
Claremont Colleges Claremont Colleges 

Scholarship @ Claremont Scholarship @ Claremont 

CMC Senior Theses CMC Student Scholarship 

2023 

Counting Spanning Trees on Triangular Lattices Counting Spanning Trees on Triangular Lattices 

Angie Wang 

Follow this and additional works at: https://scholarship.claremont.edu/cmc_theses 

 Part of the Applied Mathematics Commons, and the Discrete Mathematics and Combinatorics 

Commons 

Recommended Citation Recommended Citation 
Wang, Angie, "Counting Spanning Trees on Triangular Lattices" (2023). CMC Senior Theses. 3364. 
https://scholarship.claremont.edu/cmc_theses/3364 

This Open Access Senior Thesis is brought to you by Scholarship@Claremont. It has been accepted for inclusion in 
this collection by an authorized administrator. For more information, please contact 
scholarship@cuc.claremont.edu. 

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/cmc_theses
https://scholarship.claremont.edu/cmc_student
https://scholarship.claremont.edu/cmc_theses?utm_source=scholarship.claremont.edu%2Fcmc_theses%2F3364&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=scholarship.claremont.edu%2Fcmc_theses%2F3364&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=scholarship.claremont.edu%2Fcmc_theses%2F3364&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=scholarship.claremont.edu%2Fcmc_theses%2F3364&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/cmc_theses/3364?utm_source=scholarship.claremont.edu%2Fcmc_theses%2F3364&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu


Claremont McKenna College

Counting Spanning Trees on Triangular Lattices

Submitted to
Professor Sarah Cannon

Angie Wang
B.A. Senior Thesis
April 24, 2023



Abstract

This thesis focuses on finding spanning tree counts for triangular lattices and
other planar graphs comprised of triangular faces. This topic has applications
in redistricting: many proposed algorithmic methods for detecting gerryman-
dering involve spanning trees, and graphs representing states/regions are often
triangulated. First, we present and prove Kirchhoff’s Matrix Tree Theorem,
a well known formula for computing the number of spanning trees of a multi-
graph. Then, we use combinatorial methods to find spanning tree counts for
chains of triangles and 3 × n triangular lattices (some limiting formulas exist,
but they rely on higher level mathematics). For a chain of t triangles, we find
and prove an unexpected result: the number of spanning trees is equal to the
2(t + 1)th Fibonacci number. For 3 × n triangular lattices, we provide lower
and upper bounds for the spanning tree count by decomposing the larger lattice
into smaller subgraphs and analyzing those subgraphs.

1



Acknowledgements

I would like to thank Professor Sarah Cannon for her support and guidance
throughout this endeavor. I am grateful for the time she devoted to our weekly
meetings, for her patience in answering all of my questions, and for her thought-
ful and thorough feedback in every step of the process. It has been a privilege
to learn from you.

2



Contents

1 Introduction 4
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 9

3 Kirchhoff’s Matrix Tree Theorem 13

4 Spanning Trees in Triangular Lattices 18
4.1 Chains of Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 3× n Triangular Lattices . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 n× n Triangular Lattices . . . . . . . . . . . . . . . . . . . . . . 31

5 Conclusion and Next Steps 35

3



1 Introduction

1.1 Motivation

In the United States and in many countries around the world, geographic re-
gions are divided into districts, which in turn elect political representatives.
Redistricting is the process of drawing boundaries of electoral districts. In the
United States, redistricting takes place every 10 years to reflect the decennial
census. Redistricting is a complex and challenging process because there are
many political, legal, and demographic considerations. Moreover, redistricting
may lead to gerrymandering, which is when district lines are drawn to favor a
particular party, candidate, or ethnic group.

In the redistricting process in the United States, most states require two criteria
pertaining to the shape of districts: contiguity and compactness. A district is
contiguous if it is possible to travel between any two points within the district
without crossing into another district. A district is compact if, roughly speak-
ing, it is a “reasonable” shape. Although compactness is frequently mentioned
in the context of redistricting, there is no precise, agreed-upon definition of the
term (see, for example, [18]). The vague criteria for drawing district lines, com-
bined with various other legal requirements, the inherently subjective notion of
“fairness,” and the overwhelming number of possible districting plans, makes
gerrymandering extremely difficult to detect.

The use of quantitative methods in tackling challenges related to redistricting
can be traced back to the 1960s. During this time, computers were just becom-
ing prevalent in academic and industrial research, and political scientists were
becoming increasingly interested in using computers as a tool for mathematical
modeling, simulation, and large-scale survey analysis. Moreover, postwar en-
gineers, scientists, and mathematicians trained in operations research, systems
theory, dynamic processing, and game theory were eager to put their training
to practical use. To them, redistricting was just another problem that could be
tackled using their theoretical tools. This interdisciplinary interest led to the
earliest efforts in applying computational techniques to redistricting.

One of the earliest papers in this field was published by Hess and Weaver in
1963. Hess and Weaver believed that computerized redistricting had the po-
tential to create nonpartisan plans: in [25], they proposed a new compactness
“score” that not only accounted for the district’s shape, but also accounted for
the population density in specific areas. Their program generated a series of
plans through an iterative process and saved the ones that had the highest com-
pactness scores (based on their newly proposed metric) and lowest population
deviations (population deviation refers to the difference in population between
districts). In 1965, Stuart Nagel, a political scientist, approached the problem
from a different perspective: he believed that computers had the potential to
create bipartisan plans, rather than nonpartisan ones. To this end, he built

4



a hill-climbing algorithm that took existing districting plans and “improved”
them. More concretely, the program assigned a score to each districting plan
and proposed adjustments to the districting plan; if the adjustments increased
the score, they would be adopted (see [29]). For more information on the history
of the intersection of computing and redistricting, see [33].

Recent advances in statistics and computer science have given rise to a new
strategy for identifying gerrymandering: ensemble-based analysis. The strategy
behind ensemble-based analysis is to compare a proposed plan against a large
collection of districting plans; if the proposed plan seems like an outlier, there
is reason to suspect that gerrymandering may be occurring ([6]).

The first step of ensemble-based analysis is to create a large collection (referred
to as an ensemble) of districting plans. Markov chain Monte Carlo (MCMC)
methods have emerged as the most prominent computational tool for construct-
ing ensembles. A Markov chain is a process that moves from one state to another
in a randomized way. A key property of Markov chains is that they are memo-
ryless, that is, the probability of moving from one state to another in the next
iteration depends only on the current position. Markov chains are appealing
due to their convergence behavior: after a certain number of iterations, they
are guaranteed to approach a steady state. In the context of redistricting, one
type of Markov chain that has been proposed is the Flip walk. In the Flip
walk, each iteration reassigns a single geographic unit from one district to an-
other neighboring district. This approach is relatively simple to implement but
requires a large number of iterations ([24], [20], [21]). In 2019, DeFord et al. in-
troduced a new family of Markov chains called Recombination, which has been
used in numerous academic papers ([2], [3], [4], [10], [9] [11], [13], [16], [38], [17]),
technical reports ([8], [15]), and court cases ([5], [12], [19]).

To understand Recombination and next steps for developing the theory behind
these computational techniques, we must transform the redistricting problem
into a graph partition problem. Most mathematical treatments of the redis-
tricting problem represent the electoral geography in a given state or region as
a dual graph: the nodes of the graph correspond to geographical units (census
blocks, voting precincts, etc.), and the edges indicate whether any two units are
adjacent. If we look at the dual graph of a state or large region, the graph has
numerous triangular regions since three geographical units are often adjacent to
each other. In this formulation, a districting plan is obtained when the nodes
are partitioned into k connected subgraphs (with approximately balanced pop-
ulations), where k is the number of districts.

A class of graphs called trees is particularly useful for the redistricting problem.
Intuitively speaking, a tree is a minimally connected graph: removing any edge
will disconnect the graph. Moreover, a spanning tree is a tree that uses all of
the vertices of a graph.

5



Recombination relies heavily on spanning trees. At each step, the algorithm
takes a districting plan, fuses 2 neighboring districts, chooses a spanning tree
of the dual graph of the fused district, and removes an edge from the spanning
tree, which redivides the larger region into 2 new districts (see Figure 4 of [16]
for a schematic). Not only does Recombination appear to be more efficient
than Flip, Recombination also has a tendency to produce plans consisting of
compact districts ([13] proposes a metric for compactness and Recombination
generates compact plans according to this measure). It is known that Recom-
bination converges to a distribution called the spanning tree distribution, where
the probability of a plan being sampled is proportional to the product of the
number of spanning trees in each district (see [11]). The spanning tree distribu-
tion blends visual compactness (it favors “plump” over “skinny” districts) and
functional compactness (it favors plans that have more connections within the
districts relative to connections between the districts); see [18] for more infor-
mation. Moreover, [30] formalized intuition that districts with long boundaries
(i.e., “skinny” districts) have a lower probability of being sampled, providing
theoretical underpinnings that compact districting plans have more spanning
trees. Additionally, for ensemble-based analysis, previous work shows that sam-
pling from spanning tree distributions creates a collection of districting plans
that tend to be more contiguous and compact (see [11]).

