situation because it results in

a model that doesn’t correctly model the data. On the other hand, underfitting
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occurs when a model doesn’t model the data its built on well. Again, this is a

poor situation, because the model is too general and is it not a great predictor. In

order to find out if overfitting or underfitting is occurring, it is common practice

in machine learning to implement a concept called supervised learning. The first

step of this process is to partition the data set into two parts, a training set and

test set. The size of the partition is up to creator, but it is common practice to

use cross validation to find the correct partition ratio. One then creates a model

using the training set to train the model. Next, the model is used to predict the

data in the test set. Those values are compared and are used to find the bias and

variance for a second time. This gives the creator a better scope when trying to

analyze the accuracy of the model, since the bias and variance found from the

data used to train the model can be misleading because it doesn’t fully describe

the model’s ability to correctly predict the data.

Overfitting and underfitting are caused by the values of bias and variance of

a model. The bias of the model is found from:

(3.1) [3]Bias = |E[D]y(x;D)− f(x)|

The variance of the model is found from:

(3.2) [3]V ariance = E[D]y(x;D)2 − (E[D]y(x;D))2.

Bias error is the error of the model from assumptions made while it was trying to

fit the data. Having a high bias can cause a model to miss relevant relationships

between the dependent and independent variables. Having a high bias is consid-

ered underfitting. Next, variance is an error caused by high sensitivity to small

fluctuations in the data set. Having a high variance causes the model to put more

weight into the noise of the data causing an inaccurate model. When this occurs,

it is considered overfitting. For a better visualization, imagine someone playing
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darts, with the intended target of hitting the bulls-eye every throw. When we

have low bias and low variance, his darts will be a tight cluster centered at the

bulls-eye. When bias is low and variance is high, we get a dart board with a loose

cluster of darts, but they are still visibly surrounding the bulls-eye. Next, when

bias is high and variance is low, we get a tight cluster but it is not centered at

the bulls-eye. Lastly, if bias and variance are both high, we get a dart board with

a loose cluster of dart not centered at bulls-eye.

The end goal of the model is to minimize both bias and variance, but this is

an extremely difficult task. This difficulty is the direct result of the bias variance

tradeoff. The bias variance trade off is a property of predictive models where there

is a lower bias in parameter estimation there is a higher variance of the parameter

estimates across samples. This works the other way as well. While this concept

is not universal, it is still an extremely common issue that is run into during the

creation of a predictive model. The ultimate goal of this is to create a model

with a low bias, a model that correctly models the relevant relationships between

the predictions and the actual data points, without increasing the variance too

much, a model that doesn’t overcompensate for noise in the data set. On other

words, one wants to ideally choose a model that both accurately captures the

regularities in the training set and generalizes well to unseen or unknown data.

One method to accomplish this goal in linear models is to apply a regularization

term to the model creation. This is explained in the next section.

4 Regularization

In this section I will be discussing the concept of regularization, also known

as penalization techniques, its uses and introducing three different types of it.

Regularization is the process in which one “shrink” or constrains the coefficients

predictors of a model by penalizing higher valued predictors. The goal of this

process is to attempt to lower the variance of our model without raising our bias
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a significant amount, essentially attempting to fix overfitting. The bias and the

variance are two types of errors we have when building a model. First we have

our predictive model.

(4.1) [3]t ∼ f(x) + ε

We denote t as our predicted data, f(x) as our unknown function, that is gathered

from a sample denoted as D = {(t1, t1), . . . , (yn, xn)}, and the error is denoted as

ε. Furthermore, our ultimate goal is to estimate our function f from D, using a

parametric family of normally linear functions represented as such:

(4.2) [3]y(x;w) = xTw

where w is a vector of parameters, our coefficients in our future model. Our next

goal is to measure the quality of our estimator, y. We accomplish this goal by

calculating our expected squared loss which can be written as:

(4.3) [3]E[L] =

∫
{y(x)− f(x)}2p(x)dx+

∫
{f(x)− t}2p(x, t)dxdt

In equation 4.3, the second term is the noise of the model, the variation in the

data that can’t be explained by the model. Hence, our noise is the minimum of

the expected loss equation. Next, our goal is to choose a y(x), such that the first

term is minimized. Since, the first term is non-negative, the smallest achievable

minimum is zero. Furthermore, the expected loss equation(4.3) can be rewritten

as the sum of the bias(3.1) squared, the variance(3.2) and the noise of the model.

For the proof see [3]. As mentioned above, the overall goal of model building is

to minimize this expected loss equation. This becomes a difficult task since bias

and variance are inversely related. This leads us to the use of regularization

As mentioned earlier, regularization is the technique in which one “shrinks”

the predictors. In turn, the effect of the predictors are reduced with the goal of
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reducing error in the model. On top of that, with certain techniques to be dis-

cussed later, the penalty term implements variable selection as well as shrinking

the predictors. In this section, I will be discussing three different types of regular-

ization techniques that were discussed and used in Estimating an NBA player’s

impact on his team’s chances of winning [5]. These three methods are commonly

used and each has its own advantages and disadvantages that can be exploited to

create the best possible model. The general concept of the techniques that will

be covered are an addition to our cost function. The original cost function can

be seen in equation 2.2. We then add a penalty term to our cost function which

gives us the general form:

(4.4) [15]
1

2

N∑
n=1

{tn − w>φ(xn)}2 +
λ

2

M∑
j=1

|wj|q

We also constrain the regularization term such that:

(4.5) [15]
M∑
j=1

|wj|q ≤ η forsome η > 0

In equation 4.4, the new cost function with a regularization term, λ is known as

the tuning parameter. In this new cost function, we introduce a regularization

term. The regularization term shrinks the values of w>, the coefficients of the

predictors, by increasing the value of the cost function, which in turn decreases

the value of the predictors. The scale of the effect from the regularization term,

on the predictor coefficients, has a direct relationship with the regularization.

