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Abstract 
 

How might new technical verification capabilities enhance the prospects of success in future 

nuclear arms control negotiations? Both theory and evidence suggest that verification technologies 

can influence the dynamics of arms control negotiations by shaping and constraining the arguments 

and strategies that are available to the involved stakeholders. In the future, new technologies may help 

transcend the specific verification challenge of high-security warhead authentication, which is a 

verification capability needed in future disarmament scenarios that address fewer warheads, limit new 

categories of warheads, and involve nuclear weapons states other than the United States and Russia. 

Under these circumstances, the core challenge is maintaining the confidentiality of the classified 

information related to the warheads under inspection, while providing transparency in the verification 

process. This analysis focuses on a set of emerging warhead authentication approaches that rely on 

the cryptographic concept of zero-knowledge proofs and intend to solve the paradox between secrecy 

and transparency, making deeper reductions in warhead arsenals possible and thus facilitating future 

nuclear arms control negotiations. 
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Introduction 
 

Over the past decades, the United States and Russia, formerly the Soviet Union, have engaged 

in negotiating warhead reductions that have brought the global stockpile of nuclear weapons to only 

a fraction of what it was at the height of the Cold War. These disarmament agreements focused on 

limiting warheads that were affiliated with operationally deployed strategic delivery systems, allowing 

their reductions to be verified through monitoring the delivery platforms.1 Disarmament in the U.S.-

Russia context, however, is unique in many respects and this past strategy of warhead reductions will 

cease to be feasible in the future stages of arms control. The past definition of treaty-accountable 

nuclear weapons will become insufficient in future disarmament scenarios, which include addressing 

lower numbers of warheads, where the diversion of even one warhead becomes increasingly 

significant; considering new categories of weapons under limitations, including tactical and non-

deployed; and engaging other nuclear weapons states than the United States and Russia.2 All of these 

factors contribute to the need to shift from a verification approach based on delivery systems, to a 

verification approach focused on the warheads themselves.  

                                                 
1 Operationally deployed strategic warheads refer to strategic nuclear weapons that are mounted on their ballistic missile 

launchers or that are located at aircraft bases, although the definition is somewhat dependent on the context. (Source: 
Hans Kristensen and Robert Norris, “Status of World Nuclear Forces,” Federation of American Scientists, accessed March 2, 
2017, available at https://fas.org/issues/nuclear-weapons/status-world-nuclear-forces/.) 

The process of verification is comprised of collecting the information relevant to the treaty, which is referred to as 
monitoring, and assessing what it signals about compliance, which is verification. In this thesis, I focus on this process as 
a whole and use the term verification. 

2 State Department definition of warhead categories: “The nuclear stockpile includes both active and inactive warheads. 
Active warheads include strategic and non-strategic weapons maintained in an operational, ready-for-use configuration, 
warheads that must be ready for possible deployment within a short timeframe, and logistics spares. They have tritium 
bottles and other Limited Life Components installed. Inactive warheads are maintained at a depot in a non-operational 
status, and have their tritium bottles removed. A retired warhead is removed from its delivery platform, is not functional, 
and is not considered part of the nuclear stockpile. Warheads awaiting dismantlement constitute a significant fraction of the 
total warhead population and will continue to grow as the New START Treaty is implemented and as unneeded 
warheads are retired. A dismantled warhead is a warhead reduced to its component parts.” (Source: U.S. Department of 
State. “Fact Sheet: Transparency in the U.S. Nuclear Weapons Stockpile,” https://2009-
2017.state.gov/documents/organization/241377.pdf.) 
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Figure 1. Source: Arms Control Association, “Nuclear Weapons: Who Has What at a Glance,” 
updated January 2017, available online from 

https://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat. 

The problems associated with the verification of individual warheads are multifold. The core 

technical verification challenges in this disarmament scenario will relate to the high-security 

authentication of warheads, their unique identification, maintaining the continuity of knowledge 

throughout their life cycle, and several other issues.3 These technical verification challenges will emerge 

at different stages of a warheads’ life cycle, from the initial tagging of the warheads when they leave 

the production facility, to authentication when they enter the dismantlement facility, but all of these 

different elements play a role in creating confidence and trust in an arms control agreement focused 

on warheads.4 In this thesis, I will be focusing on the specific verification challenge of authenticating 

warheads, or proving that the warhead under consideration is genuine and that the host state is not 

                                                 
3 Nuclear Threat Initiative, “Verifying Baseline Declarations of Nuclear Warheads and Materials,” Innovating Verification 

Series, July 2014, http://www.nti.org/media/pdfs/WG1_Verifying_Baseline_Declarations_FINAL.pdf?_=1405443895. 

4 Frank von Hippel, “Verification of Nuclear Warheads and Their Dismantlement: A Joint American-Soviet Study,” 
INMM 31st Annual Meeting (1990): 1. 
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trying to deceive by offering blank warheads or employ other spoofing mechanisms. This verification 

challenge is only one of the pieces of the puzzle in future disarmament verification, each of which 

requires unique technical capabilities. This thesis will focus on exploring the applicability of novel 

technical approaches to this specific future verification challenge. 

 

Figure 2. Verification challenges associated with disarmament agreements that focus on warheads, 
rather than their delivery systems. The figure intends to illustrate the challenges involved, but is not 

fully comprehensive. I thank Rebecca Hersman for helping me visualize these challenges, as 
represented in this figure. 

These verification challenges may be in the longer-term horizon, but overcoming them will be 

essential for making future steps in disarmament possible. It is critical to think about these challenges 
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now, even if further bilateral reductions in warheads between the United States and Russia are highly 

uncertain, not to mention the prospects of negotiations with countries such as North Korea or 

Pakistan. While these are the geopolitical realities at the moment, it does not mean that the 

circumstances can change relatively rapidly. Furthermore, there is an argument to be made that these 

interval periods are exactly the time new verification approaches can be conceptualized and developed.  

These efforts are also driven by the increasing pressure from the international community 

towards the nuclear weapons states, particularly in the context of the humanitarian movement to bring 

attention to the catastrophic consequences of nuclear weapons. As reflected in the Resolution 

A/C.1/71/L.41 that was passed in the United Nations General Assembly in October 2016 to begin 

negotiations of a nuclear weapons ban treaty, the international community is increasingly willing to 

call for the nuclear weapons states to move towards disarmament, as outlined in their obligations 

under Article VI of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT).5 The key 

question now is how the P5 states, or the five nuclear weapons defined under the NPT, are going to 

respond to this pressure and engage with the rest of the international community. Beyond the P5, the 

nuclear weapons states outside the NPT framework are creating increasing anxieties within the 

international community. The nuclear balance in South Asia remains to be a key security concern for 

many, as does North Korea.  

The core of my thesis focuses on the particular verification challenge of authenticating nuclear 

warheads. More specifically, the focus is on a presumed tradeoff of secrecy and transparency in the 

authentication process, as it requires highly intrusive radiological measurements.6 The central challenge 

                                                 
5 United Nations General Assembly, 71st Session. General and complete disarmament: taking forward multilateral nuclear 

disarmament negotiations, 2016 (A/C.1/71/L.41), available from 
http://www.un.org/ga/search/view_doc.asp?symbol=A/C.1/71/L.41. 

6 Jie Yan and Alexander Glaser, “Nuclear Warhead Verification: A Review of Attribute and Template Systems,” Science 
& Global Security 23 (2015), http://scienceandglobalsecurity.org/archive/sgs23jieyan.pdf. 
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is maintaining the confidentiality of classified and sensitive information related to the inspected 

warheads, while providing transparency and a high level of confidence in the verification process. As 

will be discussed, states have technical, political, and legal concerns related to revealing details about 

their warheads, whereas from the inspectors’ perspective, this information is essential for the validity 

of the authentication process. The specific warhead authentication mechanisms that I focus on in the 

last chapter of the thesis, which use physical cryptography and zero-knowledge proofs, intend to 

challenge this assumed tradeoff between secrecy and transparency.  

Before the focused examination of this challenge, however, I establish a theoretical 

understanding of the role of verification technologies in the politics of verification. This allows me to 

create a more nuanced understanding of why verification matters, and move beyond the two extremes 

that are continually argued in the arms control community – that either verification does not matter 

at all, or that trust can only be achieved with stringent verification provisions. In the first chapter, I 

make the case that the story is more complicated than what these two arguments assert. 

Methodologically, this research applies the comparative method, as I operationalize verification 

technologies as the variable under consideration and explain the causal mechanisms that explain how 

they can contribute to negotiating nuclear weapons reductions, under conditions of high levels of 

secrecy and distrust. My description of these processes involves two frameworks, one of which rests 

on two-level game theory and the other analysis of sociotechnical systems.  

I will make evident in the first chapter that the conceptualization of verification technologies 

cannot be reduced to a purely technical, or a purely political, perspective – these technologies are 

inherently involved in both dimensions. This is because verification arguments can be operationalized 

as tools to further the political agendas and interests of the involved stakeholders, who have highly 

divergent views about the value of arms control. The core argument is that verification technologies 
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must be understood as both an independent and dependent variable. They can importantly shape the 

politics of verification by constraining the arguments and strategies that are available to the involved 

stakeholders, but this influence is dependent on the political conditions at that time. Thus, developing 

new verification approaches is not going to be a panacea for making next steps in disarmament 

possible, as these novel mechanisms can either further or impede the prospects for arms control, 

depending on the political conditions of the time. Nevertheless, they play a meaningful role in the 

process, which allows them to expand the possibilities and likelihood of new disarmament efforts 

under the right conditions. 

My thesis proceeds in the following way. The first chapter provides a framework for 

understanding how verification technologies influence the politics of verification and starts to outline 

the issue between secrecy and transparency. This establishes the basis for the following chapters, by 

illuminating how the development of new verification approaches has an independent effect in 

shaping the politics of verification, thus contributing to the dynamics of future arms control processes. 

Then, the thesis dives into the verification challenge of warhead authentication. The second chapter 

takes a historical perspective and shows how past warhead reduction measures have addressed the 

seemingly intractable tradeoff between secrecy and transparency, with a focus on the SALT era, the 

INF treaty, and the START era. Next, the third chapter explores the efforts have been made in the 

past to counter the assumption that high-accuracy verification of warheads would not be possible 

without compromising classified information, but how the issue of the authentication and certification 

of the technical equipment used in these approaches has prevailed.  

The fifth chapter shifts the perspective into the technical dimension of my thesis, providing 

an overview of the physics, design, and detection of nuclear weapons, which is essential for 

understanding the sixth chapter, which contains is the core of my technical examination. This chapter 
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focuses on a set of novel approaches developed over the past years, based on zero-knowledge proofs, 

where the core idea is that the classified design information is not measured by the verification system 

in the first place due to the physics of the measurement system itself. Lastly, in my conclusion, I 

discuss the implications of developing these verification approaches and how it might contribute to 

the future directions of global nuclear arms control efforts. I argue that while novel verification 

approaches, such as zero-knowledge verification, may never be fully implemented as such in an arms 

control treaty, their development is important regardless – both for opening the dialogue on new 

treaty architecture options, as well as shaping the political dynamics of the treaty negotiations 

themselves. 
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1. Why Verification Technologies Matter 
 

I. Introduction 
 

One of the critical questions when thinking about the verification of arms control agreements 

is the role that verification technologies have in this process. Verification technologies provide the 

physical capabilities that allow the monitoring of treaty provisions, and subsequently the determination 

of treaty compliance. The analysis of the role of verification technologies, however, cannot be reduced 

to only the technical and physical dimension, as they also interlink to the political dimension of 

verification. The purpose of this chapter is to provide an answer to the question of how verification 

technologies influence the verification process of an arms control agreement, and why it matters what 

verification technologies and capabilities are available when negotiating new treaties. This discussion 

is essential for the overarching argument in this thesis, which is that the emergence of new verification 

approaches for warheads is an essential step for making further nuclear arms reductions possible. 

The commanding theme in answering this question is that verification technologies influence 

the process of verification through several bidirectional relationships that relate both to technical and 

political dynamics. This bidirectionality becomes evident in the way verification capabilities are 

developed, as well as in the way that these capabilities influence verification negotiations. In both of 

these situations, verification technologies are not only used to answer objective, technical questions, 

but are also operationalized as political arguments and tools. This bidirectionality is also present in the 

verification negotiations between states, which can be modeled as two-level games where the domestic 

and international levels of political dynamics interact.  