Thus, because dual graphs representing states/regions often have many trian-
gular faces and spanning trees are crucial in applying algorithmic methods to
redistricting, it is useful to study the spanning tree counts on triangulations
(graphs where all regions are triangles). In this thesis, we consider the simplest
triangulation: the triangular lattice.

1.2 Related Work

Finding spanning tree counts on lattices has been of long-standing interest in
mathematics and physics.

Spanning Tree Bounds. In 1847, as part of his study of electrical circuits,
physicist Gustav Kirchhoff gave a formula for the spanning tree count of a given
graph in terms of a matrix derived from that graph. More specifically, Kirch-
hoff’s Matrix Tree Theorem says that the number of spanning trees of a graph
with n vertices is equal to the determinant of any (n − 1) × (n − 1) minor of
the Laplacian of the graph ([26]). Since the determinant of a matrix is equal
to the product of the eigenvalues of that matrix, Kirchhoff’s result says that
the number of spanning trees of a graph with n vertices is equal to the product
of the n − 1 nonzero eigenvalues of the Laplacian. This formula is simple and
elegant in theory, but in practice, the computation becomes unwieldy when the
number of vertices gets to be very large. Thus, mathematicians and physicists
have been interested in finding other methods for obtaining the spanning tree
count of a given graph.

6



Spanning tree counts of regular graphs (graphs whose vertices all have the same
degree) has been studied in a variety of settings: see [1], [27], [28] (we note here
that the lattices we consider in this thesis are not regular because they have
a finite number of vertices). There is a spectral characterization involving the
adjacency matrix for regular graphs, and in [36], Waller extended this charac-
terization to graphs whose vertices do not all have the same degree. [23] applied
the arithmetic mean and geometric mean inequality to Waller’s result and found
that the number of spanning trees of a graph G must be less than or equal to
n−1(2|E|/(n− 1))n−1.

A very recent paper by Tapp ([34]) gives lower and upper bounds on the num-
ber of spanning trees of a planar grid subgraph: if G is a simple grid graph,
then bm ≤ τ(G) ≤ 4m, where τ(G) denotes the number of spanning trees of
G, b = exp(4C/π) ≈ 3.2099 (C is Catalan’s constant), and m is the number of
faces of G. Rather than appealing to eigenvalues of matrices, Tapp proves these
bounds by using a multiplier function, which studies how much the spanning
tree count of a grid graph grows with the addition of each new vertex. The pa-
per’s proposed bounds are quite general (they apply to regularly and irregularly
shaped grid graphs); in this thesis, we restrict our attention to regularly shaped
regions. Also, the idea behind the multiplier function is similar to inducting on
the number of vertices, which is the strategy we use to prove the formula for
the number of spanning trees of a chain of t triangles.

[32] gives asymptotic bounds on the number of spanning trees. More specif-
ically, the paper proves that the number of spanning trees grows as exp vzL,
where v is the number of vertices and zL is a finite nonzero constant (zL is
often referred to as the bulk limit). For the triangular lattice, [32] finds that zL
is approximately equal to 1.615. This paper approaches the problem of find-
ing spanning tree counts using higher level mathematics and physics, while this
thesis approaches the problem using simpler combinatorial methods.

Deriving spanning tree counts using electrical network theory. An-
other approach for studying spanning trees has been through electrical network
theory. For example, [7] assigns electrical resistances to the edges of the graph
and studies the flow of current between pairs of vertices; the paper shows that
this method can be used to study local behavior of spanning trees. Moreover,
[35] uses operations on electrical networks to derive relations between the bulk
limits of different types of lattices. In this thesis, we are also using smaller pieces
of the graph to understand the graph as a whole: we break larger lattices into
smaller subgraphs, and in studying those smaller subgraphs, we find informa-
tion about the spanning tree count of the larger graph.

This thesis is organized as follows. In Section 2 we define notation and re-
view some facts from graph theory. In Section 3 we state and prove Kirchhoff’s
Matrix Tree Theorem. In Section 4 we present original results about spanning
tree counts for chains of triangles and 3×n triangular lattices and briefly discuss

7



n×n triangular lattices. In Section 5 we summarize our results and discuss next
steps.

8



2 Background

We first define notation and present some general vocabulary related to graphs
to set the necessary background for the results presented in Section 4. See [37]
and Chapter 10 of [31] for more detailed discussions of these concepts.

Intuitively speaking, a graph is a set of dots (called vertices), and some of
these dots are connected to other dots (these connections are called edges).

More formally, a simple graph G is a pair of sets (V,E), where V is the non-
empty set of vertices and E is the (possibly empty) set of edges, where each edge
is an unordered pair of distinct elements of V. If we allow E to be a multiset
(i.e., allow repeated edges) then G is called a multigraph.

If G = (V,E) and H = (V ′, E′) are both graphs, then H is a subgraph of
G if V ′ ⊆ V and E′ ⊆ E.

Next, we provide some definitions frequently encountered in graph theory, and
then we present a few useful facts about trees.

Let G = (V,E) be a graph, and let x0, x1, . . . , xm ∈ V . Then a sequence of
m edges of the form

{x0, x1}, {x1, x2}, . . . , {xm−1, xm}

is called a walk of length m. If a walk has distinct vertices, then it is called
a path. If a walk has distinct vertices except for x0 = xm, then it is called a cycle.

A graph is connected if, for each pair of distinct vertices, there is a walk joining
them (intuitively, the reader can go from any vertex to another without picking
up her pencil). Suppose G = (V,E) is a general graph and W ⊆ V . If W is
connected and no vertex outside of W has a walk joining it to a vertex in W ,
then W is called a connected component of G.

Suppose we have a connected graph G = (V,E) and e is an edge of G. Then
e is a bridge if removing it from the graph leaves a disconnected graph. More
generally, a bridge is an edge whose removal increases the number of connected
components.

Next, we discuss two special classes of graphs: planar graphs and trees. A
planar graph is a graph that can be drawn in the plane with no edges crossing.
A planar drawing is one such drawing. A planar drawing of a graph partitions
the plane into regions, which are often referred to as faces. A dual graph of a
planar drawing is a planar drawing whose vertices correspond to the faces of
G; if two faces share an edge, there is an edge connecting the respective vertices.

As mentioned in the previous section, there is another class of graphs called

9



trees that are particularly useful in the context of the redistricting problem. G
is called a tree if it has no cycles and is connected. There are two characteriza-
tions of trees that we use throughout this thesis (see Section 10.2 of [31] for the
proofs of these statements):

(a) G = (V,E) is a tree if and only if G is connected and every edge is a
bridge;

(b) G = (V,E) is a tree if and only if G is connected and |E| = |V | − 1.

Every connected graph has subgraphs that are trees. In particular, a spanning
tree of a connected graph G is a subgraph of G that is a tree and contains every
vertex of G. Spanning trees have wide applications, particularly in theoretical
computer science and engineering, and as discussed in the previous section, they
are relevant for the redistricting problem. A natural first question would be to
ask how many spanning trees there are for a given graph.

Kirchhoff’s Matrix Tree Theorem offers one method of counting the number
of spanning trees for any given multigraph. Before we formally state the theo-
rem and its proof, we introduce a few more ingredients that are needed for the
proof: deletion, contraction, the Laplacian, and the combinatorial definition of
a determinant.

First, we discuss deletion and contraction, two operations on a graph. Let
G be a general graph and e = {u, v} be an edge of G (see Figure 1a). We
define two new graphs, G − e and G · e that are obtained from G by deletion
and contraction, respectively, of the edge e. The graph G− e has the same ver-
tices as the graph G and all of the edges of G except e (see Figure 1b). The
graph G · e is the same as the graph G except the vertices u and v are replaced
with a single vertex w, and any vertex that was adjacent to either u or v is
now adjacent to w. If a vertex was adjacent to both u and v, then the contrac-
tion of e will lead to repeated edges and thus yield a multigraph (see Figure 1c).

e

u

v

(a) G

u

v

(b) G− e

w

(c) G · e

Figure 1: Deletion and contraction of G

In this thesis, we use τ(G) to denote the number of spanning trees of G. The
following proposition is needed for proving Kirchhoff’s Matrix Tree Theorem.

10



Proposition 2.1. (Deletion-Contraction). Let G be a simple graph and let e
be an edge of G. Then

τ(G) = τ(G · e) + τ(G− e).

Proof. Every spanning tree of G either contains e or it does not. It is clear that
τ(G− e) counts the number of spanning trees that do not use e. We claim that
τ(G · e) counts the number of spanning trees that use e because there exists a
bijection between the spanning trees of G that include e and the spanning trees
of G · e. To prove this claim, take a spanning tree of G that uses e and call this
spanning tree T. If we contract e, we will obtain a spanning tree of G · e. We
can reverse this process. That is, if we are given a spanning tree of G · e, we
can take the corresponding edges of T and add e to obtain a spanning tree of
G that uses e.