Changing the tuning parameter is how we change the amount of regularization

that is occurring. The tuning parameter directly affects how much shrinkage

occurs from the regularization term. This means that finding the correct value

for the tuning parameter is extremely important in order to optimize the positive

effects resulting from using regularization. As for the behavior of the effect of the
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cost function from the tuning parameter, as λ→ 0+ we get:

lim
λ→0

E
D

+
λ

2
(
M∑
j=1

|wj|) = E
D

which is the exact same as the cost function for ordinary least squares. On the

other hand, as λ→∞ we get:

lim
λ→∞

E
D

+
λ

2
(
M∑
j=1

|wj|) =⇒ wj = 0 ∀j

This means that as λ approaches infinity, the effect of each of the predictors on

the prediction shrinks, eventually having no effect. In the succeeding subsections,

three different versions of the general regularization cost function, the ridge, lasso,

and elastic net regressions, will be discussed and explained.

4.1 Penalty with a Normal Prior

The first technique I will be discussing is the Ridge method, also known as

using an L2 regularization or placing a normal prior on our distribution or model.

This regularization changes our model by changing our cost function to:

(4.6) [12]Ê(w) =
1

2

N∑
n=1

{y(xn, w)− tn}2 +
λ

2

M∑
j=1

|wj|2

In equation 4.6, λ
∑n

j=1w
2
j is considered our penalty term, previous discussed in

the abstract, where λ, lambda, is our penalty term.

The Ridge regression has one major shortcoming that the lasso and elastic

net regressions have, variable selection. This can be problematic in certain cases

where there are variables that are essentially irrelevant. When those irrelevant

variables are included in the model, it can lead to increased sensitivity to noise.

If the sensitivity to noise is severe enough, it will lead to the model being overfit,

giving you an inaccurate model. On the other hand, the Ridge regression still

has a lot of advantages over the ordinary least squares method. First, it shrinks
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irrelevant, or less relevant predictors, towards zero, decreasing their effect on the

prediction and increasing the accuracy of the model. The Ridge regression also

excels, comparatively to the ordinary least squares method in situations where

there are more predictors than data points. Lastly, it performs much better when

there are multicollinearity appears in the model. Multicollinearity can cause

extreme sensitivity, in the model, to minor changes in the data and leads to

overfitting of the model. While the Ridge regression has its limitations and has

been improved, mentioned in section 4.2 and 4.3, it is still an improved method

from the ordinary least squares method for model creation.

4.2 Penalty with a Laplacian Priors

One other popular technique is called the lasso, which is an acronym for “least

absolute shrinkage and selection operator”[19]. This concept was created in or-

der to combine the advantages from using a ridge regression and using a subset

selection method. This method originates from a proposal from Brieman[4]. His

non-negative garotte minimizes:

(4.7) [4]
∑
k

(
yn −

∑
k

ckβ̂kxkn

)2

under the constraints of

(4.8) [4]ck ≤ 0
∑
k

ck ≤ s

Now let β̃k(s) = ckβ̂k be the new predictor coefficients. Furthermore, as s de-

creases, the garrote is drawn tighter. This results in more ck’s becoming 0 and

shrinkage of the nonzero β̃k(s)’s. This procedure is known as the non-negative

garrote. The consequences of this method are feature selection and coefficient

shrinkage.
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The negative of this method is that its solution is dependent on both the sign

and the magnitude of the Ordinary Least Squares(OLS) estimates. For example,

if our model results in an over-fit or high co-linearity, resulting in poor estimates

from the OLS, the garotte method may suffer at fixing this problem. On the other

hand, avoids this problem by not explicitly using the OLS estimates. Instead it

places a prior on the initial data, also called the Laplacian prior, in order to

find the new distribution. The general form of this prior is shown by Frank and

Friedman[7]. They proposed using a bound on the parameters in the general form

of an Lq-norm, such that q0. For the lasso, we explore the case in which q = 1.

We now come into the definition of the Lasso and some of its properties.

(4.9) [19](α̂, β̂) = arg min{
N∑
i=1

(yi − α−
∑
j

βjxij)
2} subject to

∑
j

|βj| ≤ t

In this, t ≥ 0 is considered our tuning parameter. Furthermore, a term is added

to the cost function, denoted as ED, from the ordinary least squares’ cost function

to give us:

(4.10) [19]E
D

+
λ

2
(
M∑
j=1

|wj|), such that
M∑
j=1

|wj| ≤ η

One of the most important parts of the lasso technique is the tuning parameter

value. Choosing the right value for λ is how the lasso regression is able to perform

feature selection, one of the most important results of applying the Laplacian

prior. This makes our parameter selection an important process. There are two

popular options, cross-validation and generalized cross-validation. Suppose that

t = η(X) + ε
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where E(ε) = 0 and Var(ε) = σ2. The mean-squared error of an estimate η̂(X) is

defined by:

(4.11) [21]MSE = E{η̂(X)− η(X)}2

Furthermore, we find our prediction error of η̂(X) by

PE = E{Y − η̂(X)}2 = MSE + σ2

We then estimate the prediction error for the lasso procedure by five-fold cross-

validation as described in chapter 17 of Efron and Tibshirani[6].