These mutually influential relationships, giving verification technologies both a technical and 

political purpose, make the question meaningful to answer. Verification technologies are a 

fundamental part of the verification process, but changes in the level of verification capabilities do not 
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lead to simple, predictable effects. Instead, these effects vary as a function of the political conditions 

in which they take place, most importantly the current political actors and their interests. Ultimately, 

understanding the role of verification technologies in the verification process condenses to 

understanding these dynamic interactions between political negotiations and technology. 

I argue that while the emergence of new verification approaches will not be a panacea for 

settling disagreements about verification, they will importantly shape the politics of verification by 

constraining the arguments and strategies that are available to the involved stakeholders. New 

verification approaches can strengthen the positions of those promoting nuclear arms limitations by 

expanding the verification choices that they can propose in the negotiations. Simultaneously, new 

verification capabilities can weaken the arguments of arms control opponents who exaggerate 

verification concerns and potential cheating opportunities. Thus, novel verification technologies 

contribute to the facilitation of verification debates by altering their dynamics and shaping the 

arguments that can be made by both opponents and proponents of arms control.  

This analysis of the importance of verification technologies provides the justification for the 

rest of my thesis. By showing that verification technologies can improve the prospects of future arms 

control agreement, I can explain why developing novel verification capabilities can contribute to future 

multilateral disarmament processes that involve unique requirements for verification systems and 

protocols. I will specifically focus on the issue of transparency and secrecy in the ongoing debate about 

warhead verification, and how the emerging idea of physical cryptographic verification approaches 

can increase the likelihood of achieving new agreements that limit warheads. While these approaches 

may never be fully implemented in the verification provisions of future arms control agreements, their 

existence will have an impact on the argumentation dynamics of both arms control proponents and 

opponents during the negotiations. These methods will make arms control opponents’ arguments 



14 
 

about the ‘unverifiability’ of warhead limitations appear less legitimate, and allow the proponents of 

arms control to propose valid mechanisms for verifying the terms of the agreement. Ultimately, the 

success of these negotiations will depend on the balance of political interests and geopolitical 

developments, but under the correct conditions, the successful development of these novel warhead 

verification approaches can make a concrete contribution towards the future prospects of deeper cuts 

in nuclear weapons. 

This chapter will first explain the core technical and political challenges related to verification 

technologies. Then, the chapter will analyze the existing political science literature on these topics and 

provides a more formalized framework for understanding these challenges. This literature review 

allows the discussion to be expanded and leads to my core argument: Changes in the available 

verification capabilities cannot single-handedly make an arms control agreement possible, in the 

absence of political will – but they can change the likelihood of an agreement by shifting the dynamics 

of the negotiations. Thus, the impact of new verification technologies is channeled through both the 

political and technical levels – they physically influence the choices and arguments that are available 

to the different stakeholders, and thus shape the arguments that can be made about verification.  

II. Technical and Political Challenges 
 

The fundamental purpose of verification is to determine whether parties to an arms control 

agreement are complying with their commitments. In addition to providing the technical means to 

monitor and detect potential violations, it also serves a political purpose in assuring the other parties 

to the agreement that arms control measures promote, rather than compromise, their national security. 

This assurance is intended for state leaders and political establishments, as well as domestic audiences 
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who are concerned about compliance issues relating to arms control measures.7 Furthermore, 

verification is argued to influence the behavior of the participating states by creating a deterrent against 

noncompliance. These functions provide the underlying justification for why verification is pursued 

with arms control agreements, with either unilateral or mutual verification provisions.  

A two-fold challenge relates to the technologies used in the verification process – the first 

dimension is technical, and the second is political. The technical problem is having the right 

verification capabilities available to satisfy the requirements that arise from both practical and political 

needs. The second problem is political, meaning that the verification technologies are operationalized 

as political tools by the different stakeholders in verification debates. The technologies’ attributes are 

used as arguments to promote distinct political ends, which vary depending on the stakeholder in 

question.  

Thus, the attributes of the verification technologies are not only important for the physical 

verification capabilities that they create, but also the way in which they can either accumulate or 

alleviate distrust. This political dimension depends deeply on how easy it is to ‘verify’ the verification 

capabilities themselves – or confirming that they operate as intended. In the context of warhead 

verification, this means that the verification capabilities can confidently authenticate warheads without 

revealing sensitive information; with test ban monitoring, this means that the verification capabilities 

can detect nuclear explosions with high degree of accuracy within the intended thresholds. This is 

essential for being able to educate and convince the negotiators that using these verification 

capabilities will build trust and confidence in compliance. Thus, trust and confidence are critical 

aspects of verification technologies – they are not only operated by inspectors and technical personnel, 

                                                 
7 U.S. National Security Council. National Security Decision Directive Number 65: Establishment of National Security Council 

Arms Control Verification Committee. 1982. 
https://reaganlibrary.archives.gov/archives/reference/Scanned%20NSDDs/NSDD65.pdf 
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but are also an important component of political actors’ decision-making process. This is why trust 

becomes a critical variable in verification technologies. 

Both the technical and political dimensions operate according to the dynamics of a feedback 

loop. First, the technical challenge of having adequate technical verification capabilities relates how 

policymakers define the verification needs in a particular arms control agreement. Negotiators 

understand what is needed from technical verification capabilities to satisfy the political needs both 

internationally and domestically. It is important to understand, however, that the process of defining 

verification needs is highly subjective, and also liable to being used as a mechanism to promote specific 

political agendas. Stricter requirements entail higher barriers for achieving agreement about arms 

control, and, as will be discussed later, have been operationalized as a hindrance to arms control. 

The requirements for verification technologies are relayed to the technological community, 

informing technical personnel of the needs from the political side. This process takes place 

domestically, such as with the U.S. national laboratories. It can also take place internationally, as joint 

development programs for new technologies. The requirements from the political level inform the 

technological community, which then adjusts its research programs to align with the conveyed needs. 

The resulting new verification capabilities contribute to the prevailing systemic environment in which 

policymakers operate. This links back to the first stage of the feedback loop, with the new systemic 

environment influencing how policymakers determine the verification needs for a particular treaty. 

This illustrates how the development of verification technologies and the definition of verification 

requirements are mutually influential. These dynamics also show why it is too simplified to ask whether 

policymakers determine the development of verification technologies, or whether available 

verification technologies determine the verification provisions that are applied. The answer is both, 

with bidirectional interactions between the political and technological spheres. 
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It is also important to note that each of the stages of the feedback loop can be independently 

influenced by external factors. Policymakers’ guidance is not the only factor that shapes the 

development of verification technologies – it is also controlled by the internal dynamics of the 

technological community and the emergence of new fundamental scientific knowledge. Thus, 

influence from these factors can have an impact that is outside the control of policymakers, changing 

the systemic environment in which verification debates take place. 

 

Figure 1.1. The feedback loop describing the dynamic relationship between the political 
stakeholders defining verification requirements and the technical community developing the 

verification technologies. 

The political dimension operates according to its own feedback loop. These dynamics can be 

understood as a two-level game theoretical model, as will be discussed later, but also more generally 

as a mutually influential relationship. This reflects the fact that the politics of verification relate both 

to the domestic level, as well as the international level. The first level of two-level games takes place 

in national politics, which are often factional and discordant. Different domestic interest groups 

interact with governmental actors such that each side is trying to influence the other, or to create 
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alliances with groups that share their interests. The second level reflects international politics, where 

state governments represented by selected negotiators interact with each other, and similarly exert 

pressure or suggest alliances with actors that share their objectives.8 These two levels can be 

understood as mutually influential. At the domestic level, international negotiations create external 

pressure that can be deployed by domestic political actors to argue against their opponents and drive 

their interests forward. At the same time, the dynamics of international negotiations depend on the 

domestic political conditions in each participating state. Each national leader is constrained by their 

domestic constituencies and factions, who must ultimately ratify or endorse the agreement reached 

with other governments – otherwise the leader of the state may face difficult domestic challenges, or 

even be voted out of power.9 

  

                                                 
8 Robert Putnam, “Diplomacy and Domestic Politics: The Logic of Two-Level Games,” International Organization 42 

(1988): 434. 

9 Ibid., 437. 
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Figure 1.2. The political dynamics of verification negotiations on the international and domestic 
level. As discussed later, the domestic level can be modeled after Robert Putnam’s framing in 

“Diplomacy and domestic politics: the logic of two-level games.” This is also reflected in Table 1.1. 

 

International 
level

Country A: 
Domestic level

Country B: 
Domestic 

Level

 Country A – United States Country B – Russia 

Head of state Barack Obama (President) Dimitri Medvedev (President) 

Cabinet members 
Hillary Clinton (Secretary of State); Robert Gates 
(Secretary of Defense) 

Sergey Lavrov (Foreign Minister of Russia) 

Other members in 
executive branch 

Gen. James L. Jones (National Security Adviser)  

Members of 
parliament 

United States Senate 
State Duma (lower house of the Federal 
Assembly of Russia) 

Agency representatives 

Rose Gottemoeller* (Assistant Secretary of State 
for Verification, Compliance, and Implementation); 
Ellen Tauscher (Under Secretary of State for Arms 
Control); Adm. Mike Mullen (Chairman of the 
Joint Chiefs of Staff) 

Anatoly Antonov* (Director of security and 
disarmament at the Russian Ministry of Foreign 
Affairs) 

Experts 
National laboratories (e.g. Los Alamos National 
Laboratory) 

National laboratories (e.g. VNIIEF in Sarov) 

Interest groups 
Arms Control Association, Federation of American 
Scientists, Physicians for Social Responsibility, 
Heritage Foundation 

Political and Military Analysis Institute, 
Carnegie Moscow Center 

Table 1.1. The domestic level as conceptualized by Robert Putnam in “Diplomacy and Domestic 
Politics: The Logic of Two-Level Games,” applied to the real conditions during the New START 

negotiations between 2009 and 2011. The star refers to the lead negotiators. 
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III. The Political Stakeholders 

As has been alluded to previously, the stakeholders engaged in verification debates may hold 

differing views about the verification needs for a specific arms control agreement. These divisions 

surface due to divisions between countries about the purpose and logic of verification, as well as due 

to divisions within countries. With respect to states, it is evident that there are general differences 

between state perceptions about the role of verification in arms control. This has been most visible 

between the United States and Russia, who have had the most experience in negotiating verification 

protocols. The U.S. position throughout the Cold War was to emphasize the objective, neutral, and 

technical nature of verification, since depicting “verification demands as scientifically correct and thus 

nonnegotiable makes for a stronger bargaining position.”10 Cultural factors also contributed to this 

perception, as it is compatible with the ideals of scientific rationalism, Western empiricism, and the 

“liberal faith in the unproblematic nature of knowledge.”11 The U.S. perspective can be contrasted 

with Soviet views about verification, which saw the process as inherently subjective and strategic, as 

“a double-edged sword that can be used for good or ill, depending on political relations.”12  

These national views, however, can also fluctuate over time. In the 1980s, for example, the 

United States reduced its verification demands, while the Soviet Union was willing to pursue “triple 

verification” that included extensive data exchanges and comprehensive on-site inspections.13 These 

shifts often reflect more general changes in the state’s position on arms control, which illuminates 

how perspectives about verification are inherently linked to more general attitudes towards arms 

control. The within-country spectrum of viewpoints about verification, which are discussed next, 

                                                 
10 Nancy Gallagher, The Politics of Verification (Baltimore: Johns Hopkins University Press, 2003), 30. 

11 Ibid. 

12 Ibid. 

13 Murray Feshbach, edit., National Security Issues of the USSR (New York: Springer, 1987), 86. 
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change as the strategic calculations about arms control change. Since the end of the Cold War, the 

United States has seen warhead reductions as a stabilizer in U.S.-Russian relations and, during the 

Obama administration, also as an important step in the path towards global disarmament.14 Russia, on 

the other hand, is more dependent on its nuclear forces and “fears that continuing cuts to strategic 

force levels could eventually threaten strategic stability and that the United States might pursue 

additional cuts with that very goal in mind.”15 These broader views about the strategic logic of arms 

control will shape both sides’ positions on verification, given the way that it can be used as a 

foundation for political arguments. 

In addition to these state-level divisions about arms control and verification, there are also 

divergences within countries and their political factions that are reflected in the views of stakeholders. 