Example 2.2. Let G be the graph in Figure 1a. Observe that τ(G−e) = 4 (see
Figure 2b) and τ(G · e) = 4 (see Figure 2d). Thus τ(G) = 8.

(a) G− e (b) Spanning trees of G− e

(c) G · e (d) Spanning trees of G · e

Figure 2: Spanning trees of G− e and G · e.

Next, we introduce the Laplacian, which is a matrix representation of a graph.
The entries of L = [lij ] are given by

lij =


deg(vi) if i = j

−1 if i ̸= j and vi adj. to vj

0 otherwise.

In other words, the diagonal entries of L list the degrees of each vertex, and
the off-diagonal entries count −1 for every edge joining vertices i and j. The
Laplacian can also be written as L = D−A, where D is the degree matrix and
A is the adjacency matrix of the graph. Observe that since every row of L sums
to 0, L is not invertible (and thus det(L) = 0).

Finally, we give the combinatorial definition of the determinant. A permuta-
tion of the list 1, 2, . . . n is a one-to-one function σ : {1, 2, . . . n} → {1, 2, . . . n}

11



that reorders the elements of the list. A permutation that swaps two elements
of the list and leaves all others fixed is called a transposition. Each permuta-
tion can be written as a composition of transpositions (there are many possible
compositions for every permutation, but regardless of which composition is con-
sidered, the parity of the number of transpositions will always be the same). We
say that σ is even if the number of required transpositions is even, and we say
that σ is odd if the number of required transpositions is odd. The sign of σ is

sgnσ =

{
1 if σ is even,

−1 if σ is odd.

The determinant of a n× n matrix M can be written

detA =
∑
σ

(
sgnσ

n∏
i=1

aiσ(i)

)
, (1)

where the sum is over all n! permutations of 1, 2, . . . n. For more information,
see Appendix C.4 of [22].

12



3 Kirchhoff’s Matrix Tree Theorem

In this section, we state and prove Kirchhoff’s Matrix Tree Theorem, which
gives a formula for the number of spanning trees of a graph.

Theorem 3.1 (Kirchhoff’s Matrix Tree Theorem). Let G be a multigraph with
n vertices, let LG be the Laplacian of G, let k ∈ {1, 2, . . . , n} and let LG(k)
denote the matrix obtained from LG by deleting its kth row and kth column.
Then

τ(G) = detLG(k).

Proof. The overall structure of the proof is as follows: we first present two base
cases and then induct on the number of edges and vertices. Two base cases are
necessary because τ(G) depends on both τ(G− e) and τ(G · e) (see Proposition
2.1 in Section 2); for any graph, the deletion operation reduces the number of
edges by 1 and the contraction operation reduces the number of edges by 1 and
the number of vertices by 1. Thus, if we repeatedly delete and contract edges,
we will either obtain a graph with 2 vertices and n edges or a graph that is
disconnected, which makes it clear that 2 separate base cases are necessary. See
Figure 3 for a visual depiction of the induction structure.

0

1

2

3

4

5

n

1 2 3 4 5 6 n

...
...

...
...

...
...

...
...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|V |

|E|

G− eG · e

Figure 3: Depiction of the induction structure for the proof of Kirchhoff’s Matrix
Tree Theorem. The dots inside the blue triangle represent the graphs covered
by Base Case 1 (graphs that are disconnected), and the dots inside the red
box represent the graphs covered by Base Case 2 (graphs with 2 vertices and n
edges).

13



Figure 4: G is a multigraph with 2 vertices and n = 4 edges, so G has 4 spanning
trees.

Base Case 1. First, suppose G = (V,E) is disconnected. That is, suppose
|V | = n and |E| ≤ n−2. Since spanning trees are trees and trees are connected,
we know that τ(G) = 0. Now, we want to show that τ(G) = detLG(k). Without
loss of generality, suppose G has 2 connected components G1 = (V1, E1) and
G2 = (V2, E2), where V1 ∪ V2 = V, V1 ∩ V2 = ∅, E1 ∪E2 = E, and E1 ∩E2 = ∅
(if G has more than 2 connected components, we can induct on the number of
components and obtain the same result), and suppose that k ∈ V1.

1 Let L1 and
L2 be the Laplacians of G1 and G2, respectively. Then the Laplacian of G can
be written as LG = L1 ⊕ L2. Thus,

detLG(k) = detL1(k) · detL2︸ ︷︷ ︸
=0

= 0,

so τ(G) = 0 = detLG(k).

Base Case 2. Suppose G is a multigraph with 2 vertices and an arbitrary
number of edges (that is, suppose |V | = 2 and |E| = n ≥ 1). We can obtain a
spanning tree by picking any one of the n edges, so τ(G) = n. For an example,
see Figure 4. Now, we want to show that τ(G) = detLG(k). The Laplacian of
G is

LG =

[
n −n

−n n

]
.

Thus, τ(G) = n = detLG(k), where k = 1 or 2.

Inductive Step. Assume τ(G·e) = detLG·e(k) and τ(G−e) = detLG−e(k).
We want to show that τ(G) = detLG(k). Since τ(G) = τ(G · e) + τ(G− e) (see
Proposition 2.1 from Section 2), it is enough to show that

detLG(u) = detLG·e(w) + detLG−e(u),

where e = {u, v} and w is the new vertex obtained from contracting e.

First, observe that if we compare LG and LG−e entry-by-entry, they only differ
in the (u, u), (u, v), (v, u) and (v, v) entries. In particular, LG(u) and LG−e(u)

1If k ∈ V2, the analysis is similar: detL(k) = detL1 · detL2(k)︸ ︷︷ ︸
=0

= 0, so τ(G) = 0 as well.

14



differ only in the (v, v) entry by 1 (for a concrete example, compare (4) and (5)
in Example 3.2). To understand this intuitively, first recall that the diagonal en-
tries of the Laplacian give the degree of each vertex and the off diagonal entries
of the Laplacian count −1 if there is an edge between vertices i and j. Thus,
since e is an edge between vertices u and v, removing e will not only reduce the
degrees of both u and v by 1 (which explains why the (u, u) and (v, v) entries
will differ), but it will also increase the (u, v) and (v, u) entries by 1 (because
there is 1 less edge between u and v).

Let Evv be the matrix with a 1 in the (v, v) entry and 0 everywhere else. Then

LG(u) = LG−e(u) + Evv. (2)

Without loss of generality let v = 1. Let M = LG−e(u). Thus, we can rewrite
Equation (2) as LG(u) = M +E11. Computing the determinant of LG(u) using
the combinatorial definition (see (1) in Section 2), we obtain

det (M + E11) =
∑
σ

sgn(σ)

n∏
i=1

(m+ e11)iσ(i)

=
∑

σ(1)=1

sgn(σ)(m11 + 1)

n∏
i=2

miσ(i) +
∑

σ(1) ̸=1

sgn(σ)

n∏
i=1

miσ(i)

=
∑

σ(1)=1

sgn(σ)m11

n∏
i=2

miσ(i) +
∑

σ(1)=1

sgn(σ)

n∏
i=2

miσ(i)

+
∑

σ(1) ̸=1

sgn(σ)

n∏
i=1

miσ(i)

=
∑
σ

sgn(σ)

n∏
i=1

miσ(i) +
∑

σ(1)=1

sgn(σ)

n∏
i=2

miσ(i)

= detM + detM(1).

Resubstituting M = LG−e(u) and v = 1 gives

detLG(u) = det (LG−e(u) + Evv) = detLG−e(u) + detLG−e(u, v). (3)

Now, we claim that LG−e(u, v) = LG·e(w). To prove this claim, we first con-
sider G · e. After we contract e, the degree of all of the vertices (except w) and
the vertices they are adjacent to is unchanged. This is the same as considering
G−e and observing that after we delete e, the degrees of all of the vertices of G
(except u and v) and the vertices they are adjacent to is also unchanged. Thus,
LG−e(u, v) = LG·e(w), so detLG−e(u, v) = detLG·e(w). Using this fact, we can
rewrite (3) as detLG(u) = detLG−e(u) + detLG·e(w).

Since we assumed that τ(G · e) = detLG·e(k) and τ(G − e) = detLG−e(k),
we know that detLG(u) = τ(G · e) + τ(G − e). Then, Proposition 2.1 from

15



Section 2 allows us to conclude that τ(G) = detLG(u).

Example 3.2. Suppose G is the following graph:

e

v

s u

t

Figure 5: G has 4 vertices: u, v, s, t.

Observe that:

LG =

u v s t


u 3 −1 −1 −1
v −1 3 −1 −1
s −1 −1 2 0
t −1 −1 0 2

, (4)

so detLG(u) = detLG(v) = detLG(s) = detLG(t) = 8. Thus Kirchhoff’s Ma-
trix Tree Theorem tells us that G has 8 spanning trees.