While the lasso regression method has a lot of positives and advantages to

its counterpart, the ridge regression, it also has its limitations. There are three

main limitations for the lasso regression. For these limitations, let n denote the

number of data points there are, and p denote the number of predictors in the

model.

(1) [21] In the p > n case, the lasso selects at most n variables before it

saturates, because of the nature of the convex optimization problem. This

seems to be a limiting feature for a variable selection method. Moreover,

the lasso is not well defined unless the bound on the L1-norm of the

coefficients is smaller than a certain value.

(2) If there is a group of variables among which the pairwise correlations are

very high, then the lasso tends to select only one variable from the group

and does not care which one is selected. See Section 2.3.

(3) For usual n > p situations, if there are high correlations between predic-

tors, it has been empirically observed that the prediction performance of

the lasso is dominated by ridge regression[19].
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As a whole, the lasso regression was created to solve the shortcomings of the

Ridge regression. In other words, it solves the biggest issue with the Ridge re-

gression by changing the penalty term to allow feature selection to occur. Since

it linearly shrinks each predictor, instead of asymptotically like the Ridge regres-

sion, certain predictors are set to 0, in most situations. Another way to think of

this difference is that the Ridge regression scales the coefficients by a constant

factor while the lasso regression translates the coefficients by a constant factor,

with a floor of 0. While the lasso regression does fix the issues that arise from

using a ridge regression, it has its own drawbacks(4.2). In the next section, I will

be discussing an improved version of the ridge and lasso regression, the elastic

net.

4.3 Penalty with a Laplace-Gaussian Priors

A Laplace-Gaussian prior, also known as an elastic net regression is another

form of regularization and variable selection technique that is commonly used

when trying to fit a model to data. As mentioned in section 4.1 the ridge re-

gression, placing a Normal prior, has its advantages, but at the same time it has

glaring limitations. On the other hand, the lasso regression, section 4.2, is a more

proficient method of regression where the ridge regression does not excel, but

again there is still no significant overall improvement with every type of linear

model. As mentioned in the previous section (4.2), we have concrete limitations

of the lasso regression. Fixing these limitations, specifically the first(1) and sec-

ond(2) reference in 4.2, was the intention of Zou and Hastie[21] when they came

up with the elastic net method. They wanted to create a new method that is

proficient as the lasso, in situations where the lasso is at its best, while acting the

same as the best method when situations in 1, and 2 occur. Lastly, they wanted

to improve the results of the lasso when the 3 case occurs. These goals led them

to come up with the elastic net method of regularization.
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First comes the naive elastic net representation[21]. Let n denote the number

of data points, or observations in the data set, and let p denote the number of

predictors, or covariates, in the model. Let y = (y1, y2, . . . , yn)> is a vector

of our observed dependent variables. Let X = (x1| x2| . . . | xp) be the model

matrix, where xj = (x1j, x2j, . . . , xnj)
>, such that j = 1, 2, . . . , p are the

predictors. Once a location and scale transformation are completed they assume

the dependent variables are centered and predictors are standardized such that:

(4.12) [21]
n∑
i=1

yi = 0,
n∑
i=1

xij = 0, and
n∑
i=1

x2ij = 1 for j = 1, 2, . . . , p

Let λ1, λ2 > 0 and both are fixed, the naive elastic net criterion is defined as

(4.13) [21]L(λ1, λ2, β) = |y −Xβ|2 + λ2|β|2 + λ1|β|1

such that

(4.14) [21]|β|2 =

p∑
j=1

β2
j and |β|1 =

p∑
j=1

|βj|

Furthermore, the naive elastic net estimator, denoted as β̂, is the minimizer of

equation 4.13:

(4.15) [21]β̂ = arg min
β
{L(λ1, λ2, β}

As you can see from 4.13 and 4.14, this definition combines the penalty terms

from both the ridge regression(4.6) and the lasso regression(4.10) and adds them

to the Ordinary Least Squares equation(2.2). Furthermore, they each penalty

term has their own tuning parameter. Next, let α = λ2
λ1+λ2

=⇒ α ∈ [0, 1]. Then

when solving for β̂ in equations 4.13 is essentially the process of optimizing:

(4.16) [21]β̂ = arg min
β
|y−Xβ|2, subject to (1−α)|β|1+α|β|2 ≤ t for some t
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The function (1−α)|β|1+α|β|2 is called the elastic net penalty. Furthermore, the

special case where α = 1, the elastic net is the exact same as the ridge regression.

On the other hand, when α = 0 the elastic net is the exact same as the lasso

regression. Otherwise, the elastic net is a combination of both styles of regression.

Maybe add more about actual proof it solves those issues

Lemma 4.1. [21] Given data set (y,X) and (λ1, λ2), define an artificial data set

(y,X
)

by:

X∗(n+p)×p = (1 + λ2)
−1/2

(
X√
λ2I

)
, y∗n+p =

(
y

0

)
Let γ = λ1√

1+λ2
andβ∗ =

√
1 + λ2β This allows us to change the elastic net criterion

to be:

L(γ, β) = L(γ, β∗) = |y∗ −X∗β∗|2 + γ|β∗|1

Let

β̂∗ = arg min
β∗

L{(γ, β∗)}

; Then

β̂ =
β̂∗√

1 + λ2

Because the sample size in the augmented problem is n+p and X∗ has rank p,

the naive elastic net can potentially select all p predictors, removing the limitation

(1) of the lasso regression.