Each participant in the arms control negotiations is coming to the table with pre-existing perceptions 

and preferences about arms control, shaped by their political allegiances and personal views. These 

notions will shape their approach to verification and the emphasis they place on technical verification 

needs. They also are constrained by the structural environment in which they interact, with one of the 

variables defining that environment being the status of verification technologies. As will be discussed 

later in this chapter, these dynamics have been analyzed from a theoretical perspective in existing 

international relations literature, but these divisions can also be understood in more general terms. 

Stakeholders can be placed on a continuum with respect to their attitudes about nuclear arms 

control, spanning from stern opponents to ardent proponents. Actors at the two ends, representing 

the extreme positions, operationalize verification arguments to convince those in the middle to 

                                                 
14 Aaron Miles, “Adaptive Warhead Limits for Further Progress on Strategic Arms Control,” Real Clear Defense, 

February 7, 2017, 
http://www.realcleardefense.com/articles/2017/02/07/progress_on_strategic_arms_control_110760.html. 

15 Ibid. 
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support their position on arms control. These dynamics exist both at the national level and on the 

international stage. Outcomes in verification debates emerge partially as a result of these interactions, 

as well as due to genuine technical questions and concerns, which shows how the political and 

technical dimensions of verification dimensions intersect. 

IV. Literature Review 
 

The previous discussion establishes how verification technologies operate both as a technical 

asset and a political tool, which illuminates the complexity of their role in verification debates and in 

the verification process itself. These observations can be placed in the context of existing political 

science literature, where these dynamics have been studied from a more theoretical perspective. The 

focus in the following discussion will be on two theoretical frameworks, developed by Nancy 

Gallagher and Geoffrey Herrera. Gallagher’s framework offers a way of understanding the dynamics 

of verification debates using a two-level game that has been adapted to involve the influence that the 

worldviews and identities of the involved stakeholders have on the debates. The framework’s 

conventional understanding of technology as an exogenous variable that aligns with most system-level 

theories, however, leaves little space for examining the independent effect that emerging verification 

technologies could have in influencing verification debates. Thus, Gallagher’s framework can be 

complemented and expanded by bringing in insights from Geoffrey Herrera’s analytical approach to 

understanding the relationship between technology and international politics. Herrera’s framework 

conceptualizes technology as an endogenous structural variable in the international system that is 

interdependent of the dynamics of international politics. Integrating Gallagher and Herrera’s 

approaches will provide an insightful lens for understanding how and why verification technologies 

influence the politics of verification, and how the development of new verification technologies can 

contribute to future arms control prospects. 
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i. Modeling Verification Debates as Two-Level Games 

 

Gallagher’s The Politics of Verification is one of the seminal works on the political dimensions of 

verification debates. The framework she develops can be used to conceptualize how the different 

stakeholders involved in verification debates enter the negotiations with pre-existing interests and 

ideas, and how these perceptions influence their behavior and decision-making processes. Gallagher’s 

framework conceptualizes the politics of verification as a two-level game that is played both at the 

international and domestic levels, by stakeholders that can be defined as one of three ideal types: arms 

control opponents, arms control proponents, and cautious cooperators. Importantly, the framework 

illuminates that debates about verification are not only an epiphenomenon linked to nuclear arms 

control negotiations. Instead, the politics of verification is a process that independently influences the 

verification decisions that are made and can ultimately make or break agreement on arms control 

efforts.  

The first principles of each ideal type qualify the importance that players in that category place 

on verification technologies. Arms control opponents, for example, see verification technologies from 

a competitive perspective where the development of verification capabilities can be important for 

seeking “a verification regime that maximizes their own monitoring capabilities, denies the other side 

access to sensitive information, and preserves their autonomy to act and judge others in ways that suit 

their competitive goals.”16 For cautious cooperators, verification technology can become a critical 

variable in shifting the costs and benefits of cooperation enough to make agreement possible.17 Their 

views align with the arguments that verification helps in assuring states that violations will be detected, 

provides deterrence against cheating, assures that the benefits of cooperation will be reaped, and can 

                                                 
16 Gallagher, The Politics of Verification, 6. 

17 Ibid., 8. 
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promote domestic support for arms control by allowing leaders to use these arguments in political 

debates.18 For arms control advocates, the significance of verification technologies again declines, as 

they see states’ security objectives as fundamentally compatible and compliance as a logical outcome. 

A minimum level of verification is needed to facilitate cooperation, and anything above it can serve 

to “promote international openness, strengthen international organizations, and democratize security 

policy in countries whose civilian oversight of military decisions is weak.”19 

Gallagher argues that debates about verification are a meaningful dimension of nuclear arms 

control negotiations, and cannot be simplified into the frameworks contained in most literature on 

verification. More optimistic traditional frameworks argue that verification can be used a tool to 

incentivize compliance and deter cheating, thus decreasing the costs and risks of arms control 

agreements and changing state calculus in international negotiations. More pessimistic perspectives do 

not grant verification an independent effect in making cooperation possible, but instead see it as a 

mechanism of sabotaging negotiations, gaining political ground, or otherwise being an 

“epiphenomenon” of arms control negotiations.20 Neither of these views conceptualize the complexity 

of verification debates in their true form. Gallagher proposes a framework that accommodates the 

divergent stakeholders involved in verification debates and who employ varying strategies to pursue 

their preferred policy path. The solution is not to depoliticize verification debates, but rather to 

embrace the interconnected technical and political nature of verification arguments. 

Gallagher lays out a modified two-level game theoretic model that incorporates both the 

domestic and systemic levels of analysis to analyze the dynamics of verification debates. Two-level 

games were originally conceptualized by Robert Putnam in “Diplomacy and Domestic Politics: the 

                                                 
18 Ibid. 

19 Ibid., 11. 

20 Ibid., 2. 
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Logic of Two-Level Games,” which provides a framework for analyzing the causal relationship 

between domestic and international factors in determining the outcomes of international 

negotiations.21 This framework is highly applicable to verification negotiations, which are influenced 

by the perspectives of domestic constituencies as well as the positions of the other states at the 

negotiating table. A fuller description of two-level games is available in Putnam’s paper and in 

subsequent work on the topic, as the focus here is on how Gallagher modifies the game to fit the 

context of verification debates. 

Gallagher modifies the traditional two-level game framework to the context of examining and 

explaining the verification arguments made during arms control negotiations. The traditional 

formulation of the two-level game focuses on players’ interests as a basis for their preferred outcomes 

and most often considers these interests to be constant over time.22 Gallagher argues that in debates 

about verification, it is also essential to consider the role that ideas, worldviews, and myths have in 

shaping choices about verification arguments.23 These factors, together with interests and technical 

realities, shape verification arguments and positions that are composed of both substantive and 

strategic components. These modifications, which are rooted in assumptions from the English School 

of international relations, help explain why certain verification arguments are operationalized by 

certain actors during negotiations. The debate among the three groups that Gallagher defines is parallel 

to the central dialogue in international relations theory on the possibilities of international 

cooperation.24 The central question is whether verification could reconstruct state behavior such that 

                                                 
21 Putnam, “Diplomacy and Domestic Politics: The Logic of Two-Level Games,” 427-460. 

22 Gallagher, The Politics of Verification, 41. 

23 Ibid. 

24 Ibid., 4. 
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durable cooperation would become possible in the absence of transnational enforcement mechanisms. 

These interactions are at the core of Gallagher’s view of the politics of verification:  

Conceptualizing the structure of verification arguments as a two-level game suggests that the causal 
arrows flow in both directions. Instead of using domestic politics solely to account for national interests 
or using system-level factors just to explain the outcome of internal policy debates, this approach 
assumes that national leaders have their own preferences but are simultaneously constrained by what 
other states will negotiate and what constituents will ratify. Here, the structure of the game is determined 
by the mix of common and conflicting interests and the allocation of power among national 
representatives at the negotiating table; it is also determined by the configuration of preferences and the 
decision-making rules of each participating state.25 

 

Gallagher’s framework provides an important foundation for understanding how the 

dynamics of verification negotiations operate through the interactions of the different types of 

stakeholders. The focus of her analysis is confined within these interactive dynamics, with the 

structural negotiations environment providing the backdrop for these interactions. This framing, 

however, leaves out the consideration of the independent effects that changes in the structural 

negotiations environment can have on the negotiation interactions. One of these structural variables 

is technology, which is incorporated into Gallagher’s framework only as an objective variable that 

shapes the preferences of each of the three ideal types.  

ii. The Role of Technology in Verification Debates 

 

Gallagher’s understanding of verification technologies as an objective, constant variable is 

aligned with the view embedded in many system-level theories. While Gallagher follows the English 

School, similar views are associated with neorealist, neoliberal, and constructivist views of 

international relations. Technology is not seen as a component of the international system that can 

foster change from within, but rather seen as an exogenous variable.26 My intention is to reverse this 

view and examine the role that verification technologies play as an endogenous and independent 

                                                 
25 Ibid., 40. 

26 Geoffrey Herrera, Technology and International Transformation (New York: SUNY Press, 2006), 4. 
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variable in the two-level framework that Gallagher has formulated. I argue that verification 

technologies can be understood as a structural variable both at the domestic and international levels, 

with the power to shape the interactions and the dynamics of negotiations at both levels. Verification 

technologies do not only create a passive technical environment for the negotiations – rather, state 

leaders and institutions can make conscious and active decision to develop certain verification 

capabilities. The successful development of these capabilities will result in structural shifts in the 

negotiations environment, such that the players are forced to reformulate their arguments and 

positions. 

Turning this framing around and making structural variables the focus of analysis can provide 

critical insights to the dynamics that Gallagher describes in her framework. This shift in perspectives 

can be approached with the framework that Geoffrey Herrera provides in Technology and International 

Transformation. He conceptualizes technology as an endogenous structural variable that can have 

independent effects on interaction dynamics in the international system, which challenges traditional 

representations of technology as an exogenous, passive variable. Making this conceptual shift will 

allow a more nuanced understanding of how technology and international politics intertwine.  

Geoffrey Herrera’ Technology and International Transformation provides a theoretical foundation 

for developing the argument above.27 He challenges the traditional view of technology as an external 

force and conceptualizes technology as an endogenous structural variable to the system.28 His 

analytical framework draws from the classic essay “Do Artifacts Have Politics?” by Langdon Winner, 

which was a part of an emerging dialogue on what can be called the theory of technological politics.29 

Winner examines how technologies have political effects through two mechanisms, resolving 

                                                 
27 Ibid. 

28 Ibid., 4, 15. 

29 Langdon Winner, “Do Artifacts Have Politics?” Daedalus 109 (1980): 123. 
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arguments and organizing power and authority, which supports an understanding of technology as a 

political force: “Rather than insist that we immediately reduce everything to the interplay of social 

forces, it suggests that we pay attention to the characteristics of technical objects and the meaning of 

those characteristics. [This] perspective identifies certain technologies as political phenomena in their 

own right.”30  

Herrera places this argument in the context of structural theories in international relations, 

which share a general understanding of the definition of structure. Kenneth Waltz, for example, 

“defined system as being composed of units and their interactions – the interactions forming the 

structure of the system.”31 Thus, his conceptualization of the international system includes states as 

the primary units, anarchy as the ordering principle of their interactions, and the distribution of power 

between them as the structure of the system.32 A more general definition of structure, however, can 

be drawn from Waltz’s ideas, independent of realist assumptions and balance of power: “A political 

structure is akin to a field of forces in physics: Interactions within a field have properties different 

from those they would have if they occurred outside of it, and as the field affects the objects, so the 

objects affect the field.”33 

Herrera argues that bringing the sources of change in the international system to within the 

system itself, as one of its structural components, can be accommodated by system-level theories. This 

allows him to conceptualize technology as one of the international system’s structural components 

and understand the relationship between technology and international politics as “fundamental and 

mutually constitutive.”34 This departs from conceptualizing technology in simply physical terms, 

                                                 
30 Ibid. 

31 Herrera, Technology and International Transformation, 13. 

32 Ibid, 15. 

33 Kenneth Waltz, Theory of International Politics (Reading, MA: Addison-Wesley Pub. Co., 1979), 73. 

34 Herrera, Technology and International Transformation, 4. 
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explaining how this variable interacts with international politics: “Technology is part of the structure 

of international politics; international politics is one of the factors governing technological change. 