Moreover, observe that in this example, deletion and contraction of e produce
the following 2 graphs:

v

s u

t

G− e

v

s u

t

w

G · e

Figure 6: Deletion and contraction of e.

16



We consider the Laplacians of both graphs in Figure 6:

LG−e =

u v s t


u 2 0 −1 −1
v 0 2 −1 −1
s −1 −1 2 0
t −1 −1 0 2

, (5)

LG·e =

w s t[ ]w 4 −2 −2
s −2 2 0
t −2 0 2

. (6)

Thus, if we compare (4) and (5), it is clear that LG(u) and LG−e(u) differ only
in the (v, v) entry by 1. So if E11 is the matrix with a 1 in the (1, 1) entry and
0 everywhere else, we have LG(u) = LG−e(u) + E11. This example also makes
it clear that LG−e(u, v) = LG·e(w).

17



4 Spanning Trees in Triangular Lattices

Kirchhoff’s Matrix Tree Theorem provides a simple formula for computing the
number of spanning trees of a graph, but the computation becomes unwieldy if
we are given a graph with many vertices and edges. Thus, it is useful to find
more efficient methods (ideally closed forms) of obtaining spanning tree counts.
In this section, we narrow the scope of this problem by considering triangular
lattices and other planar graphs with triangular faces.

The triangular lattice is constructed by taking an m × n grid graph (where
m and n are the height and length of the lattice, respectively, given by the
number of vertices) and drawing diagonal edges through each square unit. In
the first subsection, we consider chains of triangles, which include 2×n triangu-
lar lattices and fan graphs and prove that the spanning tree count corresponds
to every other number of the Fibonacci sequence. In the second subsection,
we consider 3 × n triangular lattices and provide lower and upper bounds for
the spanning tree count. In the third subsection, we consider n × n triangular
lattices and see whether they approach the bulk limit proposed in [32].

4.1 Chains of Triangles

First, we consider chains of triangles. Intuitively speaking, these graphs consist
of a single “layer” of triangles. More formally, the graphs we consider in this
subsection are planar triangulations whose dual graphs (excluding the exterior
face) are paths. LetGt denote a graph with t triangles. EachGt+1 is constructed
by taking Gt and adding 2 new edges to Gt: lt+1 and kt+1. We define lt as the
edge that separates the t and (t + 1)th triangles and kt as the edge in triangle
t that is not also in another neighboring triangle. For the last triangle in the
chain, it does not technically matter which edge we refer to as k and which edge
we refer to as l (see Figures 7a, 7b, 7c). For a series of t triangles constructed
in this particular way, we ask whether there is a formula for the number of
spanning trees gt, and we find the unexpected result that gt is equal to every
other number in the Fibonacci sequence.

Theorem 4.1. For a chain of t triangles Gt, gt is equal to the 2(t + 1)th
Fibonacci number.

Proof. First, observe that the spanning trees of Gt can include (1) either kt or
lt, or (2) both kt and lt.

Let bt−1 be the number of spanning trees of Gt that include both kt and lt.

The number of spanning trees of Gt that include either kt or lt is equal to
2gt−1 : we can add either kt or lt to each spanning tree of Gt−1 and obtain 2
new spanning trees of Gt. Thus, we can write gt as

gt = 2gt−1 + bt−1. (7)

18



k1

l1

G1

k3

k2

l2

G2

k3

l3

G3

k3

k4

l4

G4

(a) Rows of triangles

k1

l1

G1

l2

k2

G2

l3

k3

G3

l4

k4

G4

(b) Fan graphs

l8

k8

G8

k10

l10

G10

(c) Chains of triangles

Figure 7: Examples of the types of graphs considered in this section.

19



(a) Spanning trees of G3 that include k3 (red) and l3 (blue)

(b) Spanning trees of G2 that include l2 (green)

Figure 8: There is a bijection between the spanning trees of G3 that include
both k3 and l3 and the spanning trees of G2 that include l2.

Next, we claim that there exists a bijection between the set of spanning trees
of Gt that include both kt and lt and the set of spanning trees of Gt−1 that
include lt−1.

Proof of Claim. Let T be a spanning tree of Gt−1 that includes lt−1. Define a
function f that removes lt−1 from T and adds kt and lt. This resulting graph
f(T ) still has no cycles, contains all of the vertices of Gt, and is connected, so
f(T ) is a spanning tree. This function is surjective because all spanning trees of
Gt with kt and lt can be constructed from a spanning tree of Gt−1 that includes
lt−1. The function is injective because it is not possible to obtain a spanning
tree of Gt with kt and lt from 2 different spanning trees of Gt−1 that include
lt−1. Thus, bt−1 is equal to the number of spanning trees of Gt−1 that include
lt−1 (see Figure 8 for an example).

The spanning trees of Gt−1 that include lt−1 can include (1) only lt−1 or (2)
both lt−1 and kt−1. For the first case, the number of spanning trees of Gt−1 that
include lt−1 is equal to gt−2 (for each spanning tree of Gt−2, add lt−1). For the
second case, the number of spanning trees of Gt−1 that include both lt−1 and
kt−1 is equal to bt−2. Thus, we can write bt−1 as

bt−1 = gt−2 + bt−2. (8)

Now, we claim that bt−1 = gt−1 − gt−2. We prove this claim using induction.

Base Case. For t = 3, there are 5 spanning trees of G3 that include both
k3 and l3 (see Figure 8a). Since b3−1 = b2 = g2−g1 = 8−3 = 5, we have shown
that the theorem holds for t = 3.

Inductive Step. We assume for t ≥ 4,

bt−2 = gt−2 − gt−3 (9)

is true. We want to show bt−1 = gt−1 − gt−2. Using Equations (7) and (9), we
know that

gt−1 = 2gt−2 + (gt−2 − gt−3),

20



which implies that
2gt−2 = gt−1 − gt−2 + gt−3. (10)

Combining Equations (8), 9), and (10) gives us

bt−1 = gt−2 + bt−2

= gt−2 + (gt−2 − gt−3)

= 2gt−2 − gt−3

= (gt−1 − gt−2 + gt−3)− gt−3

= gt−1 − gt−2.

Then, substituting bt−1 = gt−1 − gt−2 into Equation (7) gives

gt = 2gt−1 + (gt−1 − gt−2)

= 3gt−1 − gt−2. (11)

Next, we claim that Equation (11) gives every other number of the Fibonacci
sequence.

Recall that the Fibonacci sequence is defined recursively as

Fn = Fn−1 + Fn−2. (12)

Rearranging Equation (12) gives Fn−1 = Fn−Fn−2. Additionally, the recurrence
relation tells us that

Fn+1 = Fn + Fn−1. (13)

If we substitute Fn−1 = Fn − Fn−2 into Equation (13), we obtain

Fn+1 = Fn + (Fn − Fn−2) = 2Fn − Fn−2.

Thus for Fn+2 we have

Fn+2 = Fn+1 + Fn = (2Fn − Fn−2) + Fn = 3Fn − Fn−2.

Recall that the first 11 numbers of the Fibonacci sequence are the following:

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

1 1 2 3 5 8 13 21 34 55 89

Thus, g1 corresponds to F4 = 3, g2 corresponds to F6 = 8, g3 corresponds
to F8 = 21, g4 = 55 corresponds to F10, which makes it clear that gt = F2(t+1).

21



H1 H2 H3 H4

Figure 9: Triangular lattices of height 2 for small n.

4.2 3× n Triangular Lattices

Next, we consider 3×n triangular lattices and provide lower and upper bounds
for the spanning tree count. Let Hn denote the lattice of height 3 and length n.
Observe that Hn has 3n vertices and 7n − 5 edges. Let hn denote the number
of spanning trees of Hn. See Figure 9 for examples of graphs considered in this
section.

We can use Kirchhoff’s Matrix Tree Theorem to find spanning tree counts for
small n: 2

n hn

1 1
2 55
3 2, 080
4 76, 987
5 2, 844, 577
6 105, 089, 725
7 3, 882, 384, 640

Since hn is not a known sequence, we hope to find constants α and β (and
polynomial functions f(n) and g(n)) such that

f(n) αn ≤ hn ≤ g(n) βn.

4.2.1 Lower Bound

Before stating our proposed lower bound α, we use an example to explain our
strategy for finding an undercount.

Example 4.2. Consider H6. First, suppose we divide the vertices of H6 into
3× 2 subgraphs (see Figure 10a).

If we pick a spanning tree from each of these subgraphs, we will have a graph

2The code for this computation and all other computations are available at this link:
https://github.com/angiewang23/Senior-Thesis-Code.

22

https://github.com/angiewang23/Senior-Thesis-Code


(a) H6. The blue vertices and edges denote Subgraph 1, the red vertices and edges
denote Subgraph 2, and the green vertices and edges denote Subgraph 3. To obtain a
spanning tree of H6, we can select a spanning tree from each subgraph and select an
edge to connect Subgraphs 1 and 2 and another edge to connect Subgraphs 2 and 3.