In order to overcome the challenge of accurately modeling when there is a larger

number of predictors than data points, specifically when p >> n, the process of

grouping variables becomes almost essential. Grouping variables, also known

as grouped variable selection, is the process that when you discover multiple

co-linear predictors the value of their coefficients become regularized such that

they become equal. This concept is one of the limitations of the lasso regress,

because the lasso regressions tends to select just one of the co-linear variables

and doesn’t care which one is the one left. While in some situations this might
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be very beneficial, in the case where p > n this is not the best way to approach

the problem. Before introducing the lemma for the variable grouping we must

first show the generic penalization method:

(4.17) [21]β̂ = arg min
β
|y −Xβ|2 + λJ(β)

such that J(·) is positive valued for β 6= 0

Lemma 4.2. [21] Assume that xi = xj and i, j ∈ {1, 2, . . . , p}

(1) If J(·) is strictly convex, then β̂i = β̂j, ∀λ > 0.

(2) If J(β) = |β|1, then β̂iβ̂j0 and β∗ is another minimizer of equation 4.17,

such that:

β̂∗k =



β̂k if k 6= iand k 6= j

(β̂i + β̂j) · (s) if k = i

(β̂i + β̂j) · (1− s) if k = j

}

for any s ∈ [0, 1]

From lemma 4.2, there is a clear difference between the strictly convex penalty

functions and the lasso penalty. The beauty of the elastic net method is that

in the case where λ2 > 0, the elastic penalty is strictly convex. Furthermore,

when the penalty is strictly convex, the variable grouping occurs when identical

predictors appear. As shown above, it can be easily proven and shown that the

elastic net method of regularization overcomes the two biggest limitations of the

lasso regression, while performing as good or better when the lasso regression is

at its best.

5 Gibbs Sampler

In Bayesian models, such as the one that will be discussed 8, as the model

becomes increasingly complicated and a better predictor a more efficient inference
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method is required. That leads us to Bayesian Inference. The goal of using

Bayesian Inference is to maintain a full posterior probability distribution over

a set of random variables. As the model becomes more complicated, using and

maintaining the posterior distribution becomes increasingly more difficult until it

becomes intractable. This is the result of the necessity of constantly calculating

rigorous integrals. A way to work around this is the use of Monte Carlo Markov

Chain, also known as MCMC, sampling techniques for simulation, with the goal

of finding the posterior distribution. The logic of MCMC sampling is that if we

have N simulated samples from the distribution, it is possible to compute any

statistic of a posterior distribution:

(5.1) [20]E[f(s)]ρ ≈
1

N

N∑
i=1

f(s(i))

Such that ρ is the posterior distribution, f(s) is the desired expectation, and

f(s(i)) is the ith simulated sample from ρ. An example of this is that we can

estimate the mean by taking E[x]ρ = 1
N

∑N
i=1 x

(i)

Now were faced with actually obtaining the samples from the posterior distri-

bution. This is where the Gibbs sampling technique comes into play. The intu-

ition behind the Gibbs sampling is to obtain samples from the posterior distribu-

tion by sweeping through each variable with the goal to sample from the distribu-

tion conditioned on the chosen variable, with the remaining variables fixed to their

current values. For a simple example let X1, X2, X3, X4 be four random variables.

The first step is setting these four random variables to their initial values, which

are normal sampled from the prior distribution: x01, x
0
2, x

0
3, x

0
4. Then for the ith

iteration of this loop, we sample x
(i)
1 ∼ p(X1 = x1|X2 = x

(i−1)
2 , X3 = x

(i−1)
3 , X4 =

x
(i−1)
4 . We then sample x

(i)
2 ∼ p(X2 = x2|X1 = x

(i−1)
1 , X3 = x

(i−1)
3 , X4 = x

(i−1)
4 ,

then sample x
(i)
3 ∼ p(X3 = x3|X1 = x

(i−1)
1 , X2 = x

(i−1)
2 , X4 = x

(i−1)
4 , and lastly

sample x
(i)
4 ∼ p(X4 = x4|X1 = x

(i−1)
1 , X2 = x

(i−1)
2 , X3 = x

(i−1)
3 . This process is
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repeated until the sample values have the same distribution as if they were from

the true posterior joint distribution.

6 Kernel Density Estimation

Density Estimation is the process in which given an unknown probability den-

sity and outputs from a random variable, is the construction of an estimate prob-

ability density function for the random variable. One such type of density es-

timation is kernel density estimation, which is what I will be discussing in this

section.

Let X1, X2, . . . , Xn denote a sample of size n from a random variable with

density f [17]. The kernel density estimate of f at point x is given by:

(6.1) [17]f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

The kernel is denoted as K, and satisfies
∫
K(x) dx = 1. The smoothing pa-

rameter is denoted as h, also known as the bandwidth. Furthermore, generally

a kernel is chosen to be a unimodal probability density that is symmetric about

zero. This implies the satisfaction of three conditions [17]:

(1)
∫
K(y) dy = 1

(2)
∫
yK(y) dy = 0

(3)
∫
y2K(y) dy = µ2(K) > 0

While there are many different types of kernel density estimators(uniform, trian-

gular, biweight, triweight, Epanechnikov, Gaussian, and more), only the Gaussian

kernel will be explained in this paper. For the Gaussian kernel we get:

(6.2) [17]K(y) =
1√
2π

exp−y
2

2

Based on the Gaussian kernel equation 6.2 and the kernel density estimation

equation 6.1, it can be seen that what is occurring is finding a new density from
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applying a normal distribution around each of the data point with the bandwidth

acting as a tuning parameter. After actually completing the Gaussian kernel

density estimation, we get:

(6.3) [17]Bias[f̂h(x)] =
h2

2
µ2(K)f ′′(x) + o(h2)

and

(6.4) [17]V ar[f̂h(x)] =
1

nh
R(K)f(x) + o

(
1

nh

)
such that R(K) =

∫
K2(y) dy.