Together they mutually constitute complex sociotechnical systems that are political at their core.”35  

Herrera’s discussion focuses on the unit of analysis of sociotechnical systems, which are 

comprised of “a complex of machines, operators, procedures and rules, and social institutions for 

governing them,” with the definition referring specifically to technologies that are large in their scale 

and scope.36 Herrera’s understanding of the relationship between sociotechnical systems and 

international politics can be scaled to understanding the relationship between verification technologies 

and the politics of verification. His understanding of technology’s role in international politics aligns 

with how verification technologies relate to the politics of verification – as a structural variable that 

plays an active, rather than passive, role in influencing the two-level game of verification politics. At 

the same time, the evolution of verification technologies is shaped by the politics of verification, as 

decisions over which technologies to develop are inherently political. With respect to scale, while 

verification technologies are not as expansive in scope as the technologies that are usually understood 

as sociotechnical systems, their conceptualization as such is valid in the context of verification politics. 

Verification technologies encompass not only physical equipment and systems, but also the 

understandings that states develop regarding specific verification technologies and approaches; the 

protocols that define their use in on-site inspections or other circumstances; and their 

institutionalization in arms control agreements and treaties. Thus, verification technologies can be 

                                                 
35 Ibid., 2. 

Herrera also provides a helpful example of how technology influences the interaction capacity of the system: “Imagine 
two international systems identical in every important feature – both anarchical and both with an identical distribution of 
capabilities – but, in the first, horses and sailing vessels are the transport/communications technology matrix, and global 
computer networks in the second. That difference cannot be attributed to the characteristics of any given state or even 
groups of states, but is instead a feature of the international system itself. Thus, technology – conceptualized as 
interaction capacity – is an important feature of the international political system and an appropriate object of study for 
theory of international politics.” (Herrera, Technology and International Transformation, 40.) 

36 Ibid., 35. 
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associated with both material and social dimensions, aligned with the definition of sociotechnical 

systems.  

The critical component of Herrera’s analysis with respect to verification technologies is his 

discussion of the ability of technology to shape the interaction capacity of the international system. In 

concrete terms, technology influences interaction capacity by being able to “lock in certain political 

possibilities and lock others out.”37 First, technology can create new options for action by helping 

“social actors obtain preexisting goals that the prior material environment had made impossible or 

near impossible.”38 In addition, “they can inspire social actors to imagine new goals that had not 

occurred to them before the change in the material environment.”39 Second, they can shape the 

material environment such that certain behaviors, actions, or arguments become limited or impossible. 

Technology can create “facts on the ground” or reform social or political organization in states, which 

then influences the options available for state actors.40 

These mechanics of changing interaction capacity apply to verification technologies at both 

the technical and political levels. Once a certain technological verification capability has been 

introduced into the international community at large, the interaction capacity of the system shifts. 

First, new verification capabilities can expand the options for action both politically and technically. 

As new verification technologies are created, the options for arms control treaty architecture are 

expanded, since something that used to be out of reach for monitoring capabilities becomes now 

possible to detect. This alters the calculations of all stakeholders on the negotiating table about their 

capacity to detect cheating. This effect is reverberated at the rhetorical level, as the novel verification 

                                                 
37 Ibid., 4. 

38 Ibid., 33. 

39 Ibid. 

40 Ibid. 
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capacities also make new arguments available to the negotiators, particularly for arms control 

proponents. The legitimacy of their arguments about the verifiability of the treaty provisions are 

increased, enhancing their ability to sway the cautious cooperators towards supporting the arms 

control agreement.   

Second, in addition to increasing options for action, new verification technologies can also 

create limitations for behavior. Again, this relates both to technical and rhetorical dimensions. The 

new verification capability may render a certain form of cheating impossible or very easily detectable, 

which makes previous arguments about the unverifiability of the agreement lose their strength. While 

those opposing the arms control agreement might still choose to imagine obscure cheating scenarios 

within the new limits of verification capabilities – and are quite likely to, since these have proven 

successful strategies in the past – the modified claims lose legitimacy in the eyes of the other 

stakeholders in the negotiations. Arms control proponents can call their bluff, or show that the 

potential cheating scenario would have no military significance, which would help them convince the 

undecided segment to support their positions. Again, it is critical to recognize that this verification 

debate is taking place within a greater political context, but the point is that in tiebreaker situations, 

the strength and legitimacy of verification arguments matter. If the new verification capabilities shift 

these two variables, then the dynamics of the negotiations are different than if those novel verification 

technologies had not been developed. 

Another important dimension of Herrera’s conceptualization of technology is his critique of 

both deterministic and social constructivist understandings of technology in the existing literature on 

the history and philosophy of technology.41 Deterministic viewpoints understand technology to be 

                                                 
41 In the determinist approach, promoted by neorealism and often liberalism, technology is seen as an exogenous 

variable that can influence politics, but its development is shaped by apolitical factors. In neorealism, for example, 
military technologies are seen as factors that define a state’s military capabilities, and the acquisition of a new technology 
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above politics with respect to its development, to create political effects that are predictable and 

definable, and to require no political analysis for understanding its effects on society.42 In terms of 

international relations, “the underlying technological environment determines the nature of political 

authority or, more precisely, the institutions of security provision.”43 Social constructionism challenges 

this deterministic view of technology’s impact and emphasizes the role that human agency, politics, 

and economics have in facilitating its role in society. The implication of understanding technology as 

a social construct is to say that social and political processes shape the way that humans interpret any 

given technology, which then gives rise to its significance and impact.44 Herrera argues that both 

determinism and social constructionism are too extreme in their interpretations of technology, with 

the truth being something in between. Technology is “both a social product and an important 

independent force because it confronts actors as a real resource or impediment.”45  

In the context of verification technologies, this argument adds substance to Gallagher’s 

framework of the politics of verification and adds to how the framework accounts for the influence 

of verification technologies. Changes in the available verification capabilities cannot single-handedly 

make an arms control agreement possible, in the absence of political will – but they can change the 

likelihood of an agreement by shifting the dynamics of the negotiations. Their impact is not only 

channeled through the rhetorical level, in the arguments that are made about verification – they also 

actively and physically influence the choices and arguments that are available to the different 

stakeholders. This simultaneous influence of verification technologies in defining the physical 

                                                 
by one state can have effects on other actors in the anarchical system. (Herrera, Technology and International Transformation, 
28.) 

42 Herrera, Technology and International Transformation, 28. 

43 Ibid., 29. 

44 Ibid., 31. 

45 Ibid., 7. 
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capabilities and concrete mechanisms by which actors can monitor and verify arms control 

agreements, and in shaping the argumentation dynamics of the involved actors, characterizes their role 

as an independent structural variable. The impact of verification technologies is neither purely 

deterministic or socially constructed, but a combination of the two.  

V. Emerging Verification Capabilities 
 

Linking Gallagher and Herrera’s theoretical frameworks together provides a gateway for 

expanding the analysis of the role that verification technology plays in the politics of verification. It is 

possible to proceed beyond simple visions of verification technologies as the panacea for resolving 

verification debates, or the reverse, of understanding verification decisions as purely political, 

completely isolated from technological development. Gallagher and Herrera’s frameworks create a 

foundation for conceptualizing verification technologies both as an independent and dependent 

variable and provide a more theoretical footing for the two feedback loop models. This examination 

now allows for a sharper analysis of how innovations in verification technologies and mechanisms can 

shift the politics of verification and impact the future prospects for arms control.  

One of the important implications of the dynamic interactions between verification 

technologies and politics is that new verification capabilities can either promote cooperation or 

intensify competition, depending on what their attributes are and how those attributes are 

operationalized in the politics of verification. Even if a verification technology is developed with the 

intention that it will expand the opportunities for verification and enhance the prospects for arms 

control agreements, there is a risk that the attributes of the technology can be used against this 

purpose, for example if it has the possibility of providing asymmetric backdoor advantages for the 

verifier or another party. Thus, in order for the verification technology to serve its intended purpose 

and be able to foster trust, there has to be verification of the verification technology itself – controlling 
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the properties of the new capabilities such that no counterproductive side effects will emerge. 

Ultimately, new tools in the verification toolbox can serve as generic multipliers, either enhancing the 

likelihood of collaboration, or increasing the chances of competition. Going back to Gallagher’s 

framework, the balance of these dynamics depends on what strategies and arguments are used by arms 

control opponents and proponents, and how they can use verification capabilities in advancing their 

political position. 

One particular debate, about the tradeoffs between secrecy and transparency in verification, 

has stirred verification negotiations continuously and connects strongly to the question of how novel 

verification technologies shape interaction capacity in the politics of verification. In all forms of arms 

control agreements, states must determine what their interests are in maintaining secrecy about their 

capabilities, and collaborating transparently with other nations involved in the treaty. Balancing these 

two interests determines the ways in which the states decide to interact and provide information about 

their adherence to the treaty provisions.  

This verification issue is particularly critical to limitations about warheads, where the host state 

would need to prove to the verifier that they are truly decreasing their arsenals according to the treaty 

provisions, for example by demonstrating that they are dismantling authentic nuclear warheads, but 

doing so without revealing sensitive or classified information about the warheads or their design. The 

severity of this tradeoff is tied into states’ interaction capacity – how much they are able to 

communicate in the verification process before hitting their hard limits on secrecy – which depends 

on the nature of the verification technologies available. If it is possible to develop technologies that 

ameliorate this tradeoff, such that an increase in transparency does not lead to a proportional sacrifice 

in secrecy, then these technologies would result in an increase in the interaction capacity of the 

international system.  
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The effort to develop verification approaches that do this has been ongoing since the early 

days of U.S.-Soviet arms control negotiations, but only in the past decades have there been concrete 

successes. The next chapters will outline the history of these development efforts, as well as focus on 

a specific category of technologies conceived in the past few years that represent the newest generation 

of these efforts. Before going in depth in describing these verification approaches, it is critical to 

understand how they fit into the greater context of the politics of arms control, and why is it important 

to invest in developing these verification capabilities. This can be done by framing this verification 

issue within the discussion of this chapter. 

As Gallagher’s framework illustrates, each participant in the arms control negotiations is 

coming to the table with pre-existing perceptions and preferences about arms control. These notions 

will shape their views about verification and the emphasis they place on technical verification needs. 

On the other hand, they are constrained by the structural environment in which they interact, with 

one of the variables defining that environment being the status of verification technologies. Aligned 

with Herrera’s conceptualization of technology as an endogenous structural variable to the 

international system, it is possible to imagine verification technologies as something that can be 

actively and deliberately shaped by the political actors involved in negotiations. The changes in the 

nature and quality of verification technologies will consequently shape the dynamics of the verification 

debates. 

In the specific context of warhead limitations and the verification of these limitations, technical 

verification capabilities are currently the limiting factor that constrain treaty architecture and the factor 

that gives a comparative advantage to those who oppose agreements that pose numerical restrictions. 

Current verification mechanisms focus on monitoring delivery vehicles, as they are sufficiently large 

for detection by national technical means and are also compatible with the on-site inspection 
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procedures in use.46 These verification approaches, however, pose severe limitations for future 

disarmament prospects and agreements that expand beyond the status quo – those that address much 

lower numbers of warheads, involve new categories of nuclear weapons, and engage states that have 

very little experience in arms control.  

An illustrative example of the restricted nature of the existing warhead limitation strategies can 

be drawn from the New START counting rules, applied to China’s nuclear arsenal. Under New 

START counting rules, China has virtually no treaty-accountable nuclear weapons, because the treaty 

only considers warheads that are affiliated with operationally deployed strategic delivery systems.47 

Since China only mounts its warheads with delivery systems for testing purposes, and at other times 

keeps them separate, the approach used in New START has little practical use as a foundation for 

agreements that limit China’s nuclear weapons. This insight applies to every other nuclear weapons 

state other than the United States and Russia, who are the only states who keep their warheads 

deployed and operational.48 

The verification needs in agreements that intend to involve one of the three parameters above 

– lower arsenals, other warhead categories, and new states – are impossible using current technical 

verification capabilities, since they require authenticating individual warheads. The premise here is that 

states would want to ensure that their opponents’ reductions are genuine, with the fear that the other 

                                                 
46 National technical means refer to state-controlled intelligence capabilities aimed at detecting noncompliance, 

including imaging reconnaissance satellites, aircraft radars and optical systems, sea- and ground-based radar and antenna 
systems, radio-technical reconnaissance, and many other classified mechanisms. (Source: Congress of the United States, 
“Verification Technologies: Measures for Monitoring Compliance with the START Treaty,” Office of Technology 
Assessment, available at http://govinfo.library.unt.edu/ota/Ota_2/DATA/1990/9029.PDF; also William Burr, “The 
Secret History of The ABM Treaty, 1969-1972,” National Security Archive Electronic Briefing Book No. 60, November 8, 
2001, http://nsarchive.gwu.edu/NSAEBB/NSAEBB60/index2.html.) 