(b) H7. The blue vertices and edges denote Subgraph 1, the red vertices and edges
denote Subgraph 2, and the green vertices and edges denote Subgraph 3. We can select
a spanning tree from each subgraph, and we can select an edge to connect Subgraphs 1
and 2 and an edge to connect Subgraphs 2 and 3. However, since n is odd, we need to
select 3 of the dashed edges to ensure that our graph includes the 3 rightmost vertices
(otherwise our subgraph will not be a spanning tree).

Figure 11: H6. The blue vertices and edges denote Subgraph 1, and the red
vertices and edges denote Subgraph 2.

with 3 connected components. We can connect these components by selecting an
edge between Subgraphs 1 and 2, as well as between Subgraphs 2 and 3. Kirch-
hoff’s Matrix Tree Theorem tells us that each subgraph has 55 spanning trees,
and there are 5 edges that can connect the subgraphs. Thus, a lower bound for
h6 is

553 52 = 4, 159, 375.

We can also consider “longer” subgraphs and apply a similar strategy. Instead of
dividing the vertices into 3 parts, we can divide the vertices into 3×3 subgraphs
(see Figure 11). From previous computations, we know that each subgraph has
2080 spanning trees and there are 5 edges that can connect the subgraphs.
Thus, another lower bound for h6 is

20802 · 5 = 21, 632, 000.

23



More generally, if n is an even integer, a lower bound for hn is

1

5

(
55 · 5)1/2

)n
.

If n is an odd integer, we have some “leftover” edges, and there is at least one
way to choose three of the dashed edges (see Figure 10b) to ensure that all of
the vertices are included, so a lower bound for hn is

1

5 · (55 · 5)1/2
(
55 · 5)1/2

)n
.

Observe that regardless of whether n is an even or odd integer, we find that
α = (55 ·5)1/2 ≈ 16.6. Thus, when we break the lattice into 3×3 subgraphs, we
can analyze when n is a multiple of 3 or not, but this analysis will not change α
(the polynomial f(n) will absorb the “off-by-one” error). Thus, we consider the
simplest case, that is, when n is a multiple of 3. A tighter lower bound would
therefore be

1

5

(
2080 · 5)1/3

)n
,

so α = (2080 · 5)1/3 ≈ 21.8.

More generally, if we decompose our lattice into subgraphs Ck (where Ck is
the 3× k triangular lattice), we have

1

5

(
τ(Ck) · 5)1/k

)n
.

As k increases, it is clear that we will obtain a better lower bound. We computed
αk for small k and obtained the following results:

k 2 3 4 5 6 7 8 9 10 11 12
αk 16.6 21.8 24.9 27.0 28.4 29.5 30.3 31.0 31.6 32.0 32.4

As k becomes large, α increases at an slower rate, and the computation becomes
less fruitful. The best lower bound we calculated using this method is 32.4, but
we expect small improvements to be made with additional computation time.

4.2.2 Upper Bounds

Next, we present 4 upper bounds. Recall that for the upper bound, we want
to find some constant β such that hn ≤ g(n) βn, where g(n) is a polynomial
function. Each proposed bound has its strengths and weaknesses: two of the
bounds use relatively simple counting methods (but are less precise), and two
of the bounds use more elaborate counting methods (but are more precise).

Upper Bound 1.

24



We can obtain a particularly simple overcount by using the fact that Hn has
3n vertices, so each tree must have 3n− 1 edges. Since each Hn has a total of
7n− 5 edges, we have

hn ≤
(
7n− 5

3n− 1

)
. (1)

We want to rewrite (1) in the form g(n) βn. To do so, we first claim that(
7n−5
3n−1

)
<
(
7n
3n

)
. To show that this is true, observe that(

7n− 5

3n− 1

)
=

(7n− 5)!

(3n− 1)! (4n− 4)!
=

(3n)(4n)(4n− 1)(4n− 2)(4n− 3)

(7n)(7n− 1)(7n− 2)(7n− 3)(7n− 4)
·
(
7n

3n

)
.

Now, observe that for n ≥ 2, 3n
7n ,

4n
7n−1 ,

4n−1
7n−2 ,

4n−2
7n−3 ,

4n−3
7n−4 are all less than 1.

Thus, we know that the fraction (3n)(4n)(4n−1)(4n−2)(4n−3)
(7n)(7n−1)(7n−2)(7n−3)(7n−4) is less than 1, so(

7n−5
3n−1

)
<
(
7n
3n

)
. To obtain a bound in the form g(n) βn, we use the well known

fact that
(
n
k

)
≤
(
en
k

)k
(for more information, see Appendix C of [14]):

hn ≤
(
7n− 5

3n− 1

)
<

(
7n

3n

)
≤
(
7n · e
3n

)3n

=

((
7e

3

)3
)n

< (255.2)n.

Upper Bound 2.

Another method for obtaining an upper bound is, intuitively speaking, “stand-
ing” at every vertex and picking an edge. We claim that the set of subgraphs
generated using this method includes all spanning trees. To show that this claim
is true, suppose we have a graph G and label the n vertices v1, v2, . . . vn and
label the m edges e1, e2 . . . , em. If we take a spanning tree of G, we can write it
as a set of n pairs of the form (vi, ej). That is, every spanning tree of G can be
constructed by standing at a vertex vi and picking (a particular) edge ej . Since
Hn has 2 vertices with degree 2, 2 vertices with degree 3, 2n − 2 vertices with
degree 4, and n− 2 vertices with degree 6, we have the following bound:

hn ≤ 22 · 32 · 42n−2 · 6n−2 =

(
1

4

)2

(96)n,

which is a notable improvement from β = 255.2.

Now, we consider 2 relatively more elaborate methods of finding an overcount.
Both of these methods consider Hn as a union of subgraphs. First, we consider
Hn as a union of subgraphs denoted Si (see Figure 12), and then we consider
Hn as a union of “longer” subgraphs denoted Li (see Figure 14). We begin by
explaining our strategy through an example.

Example 4.3. Consider H5 and one of its spanning trees (see Figure 13).
Observe that H5 is the union of 4 subgraphs: S1, S2, S3, S4. Additionally, observe
that the spanning tree uses 5 edges from S1 and S4, 1 edge from S2, and 3 edges
from S3.

25



e7

e1 e6

e5

e4e2

e3

Figure 12: Subgraph Si has 6 vertices and 7 edges.

S1 S2 S3 S4

Figure 13: H5 and one spanning tree.

Upper Bound 3.

Example 4.3 shows that a spanning tree of Hn must use 1, 2, 3, 4 or 5 edges
from each Si (since Si has 6 vertices, a spanning tree using 6 or more edges
from Si would lead to a cycle). We analyze each case and provide an upper
bound for the number of ways of using that number of edges from a given Si.

1 edge case. Suppose the spanning tree uses 1 edge from Si. If e1 or e2
are used (see Figure 12), the resulting graph will be disconnected because there
is no path connecting Si to Si+1. Thus, there are 7− 2 = 5 possible ways for a
spanning tree to use 1 edge from Si.

2 edge case. Suppose the spanning tree uses 2 edges from Si. There are(
7
2

)
possible ways to select 2 edges from Si. However, spanning trees cannot si-

multaneously use e1 and e2 because the resulting graph would be disconnected,
since there would be no path connecting Si to Si+1. Thus, there are at most(
7
2

)
− 1 = 20 ways for a spanning tree to use 2 edges from Si.

3 edge case. Suppose the spanning tree uses 3 edges from Si. There are(
7
3

)
possible ways to select 3 edges from Si. However, trees cannot have cycles

and there are 2 ways to include a cycle of length 3 (if we use the labeling con-
ventions from Figure 12, we can include a cycle of length 3 by picking e2, e3, e4
or by picking e1, e5, e6) so there are at most

(
7
3

)
− 2 = 33 ways for a spanning

tree to use 3 edges from Si.

26



4 edge case. Suppose the spanning tree uses 4 edges from Si. There are
(
7
4

)
possible ways to select 4 edges from Si, but some of these configurations may
include a cycle of length 3. There are 2 ways to select a cycle of length 3 and
7−3 = 4 ways to select an additional edge, so there are at most

(
7
4

)
−2×4 = 27

ways for a spanning tree to use 4 edges from Si.

5 edge case. Suppose the spanning tree uses 5 edges from Si. Since Si has
6 vertices, the number of ways to select 5 edges with no cycles is equivalent to
finding the spanning tree count of Si. Kirchhoff’s Matrix Tree Theorem tells us
that the spanning tree count of Si is 9.

Thus, another upper bound for hn is(
5 +

(
7

2

)
− 1 +

(
7

3

)
− 2 +

(
7

4

)
− 8 + 9

)n

= 94n,

which is an improvement over Upper Bound 2.

Upper Bound 4.