The next crucial step in the process of a kernel density estimator is band-

width selection. Bandwidth is the tuning parameter for this process. When the

bandwidth is too small it represents the scattered data too much, creating a

distribution that is not very smooth and can represent the noise of the random

variables too much. On the other hand, if the bandwidth is too large, the dis-

tribution becomes too flattened and smooth, such that it does not represent the

random variables enough. This makes bandwidth selection an important piece of

the process. One of the most commonly used method for this are cross validation

algorithms, returning a favorable bandwidth.

7 Similar Previous Works

Before getting into how the model was built and how the results were inter-

preted, I will be discussing previous works that attempt to create an improved

method of comparing NBA player performances. One of the first ways NBA

player evaluators compared players was solely their scoring output combined with

their true shooting percentage, which is a way to comprehensively measure how

efficient a player scores. It is calculated by:

(7.1) [2]TS% =
PTS

(.44× FTA+ FGA)× 2
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Points scored is denoted by PTS. FTA denotes free throw attempts, and FGA

denotes field-goal attempts, which are attempted shots during the live game.

This equation essential results in points per possession divided by two, so that

it looks as if it is a field goal percentage. Later, players were judged on their

plus-minus. Plus-minus is the scoring differential that occurs while the player is

on the court. The problem with that method is it doesn’t adjust for the player’s

teammates effect on the game, resulting in a lot of misleading data. In order to fix

this problem, in 2004, Rosenbaum [16] came up with idea of adjusting a player’s

affect based on who he was sharing the court with. Furthermore, in 2008, Ilardi

and Barzilai [10] furthered this concept of adjusting for who was on the court

with the player being analyzed. These methods were flawed, since collinearity

created volatile results, which led to incorrect representations of player. In 2014,

Ilardi [9] furthered his study to create real plus-minus. While all of these methods

are based on team performance and not the box score, a player’s stats during a

game, one popular method of comparing player is calculated from the box score

and pace of play, Player Efficiency Rating, PER[8]. This metric is calculated

from the sum of differently weighted raw stats and then adjusting that value in

order to get a per-minute rating of player. This method is also flawed, since it

doesn’t adjust for teammates, opponents, context of the stats, and playing style.

8 Building the Model

Deshpande’s and Jensen’s goal of their article was to build a new statistic

that improves on previous attempts to represent an NBA player’s effect on their

team’s chances of winning a game. The first step in this process is isolating the

time a player is actually on the court. This is achieved by breaking up games into

different shifts. A shift is the time period between two moments of substitutions,

when at least one of the ten players on the court changes, in turn changing the

effect of the other players to the player we are analyzing. In previous methods
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of representing an NBA player’s effect on a team’s chance of winning, the goal

was to measure solely the effect of point differential for when a player is playing,

controlling for the for the player’s teammates and opponents effectiveness, and

adjusting the value to be an average it over 100 possessions. Using 100 possessions

to normalize teams’ offense and defense effectiveness is a common practice used

in basketball analysis, because it is around the average amount of possessions per

game. Because we “adjust” a players plus minus to 100 possessions is why that

method is called Adjusted Plus Minus. This method had an enormous flaw, it

was not isolating a player’s effect enough, since their Adjusted Plus Minus would

be skewed if a player shared the majority of his time on the court with a top tier

player, driving their Adjusted Plus Minus up, or if they shared the court with

a very bad player, driving their Adjusted Plus Minus down. This is where Real

Plus Minus comes in. Real Plus Minus uses the technique mentioned above, a

Ridge Regression to better adjust for a small sample size, in turn decreasing its

bias error. While both of these types regress the point differential of a player’s

time on the court, Deshpande and Jensen proposed the concept of regressing the

change in the home team’s win probability between shifts. The goal of this is

to provide context to a player’s production instead of just taking out of context

data. For example, a player scoring 10 points in a shift has a significantly larger

effect on a team’s chances of winning if it occurs when the game is tied and

there’s five minutes left in a game. On the other hand, if the same team was

down by 30 with the same amount of time left, it would have almost no effect on

a team’s winning probability. Because of that problem, Deshpande and Jensen

believed a player’s effect on a team’s winning probability better provides context

to a player’s production.
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8.1 Model Creation

[5] The next step in the modeling process is creating the actual structure of

the model. Deshpande and Jensen propose a model in the form of:

(8.1) [5]yi|hi, ai = µ+ θhi1 + · · ·+ θhi5 − θhi1 − · · · − θhi1 + τHi
− τAi

+ σεi

In this equation, yi is the change in winning probability of the home team during

the ith shift. We then denote the partial effects of each individual player as θ. As

a whole, θ = (θ1, . . . , θ488)
T , representing the partial effects of all 488 players that

are used for the model. Furthermore, we denote the partial effects of each of the

5 individual players of the home team as θh, going from h1 to h5. On the other

hand, the individual players’ partial effects for the away team is denoted as θa.