47 Steven Pifer, “U.S. Military Advantages and the Future of Nuclear Arms Control.” Heinrich Boell Stiftung, October 10, 
2013, https://www.boell.de/en/2013/12/20/us-military-advantages-and-future-nuclear-arms-control 

48 Arms Control Association, “Nuclear Weapons: Who Has What at a Glance,” updated January 2017, available online 
from https://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat. 
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side would be dismantling ‘blanks’ and hiding the authentic warheads to a covert storage facility. While 

it is possible to agree on further warhead reductions without these authentication protocols, either 

using START-type counting rules or even without any verification provisions, as with SORT, it is 

unlikely that this would be politically acceptable. Especially in the ‘hardest’ cases, such as in 

disarmament agreements between India and Pakistan, the level of mistrust is likely to be so high that 

the countries will pursue the strictest possible verification provisions.49 Under these conditions, the 

authentication of warheads becomes a political necessity, but the current verification capabilities do 

not make this technically possible without revealing information about the characteristics of the 

warheads themselves – which in turn would hit another barrier of political unacceptability. 

The emergence of novel verification capabilities, however, can transform the situation both 

politically and technically. The verification approaches discussed in a following chapter, which employ 

physical cryptographic proofs in a high-security authentication protocol, or ‘zero-knowledge 

verification’, would provide a technical capacity that meets the most rigorous demands that 

policymakers could make. These verification approaches would be a significant technical asset for 

arms control treaty architecture, because they would allow addressing new categories of warheads that 

were previously unattainable, by creating the ability to authenticate and track individual warheads, and 

re-authenticate them during their movement in the dismantlement process. On the political side, the 

development of these new verification approaches would change the arguments made both by arms 

control opponents and proponents. They eliminate the technical argument that warhead limitations 

cannot be verified with a high level of accuracy, or that the verification process reveals sensitive 

information which would be a national security threat. Thus, the existence of these technologies would 

                                                 
49 Of course, the question here is how the states could have come to an agreement under these conditions, but that is 

outside the scope of analysis here. One possibility would be an internationally enforced disarmament treaty, for example, 
but also voluntary agreements after the relations between the states have improved, but not sufficiently to overcome the 
long-standing mistrust between the countries. 
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be an essential asset for disarmament negotiators, as it constrains the arguments and strategies that are 

available to the involved stakeholders, builds trust in the verification process, and helps gain support 

for the arms control efforts within domestic constituencies. 

As has been addressed in this chapter previously, however, the dynamic interactions between 

the technical and political dimensions make the impact of novel verification capabilities unpredictable. 

Verification is never perfect, as the capabilities of verification technologies are always constrained in 

one way or another.50 The specific issues and limitations relating to zero-knowledge verification 

approaches will be discussed in a later chapter, but several challenges are inherently connected to these 

mechanisms. The critical question is, then, how policymakers and negotiations – especially in an 

international context – will assess the fundamental uncertainties relating to these and other verification 

technologies. The traditional way to assess verification provisions is to focus on their ability to detect 

militarily significant violations, but this standard is very subjective and liable to political maneuvering.51 

The answer to the question of how to deal with the imperfection of verification technologies 

has two components – one relating to the dissemination of information about the technologies 

themselves, and another focusing on the context in which verification negotiations take place. The 

first dimension has been mentioned previously in this chapter, which is that there is a need to verify 

the verification technologies themselves. More specifically, certification is the process by which the 

host state verifies the technical equipment, whereas authentication is the parallel process from the 

inspector side.52 The easier that these two functions are to do, the easier it is to inform the 
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policymakers about the technical verification capabilities and build trust around the new verification 

capabilities.  

 The second component is that the process of negotiating verification provisions, as well as 

the actual implementation of verification protocols, involves iterated relationships that persist over 

time. This is true between policymakers and the technical verification community, as well as at the 

international level in the negotiations between states. These iterated interactions are visible in the 

feedback loops described earlier. Robert Axelrod has discussed the significance of iterated 

relationships in game theoretic terms, arguing that the strategy of tit for tat – “starting with 

cooperation, and thereafter doing what the other player did on the previous move” – is the best option 

for sustaining cooperative behavior between actors.53 One of his observations is that reciprocity 

becomes more effective when interactions are decomposed, or take place in smaller increments.54 In 

the context of arms control, this is a critical factor that can help overcome imperfect verification, 

which is essentially an issue of not knowing whether the partner adhered to their commitments in past 

moves or not:  

Of course, a major question in arms control is whether each side can, in fact, know what the other side 

actually did on the previous move – whether they cooperated by fulfilling their obligations or defected 

by cheating. But for any given degree of confidence in each side’s ability to detect cheating, having many 

small steps will help promote cooperation as compared to having just a few big steps. Decomposing 

the interaction promotes the stability of cooperation by making the gains from cheating on the current 

move that much less important relative to the gains from potential mutual cooperation on later moves.55 

 

Yet, when Axelrod’s game is run under conditions of uncertainty due to “moderate error in 

perception,” which can result from random noise, systematic misperception, or other factors, the 
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strategy of reciprocity still remains the best option for the players.56 What Axelrod has observed in 

game theoretic terms – that under iterated interaction dynamics, “cooperation can get started and 

prove stable in situations which otherwise appear extraordinarily unpromising” – is also generalizable 

to human affairs and international relations at large, including nuclear disarmament efforts.57   

Ultimately, the combination of the gradual development in verification capabilities and the 

facilitation by iterative relationships both within and between states could bring states to the required 

threshold of trust that is needed for disarmament, despite the inherent imperfectness of verification. 

The situation has analogy to Zeno’s Paradox, as formulated by Aristotle: 

In a race, the quickest runner can never overtake the slowest, since the pursuer must first reach the 
point whence the pursued started, so that the slower must always hold a lead.58 

 

Verification negotiations can be understood as a race of sorts, where the ‘slower’ party is trying 

to develop verification technologies that allow them to catch up to the ‘faster’ party, or those who 

always ask for stricter barriers against cheating and create new possibilities for deception. In a sense, 

this is a competition between trust and mistrust, with technological capabilities trying to bridge the 

gap to the required level of confidence and trust in verification. Axelrod’s observations, however, 

provide the missing piece here – iterated relationships, jointly with progressive technological 

development, will allow enough trust to be accrued. At that critical point, the political incentive to 

create the agreement will outweigh the risk of being deceived by the other side. This idea aligns with 

the mathematical solution to Zeno’s paradox of motion, which is that the sum of an infinite series 

(the steps of the quicker runner to catch up to the slower one) can be finite, if the series is convergent 

                                                 
56 Ibid., 222, Chapter 8, Note 5. 

57 Ibid., 21. 

58 Aristotle, Physics VI:9, 239b15; cited in Donald Byrd, “Zeno’s “Achilles and the Tortoise”: Paradox and the Infinite 
Geometric Series,” February 2010, revised December 2012. 
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– meaning that the terms get progressively smaller.59 Similarly, Axelrod argues that decomposing a 

relationship into smaller pieces of interaction makes the difference between cooperation and 

competition. 

To put this in the specific context of warhead verification, the objective of the verification 

technologies under development is not to become a panacea that solves perfectly the tradeoff between 

secrecy and transparency, but to elevate it to a level that is acceptable to states and that provides 

sufficient level of trust with respect to both concerns. At some point, determined by the balance of 

political interests, these verification capabilities will reach a critical threshold that allows states to be 

content with the verification capabilities that have been developed. Importantly, however, this 

threshold level is transient and may even be unknown to the negotiators themselves. The implication 

is that the ongoing research must set the standards they are pursuing at the highest possible level, to 

be sufficient for even the hardest cases and conditions. 

While I will provide a historical context for this verification challenge in the following chapter, 

I want to emphasize that the purpose of this thesis is not to be a historical, de post facto examination of 

the issue. The debate about the future of arms control persists, even if we may be in a moment of 

slowdown, with the technological development process being pursued in national laboratories, 

academic institutions, and multilateral endeavors. My purpose is to contribute to these ongoing 

dynamics and bring attention to the fact that by taking active agency in developing novel verification 

capabilities, we have the power to shape the prospects of future agreements to limit nuclear weapons. 

The verification approaches I describe in this thesis may never be fully implemented in an arms control 

treaty, but I argue that they are important regardless – both for opening the dialogue on new treaty 
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architecture options, as well as shaping the political dynamics of the treaty negotiations themselves, as 

this chapter has shown. 
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2. Past Verification Approaches 
 

I. Introduction 
 

Past disarmament regimes have taken different approaches to controlling nuclear arms, from 

limiting the testing of these weapons to reducing their numbers.60 All of these measures have contained 

some provisions for verification, through different mechanists and at varying levels of intensity.61 

Overall, the evolution of the agreed verification provisions reflects a trend towards more complexity, 

in terms of the requirements for effective verification and the monitoring technologies employed to 

meet these requirements.62 As was discussed in the previous chapter, however, the political dynamics 

of the verification negotiations is a more complicated story than simply defining the requirements for 

verification and then creating technologies to fulfill them. While these political dynamics are an 

essential part in understanding how verification decisions are made, the following discussion on the 

history of disarmament treaty verification also emphasizes how the availability of verification 

technologies determine the limits of possibility for decision-makers when making judgments about 

the requirements of the verification process. 

Past nuclear arms reductions have been pursued mainly in the context of the United States 

and Russia, and, earlier, the Soviet Union. These bilateral disarmament efforts started with the 

Strategic Arms Limitation Talks (SALT) I and II in 1972 and 1979, respectively, at the peak of the 
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Cold War.63 These were followed by the Anti-Ballistic Missile (ABM) Treaty, which was signed in 

1972, and the Intermediate-range Nuclear Forces (INF) Treaty, signed in 1987.64 After the dissolution 

of the Soviet Union, the United States and Russia continued these arms reduction efforts through the 

Strategic Arms Reduction Talks (START), with the first agreement being made in 1991 and the second 

in 1993.65 Following this, the Strategic Offensive Reductions Treaty (SORT) was signed in 2002 and 

the New START in 2011.66 Several unique factors relating to the nature of U.S.-Russia bilateral 

relations and the states’ nuclear capabilities have made this cooperation possible and enabled the states 

to come to an agreement on how these disarmament efforts can be verified. 

 

Figure 2.1. Source: Arms Control Association, “Nuclear Weapons: Who Has What at a Glance,” 
updated January 2017, available online from 

https://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat. 

                                                 
63 Steve Tulliu and Thomas Schmalberber, Coming to Terms with Security: A Lexicon for Arms Control, Disarmament and 

Confidence-Building (Geneva: United Nations Institute for Disarmament Research, 2003), 78, 
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64 Ibid. 
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https://www.armscontrol.org/factsheets/USRussiaNuclearAgreementsMarch2010. 



45 
 

In these agreements, the tension between intrusiveness and confidentiality has been 

circumvented by not defining warheads themselves as the treaty-accountable item, but rather focusing 

on their delivery vehicles and launchers.67 Authenticating reductions in these larger systems requires 

less intrusive verification protocols, as they only require negative verification of the absence of 

warheads beyond the maximum number agreed in the treaty.68 The accounting system is designed such 

that each delivery vehicle has a specified number of attributed warheads and the verification protocol 

aims to establish that there are no deployed warheads beyond this. This can be contrasted with positive 

verification, which would entail verifying that a nuclear warhead is truly what it is stated to be, possibly 

even ensuring that it is of the correct type. In addition, these past treaties were very conservative in 

terms of allowing access to territory or collecting information about other military activities.69 

The chapter outlines the past trajectory of nuclear verification provisions, by first analyzing 

disarmament agreements made in the U.S.-Soviet and U.S.-Russia context, then explaining the unique 

characteristics of disarmament between the two countries and identifying challenges that are likely to 

arise in a multilateral context, and then exploring past verification efforts carried out internationally. 