We can make this upper bound more precise by using a similar strategy but
considering Hn as a union of “longer” subgraphs Li (see Figure 14). Every
spanning tree must use between 4 and 8 edges of Li, inclusive. We claim that 4
is the minimum number of edges that Hn must use in order to be a connected
graph: we need a path between vertices li and rj (where i, j = 1, 2 or 3), which
requires at least 2 edges, and we also need m1, m2, and m3 to be connected,
which requires 2 more edges (intuitively speaking, we need at least 4 edges to
“get from the left to the right side” of Li and ensure that m1, m2, and m3 are
not isolated). Moreover, since Li has 9 vertices, if we use more than 9− 1 = 8
edges of Li, we are guaranteed to have a cycle.

Similar to our computations for Upper Bound 3, we will count the number
of ways to include 4, 5, 6, 7 and 8 edges from Li and tighten these upper bounds
by accounting for “forbidden” cases (i.e., the number of ways to include cycles).
However, because Li has more edges and vertices than Si, it is not only possi-
ble to obtain cycles of length 3 (like we did when using Si) but also cycles of
lengths 4, 5, 6, and 7. Before we present the upper bounds for each case, we use
an example to show that counting cycles of lengths greater than 3 requires more
careful analysis.

Example 4.4. Suppose we are counting the number of ways to select 5 edges of
Li. One “forbidden” possibility is selecting a cycle of length 4 and one additional
edge (see Figure 15). If the additional edge selected is the blue edge, then the
five edges together can be categorized as a cycle of length 4 (with 1 additional
edge), or they can be categorized as 1 cycle of length 3 (with 2 additional edges).
To avoid overcounting “forbidden” cases, when we count the number of ways to
include cycles of length 4 and an additional edge, we do not permit the edges

27



l1 m1

l2 m2

l3
m3

r1

r2

r3

Figure 14: Subgraph Li has 9 vertices and 14 edges.

e4

e1 e3e5

e2

Figure 15: This selection of 5 edges can be considered a cycle of length 4 and
1 additional edge, or it can be considered a cycle of length 3 with 2 additional
edges. We consider this selection of edges to be 1 cycle of length 3 with 2
additional edges.

“inside” the cycle to be selected as the additional edge.

More generally, if we have a cycle of length c and we are not permitted to
select remaining edges from “inside” the cycle, there are 14− c− (c− 3) edges
to choose from for the additional edges.

We categorize this selection of 5 edges in Figure 15 as a cycle of length 3 with 2
additional edges. Moreover, there is one more issue we need to address: observe
that this selection is counted twice (depending on whether e1, e4, e5 or e2, e3, e5
is considered the cycle of length 3), so we must also account for double counting
cases like this one.

Now, we analyze each case and provide an upper bound for the number of pos-
sible ways of using that number of edges from a given Li.

4 edge case. Suppose the spanning tree uses 4 edges from Li. There are(
14
4

)
ways to select 4 edges from Li, but some of these selections include cycles

of lengths 3 and 4:

• There are 5 ways to include a cycle of length 4.

• There are 6 ways to obtain a cycle of length 3 and 14 − 3 = 11 edges to
choose from for the 1 additional edge.

Thus, an upper bound for the number of ways for a spanning tree to use 4 edges

28



from Li is (
14

4

)
− 5− 6 · 11 = 931. (2)

5 edge case. Suppose the spanning tree uses 5 edges from Li. There are
(
14
5

)
ways to select 5 edges from Li, but some of these selections include cycles of
lengths 3, 4, and 5:

• There are 5 ways to select a cycle of length 5.

• There are 5 ways to select a cycle of length 4 and 14− 4− 1 = 9 edges to
choose from for the 1 additional edge.

• There are 6 ways to select a cycle of length 3 and 14 − 3 = 11 edges
to choose from for the 2 additional edges. However, observe that it is
possible for the 5 edges to form 2 cycles of length 3 (see Figure 15); these
selections are counted twice, depending on which edges are considered to
be a part of the cycle of length 3 and which edges are considered to be the
additional edges. Moreover, observe that the number of selections that
are double-counted is equivalent to the number of ways to select a cycle
of length 4 (because if we select a cycle of length 4 and the edge in the
“middle” of the cycle, we will have 2 cycles of length 3), which we know
is 5.

Thus, an upper bound for the number of ways for a spanning tree to use 5 edges
from Li is (

14

5

)
− 5− 5

(
9

1

)
− 6

(
11

2

)
+ 5 = 1627. (3)

6 edge case. Suppose the spanning tree uses 6 edges from Li. There are
(
14
6

)
ways to select 6 edges from Li, but some of these selections include cycles of
lengths 3, 4, 5, and 6.

• There are 4 ways to select a cycle of length 6.

• There are 5 ways to select a cycle of length 5 and 14− 5− 2 = 7 edges to
choose from for the 1 additional edge.

• We disregard the case involving the number of ways to select a cycle of
length 4 with 2 additional edges because there is significant overlap with
the case involving cycles of length 3. This not only creates challenges with
overcounting, but it also does not significantly improve our bound.

• There are 6 ways to select a cycle of length 3 and 14 − 3 = 11 edges to
choose from for the 3 additional edges. However, observe that it is possible
for the 6 edges to form 2 cycles of length 3, and these selections are counted
twice. Observe that the number of selections that are double-counted can
be categorized into 2 subcases:

29



1. Suppose that 5 of the 6 edges form 2 cycles of length 3 (i.e., the 2
cycles of length 3 share an edge; see Figure 15), and the 6th edge is
selected from the remaining 14 − 5 = 9 edges. There are 5 · 9 = 36
ways for this case to occur.

2. Suppose the 2 cycles of length 3 do not share an edge. Observe that
Li has 6 cycles of length 3, but 5 pairs of cycles share an edge. Thus,
there are

(
6
2

)
− 5 ways for this case to occur.

Thus, an upper bound for the number of ways for a spanning tree to use 6 edges
from Li is(

14

6

)
− 4− 5

(
7

1

)
− 6

(
11

3

)
+ 5

(
9

1

)
+

((
6

2

)
− 5

)
= 2029. (4)

7 edge case. Suppose the spanning tree uses 7 edges from Li. For this case,
we use a different approach to obtain an overcount. First, observe that since Li

has 9 vertices, we know that a spanning tree of Li must have 8 edges. More-
over, recall that since every edge of a tree is a bridge, removing an edge will
increase the number of connected components by 1. Thus, if we take a spanning
tree of Li and remove an edge, we will obtain a 7 edge configuration that has
2 connected components. Since the set of spanning trees of Li captures all 8
edge configurations that are connected and have no cycles, we know that every
7 edge configuration with no cycles can be constructed by deleting an edge from
a spanning tree of Li.

Kirchhoff’s Matrix Tree Theorem tells us that there are 369 spanning trees
of Li. Since each spanning tree has 8 possible edges we can remove, there are
8 ·369 ways to remove an edge and obtain a 7 edge configuration that has 2 con-
nected components and no cycles. The number of times a 7 edge configuration
is counted is equal to the number of edges that has one vertex in each compo-
nent (because the number of edges that has a vertex in each component is the
number of ways we can remove an edge from a spanning tree of Li and obtain
that 7 edge configuration). We can observe which parts of 8 · 369 are an exact
count and which are an overcount and correct the overcount appropriately:

(1) Suppose there is only 1 edge that has a vertex in each component (that is,
one of the components consists of an isolated vertex; in Figure 16a, v is
the isolated vertex and e is the edge that has a vertex in each component).
There is a bijection between the set of spanning trees of Li and the set of 7
edges such that v is an isolated vertex (just remove e from each spanning
tree). Thus, there are 369 ways to take a spanning tree of Li and remove
an edge (e) to obtain a set of 7 edges, and this is an exact count.

(2) Suppose there are at least 2 edges connecting the 2 components. In this
case, there are at least 2 ways to remove an edge from a spanning tree
to obtain that specific 7 edge configuration. Since there are a total of
8 · 369 ways to remove an edge from a spanning tree and obtain a 7 edge

30



configuration with no cycles and 369 of these are an exact count, we know
that the remaining 8 · 369− 369 7 edge configurations are overcounted by
at least a factor of 2. Thus, we must divide 8 · 369 − 369 by 2. For an
example, see Figure 16b.

Thus, an upper bound for the number of ways for a spanning tree to use 7 edges
from Li is

8 · 369− 369

2
+ 369 = 1660.5. (5)

8 edge case. Finally, suppose the spanning tree uses 8 edges from Li. As we
discussed in the 7 edge case, the number of ways to select 8 edges with no cycles
is exactly the number of spanning trees of Li, which we know from Kirchhoff’s
Matrix Tree Theorem is 369.

Thus, combining Equations (2), (3), (4), (5) and the fact that there are 369
spanning trees of Li gives us an improved upper bound for hn:

(931 + 1627 + 2029 + 1660.6 + 369)n/2 =
(
(6616.6)1/2

)n
≈ (81.3)n.