They then denote the partial effect of the teams themselves as τH and τA, home

and away team effects respectively. As a whole, τ = (τ1, . . . , τ30)T , representing

the partial effects of all 30 individual teams. µ is considered the league-average

“home-court advantag”. Home-court advantage is a common concept in team

sports, where the home team has a natural advantage stemming from their famil-

iarity of their surroundings and facilities, lack of needed travel to play, and the

fans. Next, we denote the independent standard normal variable as εi for each

shift, and σ is the measure of variability in yi that comes from the uncertainty

and the inherent variability in win probability that cannot be explained by the

data.

8.2 Process of Estimating Win Probabilities

Since the main goal of the paper by Deshpande and Jensen is to give NBA

player production more context, so that they can better view how NBA players

affect winning probabilities. They achieve this goal by measuring win probability

changes between shifts. Measuring win probability has been a common theme in
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many sports, originating from Mills and Mills[14], who used the concept to eval-

uate how players in the MLB performed. On top of that, Lindsey [11] estimated

win probabilities for MLB games in tangent. Furthermore, this concept has been

expanded to basketball by Stern [18], as well by Maymin, Maymin, and Shen [13].

Deshpande and Jensen [5] used this concept of measuring win probabilities

in order create their regression model. In their analysis, they modeled winning

probabilities of the home team under two conditions. The first condition is the

number of seconds that have been played in the game, denoted as T seconds.

The second condition was how many points the home team is winning, a positive

number, or losing by, a negative number, denoted as L points. With these two

conditions they denote the probability of a home team winning a game as pT,L.

Deshpande and Jensen believed that pT,L is a smooth curve, and their hypothesis

is backed by applying the probit model created by Stern [18]. They then needed to

decide if it was the correct way to model pT,L, which was accomplished by creating

a predictive model from the empirical data from their data set, the games from the

regular seasons of 2006-2007 season to 2012-2013 season. They then see flaws in

both models: the probit model from Stern underestimates pT,L when L > 0, and

at the same time the probit model overestimates pT,L for when L < 0. Deshpande

and Jensen attribute this discrepancy to the fact the Stern’s model only considers

the value of L at the end of the first three quarters, instead of reevaluating pT,L

at smaller intervals. For these reasons, they see that the empirical model is

much more favorable compared to the probit model. While the empirical model

is preferable to the probit model, it still has its flaws, specifically its ability to

predict rare occurring values of [T, L]. This is the result of limited sample sizes.

For example, Deshpande and Jensen point out that there had been one occurrence

in which the home team trailed by 18 points after 5 minutes of play. This game

resulted in the home team winning the game. This leads the empirical model to

tell us that if a home team is trailing by 18 with 5 minutes of game time played,
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the home team will win. With basic knowledge of the NBA, that prediction is

wrong. This now tells Deshpande and Jensen that their empirical model is highly

sensitive to extreme and rare conditions.

Since there is an inherent issue with how the empirical model predicts winning

probabilities, stemming from a small sample size, Deshpande and Jensen proposed

a new model that would be somewhat of a combination of the two models, the

empirical model and probit model. Since basketball possessions are extremely

unlikely to last shorter than six seconds, meaning six seconds is most likely the

smallest amount of time where the score can change, they decided to create time

intervals instead of taking individual seconds. Furthermore, since the maximum

points that can be scored in a single possession is 4, a 4 point interval was used.

This can be calculated from multiplying points per 100 possessions by effective

field goal percentage, combining weighted percentages of 2-point shots, 3-point

shots and free throws, and dividing points per 100 possessions by that value.

They then decided to create a new model around these concepts. The goal was

to create smoother estimates than the empirical model, without sacrificing the

complexity that is given by the empirical.

Let NT,L be the number of games in which the home team has led by l points

after t seconds of game time has been played [5]. Furthermore, let L− hl ≤ l ≤

L+hl and let T −ht ≤ t ≤ T +ht, such that ht, hl ∈ Z+. Another way to think of

ht, hl is the range of our intervals mentioned above. Next, let nT,L be the number

of games which the home team ended victorious from each window. They then

modeled nT,L as a Binomial distribution, conditioned on NT,L and pT,L, in other

words:

nT,L ∼ Bin(NT,L, pT,L)
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Given the intervals mentioned above, the assumption is that the win probability

should be consistent when ht = 3, hl = 2. In other words, between the intervals

[T − 3, T + 3] × [L− 2, L+ 2] [5].

The next task was fixing the problem of a small sample size in extreme leads.

They accomplished by placing a conjugate Beta(αT,L, βT,L) prior on pT,L and the

estimate of pT,L. This results in a posterior distribution with a mean of p̂T,L such

that

(8.2) p̂T,L =
nT,L + αT,L

NT,L + αT,L + βT,L
[5]

Furthermore, αT,L is defined as pseudo-wins and βT,L is defined as pseudo-losses.

The goal of these pseudo-games is to shrink the empirical model estimates for

pT,L towards
αT,L

αT,L+βT,L
, specifically in the extreme and rare events. Since we split

up T, L into windows [T − 3, T + 3] × [L − 2, L + 2], we then get 35-unit

cells of the form [t, t + 1] × [l, l + 1 for each value of T and L. They then added

350 pseudo-games into each window [T − 3, T + 3] × [L − 2, L + 2], 10 per

each unit cell [t, t + 1] × [l, l + 1]. Since not all scores result in a 50% split of

wins and losses, Deshpande and Jensen made the pseudo-wins and pseudo-losses

conditioned on the value of l. If l < −20, then 10 pseudo-losses were added to

that cell, and if l > 20, then 10 pseudo-wins were added to that cell. Lastly, 5

pseudo-wins and 5 pseudo-losses were added to each of the other unit cells.