The chapter starts by exploring the SALT era, where verification was focused on national technical 

means. Next, the chapter focuses on the INF Treaty, which contained several innovations in 

verification, including radiological measurements and on-site inspections. After this, the focus is on 

the START era – including START I, which employed many of the verification mechanisms used in 

the INF Treaty; START II, which was not ratified; SORT, which did not contain verification 
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provisions; and finally, New START, which intended to simplify the original START treaty’s 

verification provisions without losing their robustness.  

After explaining this historical trajectory, the chapter illustrates why the verification choices 

made in these past treaties were possible in the specific U.S.-Soviet or U.S.-Russia context. After this, 

the focus is on the factors that will make future disarmament efforts fundamentally different. Next, 

the chapter explores the few concrete experiences that the international community has had in 

verification, which are limited to verifying the dismantlement of nuclear programs in Iraq, South 

Africa, and Libya. In each of the three cases, it is highlighted how concerns about proliferation-

sensitive information shaped the structure of the verification programs and how concerns about 

legitimacy emerged. 

II. The SALT Era 

 

The first SALT negotiations resulted in the Interim Agreement on Offensive Arms and the 

ABM Treaty, which were aimed at limiting both offensive and defensive strategic systems and 

stabilizing the accelerating arms race between the two states.70 Under SALT I, both sides refrained 

from producing new intercontinental ballistic missile (ICBM) silos and submarine-launched ballistic 

missile (SLBM) silos.71 It also enforced limits on the number of SLBM launch tubes and SLBM-

capable submarines.72 The treaty was limited in its ability to contain nuclear arms buildup, however, 

as it did not limit the actual number of deployed warheads. Both states could increase their nuclear 

capabilities through acquiring more strategic bombers, which the treaty did not control, or deploying 
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ballistic missiles carrying several warheads instead of one (multiple independently targetable reentry 

vehicles, MIRVs) in the allowed number of ICBMs and SLBMs.73 The ABM treaty limited the strategic 

missile defenses of both states to 200, and later 100, interceptors.74  

Concerns about verification were a key factor in both the SALT I and ABM Treaty 

negotiations, significantly influencing the ultimate contents of the agreed treaties.75 For the ABM 

Treaty, the political preference for both sides would have been to allow nationwide ABM deployments, 

but the treaty negotiations concluded with permitting only one local ABM system.76 If a nationwide 

radar system would have been permissible, it would have been exceedingly difficult for both sides to 

verify the true extent of the system.77 Similarly, the political incentives would have been in place to 

expand the SALT I limitations to missiles and missile characteristics, but required measures for 

verification would have been unacceptable due to their intrusiveness.78 In the end, national technical 

means of verification (NTM) were agreed to as the key verification mechanism in the treaties, which 

refer to state-controlled intelligence capabilities aimed at detecting noncompliance.79 This also 

included non-interference with the other state’s intelligence collection and verification efforts.80 

The SALT II agreement intended to address some of the systems that SALT I had left 

untouched, particularly MIRVs, as well as further limit the number of delivery vehicles and limit 
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nuclear weapons development.81 Again, verification became a key issue, as concerns about Soviet 

cheating in SALT I made America extremely sensitive about verification and intent on ensuring airtight 

protocols.82 For example, limiting MIRVs would require both sides to be able to distinguish between 

MIRVed and un-MIRVed missile launchers.83 Ultimately, SALT II verification was also based on 

NTM. The treaty contained further provisions for not obstructing the other state’s NTM, including 

the collection of electronic signals (telemetry) and use of photo-reconnaissance satellites.84 The ability 

to collect telemetry information, which is generated during missile flight tests and contains details 

about weapon function, was a key concern for the states, as the treaty included limitations on weapons 

characteristics.85 The issue of encryption of telemetry information, however, remained tense 

throughout and beyond the negotiations, as the two sides had divided opinions of the importance of 

this verification mechanism.86 SALT II also included provisions for ensuring the distinguishability of 

different weapons types through “externally observable differences” or “functionally-related 

observable differences” that could be detected by NTM.87 Questions about verification confidence 

were a partial reason, alongside greater geopolitical concerns such as the Soviet invasion of 
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Afghanistan, that led the Carter administration to turn its back on the agreement and ask the Senate 

not to ratify the treaty.88 

III. The INF Treaty 
 

As disarmament negotiations between the United States and the Soviet Union continued later 

in the 1980s, increasing interest emerged in novel forms of verification. The instrumentation for these 

approaches, which included on-site inspections and other more intrusive verification mechanisms, 

would need to be developed to make the verification provisions possible. The key motivation to 

acquire these verification capabilities was further limitations on ballistic missiles that carried multiple 

warheads, which had only been verified through NTM in the SALT treaties. These missiles may not 

carry the maximum number of warheads that their structure would allow, but instead the loadout 

could include penetration aids, telemetry systems, or other non-nuclear objects.89 The national 

laboratories in the United States engaged several research projects to understand how this 

authentication task could be executed, considering the key limiting factors that the verification process 

would encounter. One of the key concerns was protecting sensitive and classified design information, 

which would be at risk during the measurement process. 

These new verification measures were implemented in the INF Treaty, which was 

unprecedented in its verification scope insofar as it included on-site inspections and data exchanges 

for the first time.90 The INF Treaty contained a provision for being able to distinguish the treaty-

accountable SS-20 intermediate-range ballistic missiles from the non-limited SS-25 intercontinental 
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ballistic missiles. 91 The challenge was that the missile types used the same first stages, including engines 

and fuel tanks, and were indistinguishable based on external characteristics.92 As the verification 

provisions didn’t allow inspection access to the missiles themselves, radiological measurements were 

agreed on as a proxy measure of the missiles’ internal structure. Two approaches were approved – 

distinguishing between the radiological “fingerprints” of the missiles in their normal loadouts, and 

measuring radiographically the external structural features of the missiles, including length.93 In 

determining the fingerprint of a particular missile, a simple neutron detector would be used to measure 

neutron count rates at pre-selected points surrounding the warhead, which had been found to enable 

their accurate differentiation.94 

The experiences in developing and negotiating the INF verification provisions motivated 

further research into warhead-focused verification. The INF system was focused on differentiating 

two specific types of missiles, but future arms reductions would involve a wide range of weapons 

systems, possibly even individual warheads. In 1990, the national laboratories in the United States 

engaged in a demonstration that highlighted how any feasible measurement approach would need to 

be able to accommodate a range of weapons systems designs, which would create distinct radiation 

fields indicative of their configurations.95 The verification system demonstrations at the Francis E. 

Warren Air Force Base in Wyoming used the Peacekeeper missile (MX, LGM-118) as its model 

system, as it doesn’t conform to the standard configuration of an axially symmetric design.96 The 

measurement systems tested in the demonstrations, based on circumferential gamma or neutron 
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radiation scanning, revealed important challenges relating to environmental conditions and 

measurement system optimization and engineering, but most importantly, to security. The information 

generated in the tests would have been classified as Secret/Restricted Data (S/RD) and required the 

inspectors to have very intrusive access to the missiles.97 These research efforts were made particularly 

with the START negotiations in mind, but the U.S. national laboratories (and those in other states) 

have continuously engaged in this type of research. One of the first such American experiments was 

the Project Cloud Gap, which included Field Test 34 in 1967 that investigated the use of radiation 

detection equipment in the context of dismantling nuclear weapons, and the extent to which classified 

information would be at risk in this scenario.98 

IV. The START Era 
 

Ultimately, the following START negotiations could not find a mutually agreeable way to 

overcome the issue of classified information and succumbed to a warhead accounting system that did 

not require specific individual counting of warheads. Instead, the treaty contained a complex 

accounting system for the limit on deployed ICBMs, SLBMs, and heavy bombers, and for the total 

number of warheads attributed to each of the delivery vehicles, including sub-limits.99 The warheads 

were counted based on a warhead attribution number specific to each delivery vehicle, which are 

determined based on telemetry data obtained through missile flight tests.100 Each delivery vehicle was 

assumed to carry the maximum loadout of nuclear warheads, which then defined the upper limit for 
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treaty-accountable warheads.101 This accounting, however, was only done on a theoretical basis and 

did not necessarily reflect the true loadouts in each system. For example, the treaty attributed one 

warhead to each non-LRNA heavy bomber, even though they have the capacity to carry multiple.102 

Thus, START I verification protocols are only intended to ensure that these theoretical warhead limits 

were not exceeded in any missile type, rather than establishing the exact number of warheads held by 

each country.103 

The furthest that START I went in terms of verification sophistication was the provision it 

contained for the use of radiation detection equipment in a situation where a treaty partner would 

want to confirm the non-nuclear nature of an object, container, or space.104 This was very similar to 

the INF Treaty provision on the use of radiological measurements and relied on the same detector 

technology.105 Under START I, a state had the right to authenticate the radiological signature of a 

long-range-non-nuclear air-launched cruise missile, ensuring that it was not nuclear.106 The procedures 

for using this equipment specified how the measurement system would be certified, controlled, and 

used such that no sensitive information would be at risk.107 The treaty’s very limited on-site inspections 

                                                 
101 Murphy and Johnson, “Recovering START Institutional Knowledge,” 2. 

102 L.L. Gaines, Start II: Thinking One Move Ahead (Washington D.C.: United States Department of Energy, Argonne 
National Laboratory, 1991). 

103 Union of Concerned Scientists, “Verification of New START.” 

104 Murphy and Johnson, “Recovering START Institutional Knowledge,” 1. 

105 Ibid., 7. 

106 Annex 4 to the Protocol on Inspections and Continuous Monitoring Activities: “Inspectors shall have the right to 
view a long-range-non-nuclear ALCM, to use radiation detection equipment to confirm that the ALCM is non-nuclear, 
and to make linear measurements ... If, by viewing such an ALCM, inspectors are unable to confirm that the ALCM is not 
a long-range nuclear ALCM, a member of the in-country escort may allow the inspectors to carry out additional actions, 
which may include ... using radiation detection equipment to confirm the presence of features that make the ALCM 
distinguishable from long-range nuclear ALCMS .... If, by viewing the contents of the container designated for inspection 
to confirm that a long-range nuclear ALCM is not contained therein inspectors are unable to confirm that the contents 
are not a long-range nuclear ALCM, the in-country escort shall remove the contents from the container. Inspectors shall 
have the right to use radiation detection equipment to confirm that the contents are non-nuclear ... The radiation detection 
equipment and a radiation source may also be used to confirm that the container does not conceal the presence of 
radiation.” (Source: Murphy and Johnson, “Recovering START Institutional Knowledge,” 1.) 

107 U.S. Department of State, “Annex 15: Procedures for the Use of Radiation Detection Equipment,” START Treaty. 
http://www.state.gov/documents/organization/27380.pdf 



53 
 

did not allow the verification of the specific number of warheads in delivery vehicles, only that the 

warhead limits and sub-limits were not exceeded.108 

START II was a continuation and an addition to START I, maintaining the earlier treaty’s 

provisions and building on its verification model, in addition to expanding it in certain dimensions.109 

In START II, warheads were attributed to their delivery vehicle based on their true carrying capacity, 

which addressed the inaccuracy in START I warhead counting.110 START II also contained new 

verification provisions for observing SS-18 missile silo conversion, missile elimination, exhibitions, as 

well as visual inspections of heavy bombers.111 START II never entered into force, however, due to 

disagreements on U.S. ratification of the treaty and withdrawal from the ABM Treaty.112  

The New START Treaty was signed in 2010, after the expiration of START I in 2009 and the 

negotiation of the SORT agreement, which contained no verification provisions.113 New START 

continued the legacy of the verification systems implemented under START I, combining on-site 
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inspections, exhibitions, data exchanges, unique identifiers, and national technical means.114 It 

modified some of the complex provisions in the past system, but also introduced new measures to 

ensure accurate accounting.115 These included unique identifier tags on missiles, their launchers, and 

bombers, as well as notification protocols related to the movement of delivery vehicles.116 Most 

importantly, the new accounting procedure involved counting individual warheads, as opposed to 

following the strategy in START I of maximum loadouts specified for delivery vehicles.117 Under New 

START, each state must define how many individual warheads each missile contains, and during 

inspections, any of the missiles in the stockpile could be asked to be verified.118 As in START I, the 

agreement allows for the use of radiation detection to confirm an object to be non-nuclear. 