In summary, we propose 4 upper bounds:

Upper Bound β
1 255.2
2 96.0
3 94.0
4 81.3

On one hand, the combinatorial strategies behind Upper Bounds 1 and 2 are
simpler but result in higher βs (i.e., less precise upper bounds). On the other
hand, the combinatorial strategies behind Upper Bounds 3 and 4 are more
elaborate but result in lower βs (i.e., more precise upper bounds). Thus, for a
3 × n triangular lattice, the best lower bound we computed was α = 32.4 and
the best upper bound we computed was β = 81.3.

4.3 n× n Triangular Lattices

Dual graphs of electoral geographies tend to resemble “plumper” shapes, rather
than the skinny strips we considered in the previous 2 subsections. Thus, it
is useful to consider n × n triangular lattices, which we denote Dn. We use
Kirchhoff’s Matrix Tree Theorem to compute τ(Dn) for small n:

n τ(Dn)
2 8
3 2, 080
4 14, 899, 040
5 2, 822, 177, 161, 216

31



e
v

remove blue edge

e
v

(a) This is an example of Case 1. If we take a spanning tree of Li and remove e, we
will obtain a 7 edge configuration where v is in its own component. There is a bijection
between the spanning trees of Li and the set of 7 edge configurations where v is in its
own component.

T1

remove blue edge

T2

remove blue edge

(b) This is an example of Case 2. If we take 2 different spanning trees of Li and
remove an edge from each, it is possible to obtain the same 7 edge configuration.
Thus, these cases are all overcounted by at least a factor of 2. In this particular
example, observe that there are 6 bridges incident to each connected component, so
this 7 edge configuration is overcounted by a factor of 6.

Figure 16: If a spanning tree of Hn uses 7 edges from Li, we can split our
counting into 2 cases and analyze each separately.

32



It is evident that as n increases, the number of spanning trees grows extremely
quickly. These overwhelmingly large numbers are difficult to interpret, so we
use the result from [32]: τ(Dn) ∼ exp (vzL), where v represents the number
of vertices of Dn. In the case of the triangular lattice, the paper computes
zL ≈ 1.615. In the case of n× n triangular lattices, we know that v = n2, so if
we take the natural log of both sides and isolate zL, we have

zL ≈ ln τ(Dn)

n2
.

We compute zL up until n = 21 and find that these numbers are consistent
with the limiting behavior given by Shrock and Wu (we were not able to do
calculations for large enough n to be sure because the the values of τ(Dn)
become too large for Python to handle). See Figure 17.

33



(a) This plot shows values of zL for Dn, where n = 2, 3, . . . , 21.

n zL
2 0.520
3 0.849
4 1.032
5 1.147
6 1.224
7 1.280
8 1.322
9 1.355
10 1.381
11 1.403
12 1.421
13 1.436
14 1.449
15 1.460
16 1.470
17 1.479
18 1.487
19 1.494
20 1.500
21 1.505

(b) This table shows values of zL for Dn, where n = 2, 3, . . . , 21.

Figure 17: Computing zL for n× n triangular lattices up until n = 21.
34



5 Conclusion and Next Steps

This thesis studies spanning tree counts on triangular lattices. First, we give
an inductive proof of Kirchhoff’s Matrix Tree Theorem, a well known formula
for computing the spanning tree count of a graph. Typical proofs of this the-
orem use linear algebra; in contrast, we give a 2-dimensional inductive proof
that mainly relies on fundamental graph operations. Additionally, we explore
the number of spanning trees for chains of triangles and 3 × n triangular lat-
tices. We find and prove the unexpected result that the spanning tree count for
a chain of t triangles is equal to the 2(t + 1)th Fibonacci number. Moreover,
we give lower and upper bounds for 3 × n triangular lattices by breaking the
triangular lattice into smaller pieces and considering the spanning tree counts
of those smaller subgraphs.

Now that we have these results, there are several next steps to consider. Devel-
oping a more rigorous understanding of the spanning tree count of triangular
lattices is necessary in advancing efforts to apply computational techniques to
redistricting, since spanning tree counts are crucial for algorithms like Recom-
bination and have been shown to provide a quantitative measure of compactness.

First, we believe there are opportunities to tighten the lower and upper bounds
for the spanning tree count of 3 × n triangular lattices. We believe that our
approach does not have much potential for major improvements; using a sim-
ilar inclusion/exclusion approach for larger subgraphs (3 × 4 subgraphs, 3 × 5
subgraphs, etc.) will be challenging due to the difficulty in keeping track of
double counting. However, better bounds may be obtained by considering other
“clever” counting strategies to find undercounts and overcounts. Moreover, in
this thesis, we considered three special cases of regularly shaped triangular lat-
tices: chains of triangles, 3×n triangular lattices, and n×n triangular lattices,
and a next step would be further exploring the spanning tree count of n × n
triangular lattices and considering more general versions of the triangular lattice
(m×n and irregularly shaped triangular lattices). Additionally, this thesis uses
simple combinatorial techniques to deduce results about spanning tree counts.
Previous results counting spanning trees on lattices rely on advanced techniques
such as electrical network theory and statistical mechanics, but we were able to
obtain promising results using basic combinatorics. Since much of the literature
about finding spanning tree counts uses higher level mathematics, another step
would be to reprove existing results using simpler, more elegant methods.

A major next step would be to find a closed, non-asymptotic formula for the
spanning tree count that applies to the general triangular lattice, which would
significantly enhance the efficiency and precision of computing the number of
spanning trees for a given graph. Moreover, it could have direct implications in
the computational methods that are at the forefront for detecting gerrymander-
ing and tackling challenges in redistricting.

35



All code for this thesis is available at this link: https://github.com/angiewang23/
Senior-Thesis-Code.

References

[1] Noga Alon. The number of spanning trees in regular graphs. Random
Structures & Algorithms, 1(2):175–181, 1990. doi: https://doi.org/10.1002/
rsa.3240010204. URL https://onlinelibrary.wiley.com/doi/abs/10.

1002/rsa.3240010204.

[2] Eric Autry, Daniel Carter, Gregory Herschlag, Zach Hunter, and
Jonathan C. Mattingly. Metropolized forest recombination for Monte Carlo
sampling of graph partitions, 2021.

[3] Eric A. Autry, Daniel Carter, Gregory J. Herschlag, Zach Hunter, and
Jonathan C. Mattingly. Metropolized multiscale forest recombination for
redistricting. Multiscale Modeling & Simulation, 19(4):1885–1914, 2021.
doi: 10.1137/21M1406854. URL https://doi.org/10.1137/21M1406854.

[4] Amariah Becker, Moon Duchin, Dara Gold, and Sam Hirsch. Compu-
tational redistricting and the Voting Rights Act. Election Law Journal:
Rules, Politics, and Policy, 20, 10 2021. doi: 10.1089/elj.2020.0704.

[5] Amariah Becker, Daryl R. DeFord, Dara Gold, Sam Hirsch, Mary E.
Marshall, and Jessica Ring Amunson. Brief of computational redistricting
experts as amici curiae in support of Appellees and Respondents. Merrill
v. Milligan; Merrill v. Caster; United States Supreme Court, 2022. nos. 21-
1086, 21-1087., 2022. URL https://www.supremecourt.gov/DocketPDF/

21/21-1086/230272/20220718153650363_21-1086%2021-1087%20bsac%

20Computational%20Redistricting%20Experts.pdf.

[6] Mira Bernstein and Olivia Walch. Measuring partisan fairness. Political
Geometry, pages 39–75, 2022.

[7] Robert Burton and Robin Pemantle. Local characteristics, entropy
and limit theorems for spanning trees and domino tilings via transfer-
impedances. The Annals of Probability, 21(3):1329 – 1371, 1993.
doi: 10.1214/aop/1176989121. URL https://doi.org/10.1214/aop/

1176989121.

[8] Sophia Caldera, Daryl DeFord, Moon Duchin, Samuel C. Gutekunst, and
Cara Nix. Mathematics of nested districts: The case of Alaska. Statistics
and Public Policy, 7(1):39–51, 2020. URL https://EconPapers.repec.

org/RePEc:taf:usppxx:v:7:y:2020:i:1:p:39-51.

[9] Sarah Cannon, Ari Goldbloom-Helzner, Varun Gupta, JN Matthews, and
Bhushan Suwal. Voting rights, Markov chains, and optimization by short
bursts. Methodology and Computing in Applied Probability, 25(1), 2020.
URL https://par.nsf.gov/biblio/10399864.