The goal of this regularization method is to fix the model so that it better pre-

dicts the extreme situation, without compromising the model’s ability to predict

situations that occur very often. In other words, they wanted p̂T,L to be driven

by mainly the observed values in common combinations of T and L and when the

combination of T and L is rare, they wanted p̂T,L to be more driven by αT,L and

βT,L. This is evident in the example given. When T = 423, the observed values

of N423,−10 = 4018, N423,−5 = 11, 375, N423,0 = 17, 724, N423,5 = 14, 588, and

lastly N423,10 = 5460. Furthermore, in cases where T = 423 and −10 ≤ L ≤ 10,
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the posterior standard deviation of .003 ≤ pT,L ≤ .007, both very small values.

This shows very little uncertainty of the estimate p̂T,L. On the other hand, when

NT,L is close or much less than 350, the influence of αT,L and βT,L is increased,

smoothing the results of the rarer occurrences of T and L. There is still a much

larger uncertainty observed in these situations. This is represented in the much

higher standard deviation of the posterior of pT,L, which is .035.

The overall goal of this process was to create a smoother model for winning

probabilities, conditioned on seconds played and point differential. This goal was

accomplished by first by taking a page out of the probit model, a model that only

analyzed point differentials at the end of quarters. Using this idea, they chose

to increase the amount of seconds between each moment they analyzed point

differential and how large of a change in point differential that would result in

a change of the probability of winning. These changes were based around how

basketball is played, most possessions take at least six seconds, and rules, it is

impossible to score more than 4 points in a possession. These changes helped

reduce the complexity of the model, and made it more realistic, since basketball

has restrictions in game play. The next way they were able to create a smoother

and less complex model was placing the conjugate Beta(αT,L, βT,L) prior on pT,L

and the estimate of pT,L. The intention of this was to make up for small sample

sizes of certain predictable events. The rarity of an early 20-point deficit or lead

can cause unwanted effects on a model. If a team is able to come back from this

large deficit, it could lead to a model that incorrectly predicts a victory for a

team in that situation. By placing the conjugate Beta(αT,L, βT,L) prior on pT,L

and the estimate of pT,L, and adding the pseudo-wins and pseudo-losses, those

rare occurrences have less of an effect on our model, thus resulting in a more

accurate and smoother model.
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8.3 Building the Bayesian Linear Regression Model

Based on the equation 8.1, we can see there are a lot of covariates, predictors, in

the model created by Deshpande and Jensen. These situations normally go hand

in hand with high degree of collinearity, which means it is hard to differentiate

which covariate is causing the change in the prediction. This leads us to the

application of the regularization techniques mentioned earlier. Deshpande and

Jensen chose to apply a Laplace prior on the covariates. The reason for a Laplace

prior was chosen over a normal prior is its ability to shrink the covariates at a

faster rate than the shrinkage rate from Normal prior. On top of that, the Laplace

prior does a much better job at variable selection than the Normal prior. This is

because, as mentioned before, when using a Laplace prior on the covariates, they

shrink at a much faster, a linear, rate than the Normal prior. This causes some of

the covariates to have zero effect on the prediction. In other words, the Laplace

prior kills two birds with one stone. This method decreases the complexity of the

model, decreasing the bias error, and does variable selection at the same time.

While placing a Laplace prior on the covariates is a better method than plac-

ing a Normal Prior in most situations and is used by Deshpande and Jensen

[5], it is not the best method of regularization that can be used. The method

that is best fit in fitting the model is actually the Laplace-Gaussian prior. The

Laplace-Gaussian prior is gives the best results when it comes to regressions with

highly correlated independent variables. This method is explained in section 4.3.

While it is the best method for regularization, it was unable to be used because

there were limitations at the time of the paper was written when it comes to

its implementation. At the time, there a widely-available Gibbs sampler for the

Laplace-Gaussian prior did not exist.

Given this information, they then build the model conditioned on P i and T i

[5]. Let P i be a vector that tells us which player is on the court during the ith
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shift. This then makes the jth entry, P i
j = 1 if the jth is on the home team, -1 if

they’re on the away team and 0 otherwise. Furthermore, let T i be a vector that

denotes which teams are playing during the ith shift. In the same way, for the

kth entry, T ik is a 1 if the kth team is the home team and -1 if it is the away team

and 0 otherwise. yi is then modeled, conditioned on P i and T i:

(8.3) yi|P i, T i ∼ N(µ+ P i>θ + T i
>
τ, σ2)[5]

The Laplacian priors are then placed on each part of θ and τ , conditional on

the corresponding noise parameters σ2. The conditional prior densities for (θ, τ)

given σ2 is:

(8.4)

p(θ, τ |σ2) ∝

[
λ

σ

488

× exp

(
− λ

2σ

488∑
j=1

|θi|

)]
×

[
λ

σ

30

× exp

(
− λ

2σ

30∑
j=1

|θi|

)]
[5]

λ is the the penalty term, such that λ > 0. They then place a flat prior on µ, a

Gamma(r, δ) hyper-prior on λ2 and non-informative hyper-priors σ2, r, δ.