The verification mechanisms in the INF, START I and II, and New START started to 

approach the issue of individual warhead verification. Importantly, however, the verification 

provisions thus far have been a binary true/false measurement of the absence of a nuclear warhead.119 

These agreements do not allow the use of radiation detection equipment to confirm an object to be 

nuclear, let alone more specific information about warhead characteristics or configuration.120 As 

disarmament continues, this may become a key capability requirement for verification provisions, 
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driven by the need to distinguish warheads or their components based on their type or characteristics, 

not only their nuclear or non-nuclear nature.121  

V. Challenges of Multilateralization 
 

i. Uniqueness of U.S.-Russia Context 

 

The U.S.-Russia context, and before that the U.S.-Soviet, has been unique in many respects, 

which has facilitated disarmament despite the inability to count individual warheads and thus construct 

treaties based on warhead limitations. The critical factor that has made this approach to treaty 

architecture and verification possible is the vast size of the nuclear arsenals of both states. During the 

Cold War, both manufactured tens of thousands of warheads, and even after several rounds of arms 

reduction, still maintain over 1,550 deployed warheads.122 At this level of nuclear arsenals, both states 

have a relatively high tolerance for the level of uncertainty contained in treaty verification provisions 

– a significant diversion scenario threatening strategic stability would be much more than one 

individual warhead.123 Thus, both the United States and Russia have been able to negotiate nuclear 

arms reductions without the ability to fully verify each other’s warhead numbers. 

Another important factor is that both states have extensive capabilities in national technical 

means (NTM), including imaging reconnaissance satellites, aircraft radars and optical systems, sea- and 

ground-based radar and antenna systems, radio-technical reconnaissance, and many other classified 

mechanisms.124 This served as a critical confidence-building mechanism in the agreements between 

the states. These capabilities are highly compatible with the reduction focus on delivery vehicles and 
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launchers, as these large systems can be monitored through NTM.125 These capabilities are held highly 

confidential, which ensures ambiguity about the specific detection abilities that each state has.126 This 

is an important factor that underlies their effectiveness as verification mechanisms. When neither state 

is fully certain of partner capabilities in independent verification through NTM, they cannot design 

around this form of verification, which is a concern in cooperative verification mechanisms that are 

fully known to all sides of the agreement.127 States can also develop NTM capabilities such that they 

form synergies with the cooperative monitoring measures and can thus enhance their confidence in 

their ability to detect deception.128 Overall, the advanced NTM capabilities in both the United States 

and Russia act as a backdrop for all disarmament treaties between the states.  

The future of disarmament verification will look very different, whether in the context of 

continued U.S.-Russia bilateral agreements or multilateral disarmament treaties, as none of the unique 

characteristics of past verification efforts will hold true. First, when discussion concerns hundreds of 

warheads and levels even below this, the tolerable margin of error diminishes. At these levels, verifying 

and tracking each individual warhead will become critical. This also involves obtaining knowledge 

about the type and status of a specific warhead and being able to re-authenticate these attributes in 

later stages of the dismantlement process. Agreements at these levels will also involve new categories 

of warheads and items, including non-deployed and non-strategic warheads and warhead 

components.129 
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At these levels, states will also want to have more certainty about the irreversibility of 

reductions, which requires close monitoring of warheads in their elimination process. During the 

START II negotiations, one of the concerns was that warheads removed from missiles and bombers 

could simply be replaced with those remaining in storage, if relations between the states became 

hostile.130 Future treaties, especially those also addressing warheads in storage, will need to be able to 

ensure the irreversibility of warhead elimination with a high degree of confidence.131 One further 

complexity is that states may want to reuse delivery vehicles for conventional weapons, which 

highlights the significance of the irreversibility of the elimination of nuclear warheads, rather than 

delivery systems’.132 

Second, NTM verification will be unable to provide a sufficient level of confidence in 

compliance under future disarmament agreements. The verification provisions in the New START 

agreement already reduced reliance on NTM, particularly telemetry information.133 Telemetry was no 

longer used as a basis for warhead calculations, as the treaty provisions involved actual accounting for 

warheads and verifying them through on-site inspections.134 New START still contained provisions 

for exchanging telemetry information on the basis of promoting openness and transparency.135 In 

future disarmament efforts, the role of NTM will shift further and continue losing its informational 

significance. First, states other than the United States and Russia have very divergent capabilities and 
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resources in NTM, from availability of collection capabilities, to ability to analyze the data effectively. 

States with inferior capabilities would be highly opposed to agreeing on a verification approach that 

would rely significantly on NTM, as they would not be sufficiently confident in their abilities to do 

this. They would also be reluctant to leave the monitoring responsibilities to other states, without 

independent means of assessing compliance. On the other hand, states with superior NTM capabilities 

would be reluctant to share the collected information, if it compromised sensitive knowledge about 

their collection capabilities and analysis methods.136 In future multilateral treaties, cooperative 

verification measures must be able to provide sufficient confidence for all treaty partners independent 

of states’ ability to confirm these compliance assessments with NTM. 

ii. Multilateral Verification 

 

The bilateral U.S.-Soviet, or U.S.-Russia, disarmament agreements and their verification 

provisions established the traditional paradigm for verification in nuclear arms control. Outside of this 

context, there are only a handful of examples of stringent verification protocols being applied to arms 

control and disarmament. The international community’s experiences are mainly limited to verifying 

the dismantlement of nuclear programs in Iraq, South Africa, and Libya. Thus, the multilateralization 

of disarmament beyond the U.S.-Russia context will also involve an important debate about what 

international authority will carry out the verification mission. The following discussion on the three 

cases highlights some of the challenges that multilateral verification has encountered in the past, 

demonstrating challenges that can be expected to be encountered in some shape or form in future 

cases of disarmament. Importantly, they reflect cases in which states have completely disarmed or 
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dismantled their nascent nuclear weapons programs, but as was discussed at the beginning of this 

chapter, the dynamics will be different in important ways if states disarm progressively. 

The International Atomic Energy Agency (IAEA) is the key international institution involved 

in nuclear verification, mainly through its civilian safeguards implementation under the NPT, but also 

through other efforts relating to nuclear safety and security. Information management under IAEA 

safeguards provisions is very strict, as a majority of the information about a specific state’s civilian 

nuclear materials and facilities is confidential between the state and the IAEA.137 The few selected 

instances where the IAEA has been involved in military-related verification missions, however, 

illustrate how the agency’s current capabilities are not set up for sensitive military environments.138 In 

addition to significant concerns that states have about allowing access to some of their most critical 

national security capabilities and facilities, verification in the military context has additional 

confidentiality requirements mandated by Article I in the NTP. Under the article’s provisions, nuclear 

weapons states are obligated “not to transfer nuclear weapons or other nuclear explosive devices to 

any recipient or in any way assist, encourage or induce any non-nuclear-weapon state in the 

manufacture or acquisition of a nuclear weapon.”139 Allowing inspectors from non-nuclear weapons 

states to analyze weapons design information during the verification mission, for example, could be 

interpreted as a breach to this obligation, as it also extends to sharing proliferation-sensitive 

information with multilateral entities.140 
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iii. The Case of Iraq 

 

The first important case of international disarmament verification took place in Iraq, in the 

aftermath of the First Gulf War, when Iraq accepted an international inspection and monitoring 

regime to verify the dismantlement of its WMD program.141 The United Nations Special Commission 

on Iraq (UNSCOM) was established in 1991 to implement the verification mission, which continued 

until 1998, when Iraq ended its cooperation with the program.142 In 2002, inspections resumed under 

the auspices of the U.N. Monitoring, Verification, and Inspection Commission (UNMOVIC), which 

contained even more stringent verification protocols.143 In both cases, the International Atomic 

Energy Agency (IAEA) partnered with the mission in the verification of Iraq’s nuclear activities.144 In 

the first mission, the IAEA Nuclear Monitoring Group (NMG) executed extensive monitoring 

inspections to Iraqi weapons facilities, resulting in the handover and removal of different equipment 

related to nuclear weapons development.145 Joint IAEA/UNSCOM teams also conducted inspections 

at “capable” sites, including analysis of documents and procurement information.146 In addition to on-

site inspections, the group also used interviews, environmental sampling, and aerial radiometric 

surveys as a means of collecting information about the country’s nuclear activities and adopted new 

instruments as the mission continued. 147 
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One of NMG’s responsibilities was confirming the declarations related to the destruction of 

Iraq’s clandestine nuclear weapons program.148 In the first phase, the NMG inspected three sites with 

sub-surface sensing technologies, “provided and implemented by a supporting member State,” which 

confirmed the identity and location of buried metallic items.149 In the second phase, the inspection 

mission was expanded to nine other sites. The information obtained in these inspections was 

compared against Iraq’s “Full, Final and Complete Declaration” and its revisions, which the state had 

made to the IAEA.150 These declarations included detailed information about equipment, production 

practices, and other dimensions of Iraq’s clandestine nuclear activities.151 The IAEA, however, found 

the information insufficient and repeatedly negotiated with Iraq regarding more conclusive 

documentation about the ultimate capability achievements and foreign assistance involved in the 

nuclear weapons program.152 The IAEA gained documentation about Iraq’s research and development 

of weaponization capabilities for implosion-type nuclear weapons, but as a result of Iraq’s attempts to 

conceal and understate different aspects of the program, as well as interfere with the agreed IAEA 

access, it remained unclear on how far the weapons designs proceeded.153 The documentation 

collected included highly proliferation-sensitive information about the structure of the weapons, the 

high explosives experiments, and many other aspects of the program’s technical aspects.154 The 

discovered weapons development and production facilities and equipment were destroyed, removed, 

or converted in the mission.155 Ultimately, the IAEA/UNSCOM mission ended with no significant 
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discrepancies between the IAEA’s technical assessment and Iraq’s updated declarations, but also with 

no certainty about the absence of undeclared activities: “Some uncertainty is inevitable in any country-

wide technical verification process which aims to prove the absence of readily concealable objects or 

activities. The extent to which such uncertainty is acceptable is a policy judgment.”156 

Both the inspections and declaration analysis allowed access to information that was highly 

classified and proliferation-sensitive, which was a significant concern for all sides involved. One critical 

question was the specific knowledge and background that inspectors would need to have to 

understand weapons production processes, particularly in dual-use facilities.157 In addition, the IAEA 

was very concerned about unauthorized access to proliferation-sensitive information, which would be 

a violation of Article I under the NTP.158 The details of the inspection procedures are not public, but 

it seems that the IAEA only allowed inspectors from nuclear weapons states to be involved in the 

most sensitive parts of the verification mission. The nationality of the inspectors, however, became a 

barrier for other reasons as well. At the initial stages of the UNSCOM mission in 1992, Iraq maintained 

that no British, French, or U.S. weapons inspectors would be permitted to conduct segments of the 

verification mission, related to its ballistic missile program.159 This led to serious confrontations 

between Iraq and the different UN Security Council members and concerns about setting a precedent 

related to manipulating the composition of international inspection teams.160 Debate about weapons 

inspectors and their access continued until the end of the UNSCOM mission. In 1997, Iraq refused 

to cooperate with U.S. inspectors and asked them to leave the country, fully blocking inspections that 
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involve U.S. inspectors.161 As a response, the IAEA withdrew most of the inspections teams, which 

were only allowed to return after UN Security Council action and Russian-facilitated negotiations re-

established inspections.162 Iraq’s dissatisfaction with the presence of U.S. and British inspectors 

continued, along with claims that weapons inspectors were collecting intelligence for individual 

national objectives, such as airstrike targeting information.163 Overall, both the sensitive information 

collected through the mission and the intelligence distributed between the participant states and the 

IAEA/UNSCOM mission remained a difficult challenge.164 These questions related to handling 

classified and proliferation-sensitive information re-emerged in 2006, when certain conservative 

groups in the United States Congress pressured the release of the documents collected by the IAEA 

weapons inspectors.165 

iv. The Case of South Africa 

 

South Africa, which maintained an active nuclear program in the 1970s and 80s, is another 

important case study in past multilateral verification approaches.166 The program was made public in 

March 1993, after South Africa had already dismantled the program, signed on to the NPT, and 

concluded a comprehensive safeguards agreement (CSA) with the IAEA in 1991.167  The existence of 
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the nuclear weapons program, however, had been known among other states for some time.168 This 

case constitutes ex post facto verification, as the international verification mission was established after 

the country has already dismantled the facilities and equipment associated with the nuclear weapons 

program. In Iraq, the IAEA team was involved in this destruction and dismantlement program as well, 

in addition to carrying out similar “after the fact” analysis activities as in South Africa. The Iraq 

verification mission influenced the South African case in important ways, as it had revealed significant 

insufficiencies in IAEA’s detection capabilities of covert activities.169 Thus, verification in South Africa 

was highly intrusive, intended not only to assess the correctness of the state’s declarations, but also 

their completeness.170 The verification mission also relied more on member states’ intelligence 

capabilities, alongside IAEA’s own verification capabilities.171 

Verifying South Africa’s compliance with its new NPT and CSA obligations, including the 

completeness of its initial declarations, was requested through resolutions at the IAEA General 

Conference and at the United Nations General Assembly.172 A team of senior members at the 

Department of Safeguards at the IAEA carried out this request. In consultation with the Atomic 

Energy Corporation of South Africa (AEC), they agreed to receive the historical operating and 

accounting records of South African nuclear facilities and were allowed to choose a specified number 

to be audited through on-site inspections.173 South African officials co-operated with the IAEA 
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requirements extensively and allowed a high level of access to nuclear facilities based on IAEA 

requests, building confidence in the state’s commitment to abandon its nuclear ambitions. 