36

https://github.com/angiewang23/Senior-Thesis-Code
https://github.com/angiewang23/Senior-Thesis-Code
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.3240010204
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.3240010204
https://doi.org/10.1137/21M1406854
https://www.supremecourt.gov/DocketPDF/21/21-1086/230272/20220718153650363_21-1086%2021-1087%20bsac%20Computational%20Redistricting%20Experts.pdf
https://www.supremecourt.gov/DocketPDF/21/21-1086/230272/20220718153650363_21-1086%2021-1087%20bsac%20Computational%20Redistricting%20Experts.pdf
https://www.supremecourt.gov/DocketPDF/21/21-1086/230272/20220718153650363_21-1086%2021-1087%20bsac%20Computational%20Redistricting%20Experts.pdf
https://doi.org/10.1214/aop/1176989121
https://doi.org/10.1214/aop/1176989121
https://EconPapers.repec.org/RePEc:taf:usppxx:v:7:y:2020:i:1:p:39-51
https://EconPapers.repec.org/RePEc:taf:usppxx:v:7:y:2020:i:1:p:39-51
https://par.nsf.gov/biblio/10399864


[10] Sarah Cannon, Moon Duchin, Dana Randall, and Parker Rule. Spanning
tree methods for sampling graph partitions, 2022.

[11] Moses Charikar, Paul Liu, Tianyu Liu, and Thuy-Duong Vuong. On the
complexity of sampling redistricting plans, 2022.

[12] Jowei Chen, Christopher S. Elmendorf, Ruth Greenwood, Theresa J.
Lee, Nicholas O. Stephanolpoulos, and Christopher S. Warshaw. Brief
of amici curiae professors Jowei Chen, Christopher S. Elmendorf,
Nicholas O. Stephanolpoulos, and Christopher S. Warshaw in sup-
port of Appellees/Respondents. Merrill v. Milligan; Merrill v. Caster;
United States Supreme Court, 2022. nos. 21-1086, 21-1087., 2022.
URL https://www.supremecourt.gov/DocketPDF/21/21-1086/230239/

20220718132621523_91539%20HARVARD%20BRIEF%20PROOF3.pdf.

[13] Jeanne N. Clelland, Nicholas Bossenbroek, Thomas Heckmaster, Adam
Nelson, Peter Rock, and Jade VanAusdall. Compactness statistics for span-
ning tree recombination, 2021.

[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 2nd edition, 2001.

[15] Daryl DeFord and Moon Duchin. Redistricting reform in Virginia: Dis-
tricting criteria in context. Virginia Policy Review, XII:120–146, Spring
2019.

[16] Daryl DeFord, Moon Duchin, and Justin Solomon. Recombination: A
family of Markov chains for redistricting, 2019.

[17] Daryl DeFord, Moon Duchin, and Justin Solomon. A computational ap-
proach to measuring vote elasticity and competitiveness. Statistics and
Public Policy, 7(1):69–86, 2020.

[18] Moon Duchin. Introduction. Political Geometry, pages 1–28, 2022.

[19] Moon Duchin, Jeanne Clelland, Daryl DeFord, Jordan Ellenberg, Tyler
Jarvis, Nestor Guillen, Dmitry Morozov, Elchanan Mossel, Dana Randall,
Justin Solomon, Ari Stern, Guy-Uriel Charles, Luis Fuentes-Rohwer, Anna
Dorman, Dana Paikowsky, and Robin Tholin. Amicus brief of mathemati-
cians, law professors, and students in support of appellees and affirmance.
Rucho v. Common Cause, United States Supreme Court, 2019, 2019. URL
https://mggg.org/SCOTUS-MathBrief.pdf.

[20] Benjamin Fifield, Michael Higgins, Kosuke Imai, and Alexander Tarr. Au-
tomated redistricting simulation using Markov chain Monte Carlo. Journal
of Computational and Graphical Statistics, 29(4):715–728, 2020.

[21] Alan Frieze and Wesley Pegden. Subexponential mixing for partition chains
on grid-like graphs, pages 3317–3329. Society for Industrial and Applied
Mathematics, 2023.

37

https://www.supremecourt.gov/DocketPDF/21/21-1086/230239/20220718132621523_91539%20HARVARD%20BRIEF%20PROOF3.pdf
https://www.supremecourt.gov/DocketPDF/21/21-1086/230239/20220718132621523_91539%20HARVARD%20BRIEF%20PROOF3.pdf
https://mggg.org/SCOTUS-MathBrief.pdf


[22] Stephan Ramon Garcia and Roger A. Horn. A Second Course in Linear
Algebra. Cambridge Mathematical Textbooks. Cambridge University Press,
2017. doi: 10.1017/9781316218419.

[23] Geoffrey R. Grimmett. An upper bound for the number of
spanning trees of a graph. Discrete Math., 16(4):323–324, 1976.
doi: 10.1016/S0012-365X(76)80005-2. URL https://doi.org/10.1016/

S0012-365X(76)80005-2.

[24] Gregory Herschlag, Han Sung Kang, Justin Luo, Christy Vaughn Graves,
Sachet Bangia, Robert Ravier, and Jonathan C. Mattingly. Quantifying
gerrymandering in North Carolina. Statistics and Public Policy, 7(1):30–
38, 2020.

[25] S. W. Hess, J. B. Weaver, H. J. Siegfeldt, J. N. Whelan, and P. A. Zitlau.
Nonpartisan political redistricting by computer. Operations Research, 13
(6):998–1006, 1965. ISSN 0030364X, 15265463. URL http://www.jstor.

org/stable/167658.

[26] G. Kirchhoff. Ueber die auflösung der gleichungen, auf welche man bei
der untersuchung der linearen vertheilung galvanischer ströme geführt
wird. Annalen der Physik, 148(12):497–508, 1847. URL https://

onlinelibrary.wiley.com/doi/abs/10.1002/andp.18471481202.

[27] A. V. Kostochka. The number of spanning trees in graphs with a given de-
gree sequence. Random Structures & Algorithms, 6(2-3):269–274, 1995. doi:
https://doi.org/10.1002/rsa.3240060214. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/rsa.3240060214.

[28] Brendan D. McKay. Spanning trees in regular graphs. European Journal
of Combinatorics, 4(2):149–160, 1983. ISSN 0195-6698. doi: https://doi.
org/10.1016/S0195-6698(83)80045-6. URL https://www.sciencedirect.

com/science/article/pii/S0195669883800456.

[29] Stuart S. Nagel. Simplified bipartisan computer redistricting. Stanford Law
Review, 17(5):863–899, 1965. ISSN 00389765. URL http://www.jstor.

org/stable/1226994.

[30] Ariel D. Procaccia and Jamie Tucker-Foltz. Compact redistricting plans
have many spanning trees, 2021.

[31] Shahriar Shahriari. An Invitation to Combinatorics. Cambridge Math-
ematical Textbooks. Cambridge University Press, 2021. doi: 10.1017/
9781108568708.

[32] Robert Shrock and F Y Wu. Spanning trees on graphs and lattices ind
dimensions. Journal of Physics A: Mathematical and General, 33(21):3881–
3902, may 2000. doi: 10.1088/0305-4470/33/21/303.

38

https://doi.org/10.1016/S0012-365X(76)80005-2
https://doi.org/10.1016/S0012-365X(76)80005-2
http://www.jstor.org/stable/167658
http://www.jstor.org/stable/167658
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18471481202
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18471481202
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.3240060214
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.3240060214
https://www.sciencedirect.com/science/article/pii/S0195669883800456
https://www.sciencedirect.com/science/article/pii/S0195669883800456
http://www.jstor.org/stable/1226994
http://www.jstor.org/stable/1226994


[33] Alma Steingart. Law, computing and redistricting in the 1960s. Political
Geometry, pages 163–177, 2022.

[34] Kristopher Tapp. Spanning tree bounds for grid graphs, 2022.

[35] Elmar Teufl and Stephan Wagner. On the number of spanning trees on
various lattices. Journal of Physics A: Mathematical and Theoretical, 43:
415001, 09 2010. doi: 10.1088/1751-8113/43/41/415001.

[36] Derek A. Waller. Regular eigenvalues of graphs and enumeration of span-
ning trees. In Proc. Coll on the Theory of Combinatorics, Rome, volume 1,
pages 313–320, 1973.

[37] Douglas West. Introduction to Graph Theory. Prentice Hall, 2001.

[38] Zhanzhan Zhao, Cyrus Hettle, Swati Gupta, Jonathan Christopher Mat-
tingly, Dana Randall, and Gregory Joseph Herschlag. Mathematically
quantifying non-responsiveness of the 2021 Georgia Congressional district-
ing plan. In Equity and Access in Algorithms, Mechanisms, and Opti-
mization, EAAMO ’22. Association for Computing Machinery, 2022. URL
https://doi.org/10.1145/3551624.3555300.

39

https://doi.org/10.1145/3551624.3555300

	Counting Spanning Trees on Triangular Lattices
	Recommended Citation

	Introduction
	Motivation
	Related Work

	Background
	Kirchhoff's Matrix Tree Theorem
	Spanning Trees in Triangular Lattices
	Chains of Triangles
	3n Triangular Lattices
	Lower Bound
	Upper Bounds

	n n  Triangular Lattices

	Conclusion and Next Steps