Since the current joint posterior distribution of (µ, θ, τ, σ2) is not solvable

analytically, is not analytically tractable, another method is needed. Deshpande

and Jensen propose using Monte Carlo Markov Chain simulation in order to

estimate it [5]. Furthermore, in order to complete the model, other assumptions

are needed. The first is the assumption that each component of the vector yi

is independent from the others [5]. While this assumption is not perfect, since

most times a substitution does not involve replacing all 10 players on the court,

there is likely to be auto-correlation. Though through further examination, it is

found that the auto-correlation between yi and yi+1 is -.1. While there is auto-

correlation, it is a small amount and the assumption can still be a reasonable

assumption. This assumption also takes out the concept of hot and cold streaks.

Hot and cold streaks are stretches where a player is playing extremely efficiently

for a period of time, while a cold streak is when a player is extremely poor for
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a period of time. This would then create situations where the yi’s wouldn’t be

independent. The second assumption is that the distribution for yi’s are Gaussian

with a constant variance, conditional on (Pi, Ti) [5]. The last assumption is that

every shift is treated as the same length of time. The idea behind this is that time

is irrelevant since the goal of this model is to model overall impact not impact

per minute basis. For example, there would be no difference between a shift of 20

seconds, and the winning probability increased by 15%, than a shift of a minute

with the same increased win probability. This model creates a situation in which

the duration of the shift does not affect the posterior analysis.

9 Results of Model

In order to finally gain values for the model, finding the posterior distribu-

tions of each component of y, using a Monte Carlo Markov Chain simulation was

needed. In this case, a Gibbs sampler was used. For more information on what

a Gibbs sampler entails, view section 5. Using the Gibbs sampler function inte-

grated int the monovm package in R, they were able to obtain 1000 independent

samples from the full posterior distribution of (µ, θ, τ, σ2). These data samples

aren’t enough to consider as the results of this process. Those values need inter-

pretation and need to be used further in order to show not only what the players

have done but more a range of how each player effected winning probabilities.

This is necessary since the goal of the study is not to just find the average output

of each player, but to create a way to compare players. Since average isn’t an

accurate measure for comparing the players’ effects on winning probabilities, out-

liers cause averages to be an inaccurate tool for comparing, another distribution

must be made for each of the players. In order to create a distribution from the

1000 independent samples, for each player, a Gaussian kernel density estimator

is used, view section 6. Applying a Gaussian kernel density estimator, centered

at each of the average winning probability impact, for each of the player’s 1000
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independent samples, a posterior distribution density is created for each of the

players.

After creating the new posterior densities for each, there is more information

that is needed to be found in order to compare each player’s effect. The problem

with treating each player the same is because different players play in different

contexts. In this situation, context references the difference in the amount of

shifts each player is a part of and the probability of the player’s team winning

when they enter the game. This problem caused Deshpande and Jensen to come

up with another metric for each player, a leverage profile. This is calculated from

a combination of the total shifts for a player, the team’s winning probability when

entering the game, the average duration of the shifts, and the average length of

each shift. After the leverage profiles of each player is calculated, players with

similar leverage profiles are then compared.

10 Conclusion

Being able to accurately evaluate NBA players’ effect on a team’s success, has

been an integral part of building a championship team in the NBA. Throughout

the years, there have been many attempts to create a metric to rank players on

their effectiveness, but they all lack a key component in their analysis, context.

Context of a player’s production is an extremely important factor when analyzing

a player’s effect on winning. Not using context in previous player evaluation

methods led Deshpande and Jensen to build a model that includes context when

analyzing an NBA player’s effectiveness. Using machine learning and probability

concepts, Deshpande and Jensen were able to create a model that more accurately

model how NBA player’s effect winning probabilities than previous attempts.

This does not mean it is the best method for NBA player evaluation and still

has its shortcomings because it still does tell the whole story. Since basketball is

a complex game that is partially dictated by strategy, how and when a player is
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used by a coach can greatly affect their effect on winning probability in this model.

This means that if a player’s role were to be changed, changing teams, injuries,

players joining their team, a coach changing their role, etc., their effect on winning

probability can completely change. This shortcoming of the model causes it to

be much more of descriptive model than a predictive model. On the other hand,

it can be used as a moderately accurate predictive model in situations in which

a player’s surroundings to not alter significantly as well. Another flaw of this

model is how the home-court advantage is calculated. Home-court advantage is

not uniform for each NBA team, it comes in different shapes and sizes. A perfect

example of this is how the Philadelphia 76ers and Dallas Mavericks perform

home and away. The Philadelphia 76ers have been the second best home team

in the league in the 2019-2020 season. At home, the Philadelphia 76ers have

10.3 net rating [1], meaning they outscore their opponents 10.3 points every 100

possessions, on average. When playing as the away team, they have a net rating

of -5.4 points [1]. This is a significant decrease in net rating for playing on the

road, a 15.7 net rating differential to be exact. On the other hand, the Dallas

Mavericks have a net rating of 5.8 [1] at home and a net rating of 5.7 [1] on

the road, a 0.1 differential in net rating. This tells us that some teams’ home-

court advantage is a huge factor while others are not a factor. This leads me

believe that home-court advantage should not be treated the for every team, but

instead but individually calculated for each team. One last flaw of Deshpande’s

and Jensen’s model was the use of a lasso regression instead of an elastic net

in order to train the original model. This flaw was addressed by the authors

themselves[5], but chose not to fix it because of the difficulties that came with

the fix. While using an elastic net would have improved the results, Deshpande

and Jensen elected to use a lasso because of increased computation difficulty and

lack of a widely-available Gibbs sampler function for the elastic net in R[5]. Even

though there are flaws in some of their methodology, Deshpande and Jensen were
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able to create extremely accurate model using machine learning and probability

techniques.
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