In the initial declarations and the first IAEA verification reports after the CSA agreements, 

the only reference to potential non-peaceful uses were the detection of discrepancies in 𝑈 
235  isotope 

balances in the country’s enrichment plants.174 This conclusion emerged from the calculations that 

IAEA officials made on the basis of data provided by the AEC.175 In subsequent reports, these 

discrepancies in HEU production were examined through further analyzing operating records and 

supporting technical data provided by AEC.176  

The IAEA officials were also assigned with assessing the status of South Africa’s former 

nuclear weapons program after its existence was declared in 1993.177 The objective was to ensure that 

all materials used in weapons were permanently transferred to peaceful uses, non-nuclear weapons 

components were destroyed, all facilities had been fully decommissioned or converted to peaceful 

uses, and weapons-related equipment had been destroyed or converted.178 Furthermore, the objective 

was to understand how the dismantling program had been carried out, how the information relating 

to design and manufacturing of nuclear weapons had been destroyed, and how the dismantling process 

was carried out.179 Other assignments included obtaining information about the timing and scope of 

the nuclear weapons program, decommissioning the Kalahari Desert testing site, visiting the 
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decommissioned or abandoned nuclear weapons facilities, and consulting with the South African 

government to ensure that the nuclear weapons program could not be regenerated.180 

Similar concerns about sensitive information emerged in South Africa as in the Iraq 

verification mission. The inspection team involved IAEA Department of Safeguards experts, who 

were also accompanied by external nuclear weapons experts.181 This augmentation of the traditional 

IAEA team, consisting of safeguards experts, was required because the verification mission would 

involve assessing documents regarding the design and manufacturing of the country’s seven gun-

assembled nuclear devices.182 Similar to the Iraq case, these nuclear weapons experts were mostly only 

from nuclear weapons states, ensuring that no sensitive or unauthorized information would be 

distributed to non-nuclear weapons states.183 Their status and expertise allowed them to engage with 

South African nuclear scientists and officials in a different way that safeguards experts could, 

increasing access to information about the nation’s nuclear weapons program.184 They also had the 

necessary expertise to be able to recognize activities specific to nuclear arms research and development 

efforts during facility inspections.185  
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v. The Case of Libya 

 

A third important case of international verification of nuclear weapons programs took place 

in Libya, after the state announced the elimination of its weapons-purpose materials, equipment, and 

facilities in 2003 and singed the Additional Protocol to the NPT the following year.186 The international 

verification mission, negotiated between Libyan, American, and British officials, intended to establish 

the details of the program and its history, as well as understand the origins of the materials and design 

information.187 British and American weapons experts continued to play a key role in the verification 

mission, assisting Libya in destroying nuclear weapons design documents, materials, and equipment 

and interviewing relevant officials and experts in the country.188 Again, as in the case of Iraq and South 

Africa, the nationality of the inspectors was important. The Libyans had initially turned to the British, 

and the negotiations over dismantling the nuclear weapons program took place between Libya, the 

United Kingdom, and the United States.189 At first, in October 2003, trusted access was only provided 

to inspectors from these two foreign countries.190 Starting in December 2003, IAEA inspectors were 

also invited to participate in the verification mission.191 

Management of proliferation-sensitive information was an important aspect of the verification 

mission. Libya had reportedly acquired drawings of a weapon design through the A.Q. Khan network, 
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and in December 2004, these materials were sealed on-site by the IAEA.192 In the following January, 

the documents, ccomponents, and equipment that the inspectors discovered were transported to the 

United States under strict rules, including the IAEA seals.193 Other measures, such as the conversion 

of Libya’s research reactor, also took place under the multilateral verification mission. 

As these experiences in Iraq, South Africa, and Libya demonstrate, the integrity and 

confidentiality of information about the nuclear weapons programs was a critical concern in the 

international verification missions. These three cases are unique, however, in that the international 

verification missions went well beyond the IAEA safeguards principle of collecting the minimum 

amount of information needed for the agency to fulfill its mandated verification obligations.194 The 

discovery of covert, highly developed nuclear weapons programs had shocked the IAEA and the 

international community, which motivated the extreme intrusiveness that would ensure that all 

prohibited activities would be identified and assessed. This was enabled by the fact that the states had 

decided, or were pressured, to fully eliminate their nuclear programs, which made the host countries 

significantly more open regarding their nuclear weapons programs. Furthermore, none of the cases 

involved handling or dismantling fully operational warheads – South Africa had already eliminated the 

state’s nuclear weapons stockpile prior to the verification mission, and neither Iraq or Libya had 

produced fully operational warheads. These factors made the intrusive access both legitimate for the 

IAEA to implement and possible for the host states to accept.  
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3. Past Multilateral Verification Systems Protecting Classified 

Information 
 

I. Introduction 
 

In the future, multilateral verification is likely to take place in a context where nuclear-armed 

states engage in gradual weapons reductions, which places different pressures to the accompanying 

verification mission than verifying the full dismantlement of a nuclear weapons program. The intent 

would be to maintain strategic stability throughout the multilateral reduction effort, ensuring that each 

state can sustain their deterrent capability while reducing the number of warheads. So long as states 

maintain some components of their nuclear weapons programs active, they will need to maintain a 

much higher level of confidentiality and secrecy about warhead designs, materials, and facilities. This 

would allow much less direct access for inspectors and mandates the use of verification technologies 

that do not reveal sensitive information. With multilateral, progressive warhead reductions, states will 

be able to insist upon limited intrusiveness, managed access, and the highest standards of information 

integrity, which was not the case with Iraq, South Africa, and Libya, which were under intense 

international pressure to allow full access to the verification mission. 

This chapter explores the efforts that have been made in the past decades to counter the 

assumption that high-accuracy verification of warheads would not be possible without compromising 

classified information. The focus is on different verification systems that would be able to handle 

classified forms of fissile materials, with the intention to develop a system that would allow the 

accurate authentication of warheads without revealing sensitive information. It explores the Trilateral 

Initiative, which created an attribute verification system (AVNG) in a collaborative effort between the 

United States, Russia, and the IAEA; unilateral efforts in the United Kingdom and bilateral efforts 

through the U.K.-Norway Initiative to develop an attribute system on very similar principles; and 



70 
 

unilateral efforts in national laboratories. The chapter also discusses a more recent multilateral 

initiative, the International Partnership for Nuclear Disarmament Verification, that also has a technical 

working group focused on the technical challenges related to multilateral disarmament. In all of these 

efforts, the chapter illustrates how the authentication and certification of the technical equipment 

remains as the prevailing issue and how challenges in multilateral verification are concentrated on 

information integrity and transparency. 

II. The Trilateral Initiative 
 

One of the pioneering efforts to create mechanisms for this context was the Trilateral 

Initiative, a collaboration between the United States, Russia, and the IAEA between 1996 and 2002 to 

solve the challenge of sensitive information and conceptualize mechanisms that would allow classified 

forms of fissile material contained in their pits and secondaries within a warhead to be handled by the 

IAEA.195 The considerations were limited to weapons-usable fissile material, although the parties also 

considered addressing warheads their components, or entire weapons systems.196 These levels were 

seen too complicated, however, due to security issues. Even addressing weapons-origin materials was 

unprecedented, so this was defined as the initiative’s goal.  

In essence, the verification of a warhead would only be a more complex case of verifying fissile 

material, as it is what makes a weapon nuclear and most approaches of identifying a warhead focus on 
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the attributes of the material contained in the warhead.197 This had been explored some years prior to 

the establishment of the Trilateral Initiative, through a joint U.S.-Russia study called the Black Sea 

Experiments in 1989, which was a one-of-a-kind instance where foreign nuclear scientists have made 

radiological measurements of an operational warhead without any attempts to cover the classified 

information.198 The experiment was done in the context of the START negotiations and intended to 

understand if and how submarine-launched cruise missiles could be verified and what information 

would be revealed in the process.199 The study concluded that while the gamma measurement system 

used by the U.S. scientists revealed detailed information about the nuclear material contained in the 

warhead, it did not allow them to identify sensitive design information or warhead yield.200 Parallel 

longer-distance measurements conducted by Russian scientists revealed that their remote detection 

methods could identify the warhead as a neutron source, but not provide more detailed information 

about its type.201 This highlighted the importance of on-site inspections and close access to warheads 

in the verification process to obtain a high level of confidence. 
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Figure 3.1. The radiographic signature obtained in the Black Sea experiment. Source: Steve Fetter et 
al., “Gamma-Ray Measurements of a Soviet Cruise-Missile Warhead,” Science 248 (1990), 248. 

The objective of the Trilateral Initiative was to develop an on-site verification framework that 

would protect classified and sensitive information while still providing the highest level of confidence 

in the disarmament process for the treaty partner and the inspecting agency.202 These two 

considerations are referred as certification, or the process carried out by the host state of ensuring that 

no classified information is released, and authentication, where the inspecting agency assures the 

validity of the measurements.203 This would ensure political acceptability for all the involved parties, 

but also enable the technical intrusiveness required by the treaty verification objectives. 204 The analysis 

of potential measurement technologies made it evident that unrestricted measurements would be 

unacceptable, as they would reveal highly sensitive information about the items or materials.205 This 

could risk undermining U.S. and Russian obligations under Article I of the NPT, as the IAEA 
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inspectors could gain access to sensitive design or production information relating to the states’ 

nuclear programs.206 

Balancing the protection of information and allowing the IAEA access led to the exploration 

attribute verification protocols combined with information barriers. Attribute verification refers to the 

use of certain characteristics, “attributes,” against which the object or material under consideration is 

compared to.207 The measurement system, AVNG, consisted of high-resolution gamma ray 

spectroscopy and neutron multiplicity counting, which would establish the presence of plutonium, the 

ratio of 𝑃𝑢 
239  and 𝑃𝑢 

240 , and the mass of 𝑃𝑢 
240 .208 The measurements data to determine these three 

attributes, however, would not be accessible to the inspector, as it would be considered classified by 

the host state. Instead, the system utilizes information barriers, which are hardware or software 

components and methods that divide the measurement information into a classified data layer and an 

unclassified display layer.209 The inspector only interacts with the user interface, which only displays 

the unclassified result.210 Prior to the system’s implementation, however, it is fully open for inspection 

for all the involved parties, enabling them to verify the system’s operability.211 While the data collected 

by the system is classified, all the algorithms utilized by the system are fully known by all parties 

involved.212 
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The challenge with information barriers is that the classified side of the system requires 

multiple layers of protection, from tamper indicators to hardware to complex administrative 

controls.213 The complexity of this becomes apparent particularly when the system is under 

maintenance.214 The system developed in the Trilateral Initiative was irreversible – once some parts of 

the system have become classified and measure sensitive information, these segments will remain 

classified even if the system is cleared of any sensitive material.215 Later system development led to a 

model of the AVNG that could shift between open mode, meant for measurements of unclassified 

material, and a secure mode, which would be used for classified materials.216  

A proof-of-principle system of the AVNG was demonstrated under the Trilateral Initiative.217 

In addition to the system itself, the initiative also created associated systems relating to containment 

and surveillance, which would be critical for future warhead verification processes.218 These would 

enable the continuity of knowledge of the materials under verification, which were intended to 

minimize the complexities involved in reverifying the warhead at a later point of the process.219 The 

AVNG system development continued after the end of the Trilateral Initiative in collaboration with 

the United States and Russia, resulting in a fully operational system.220 In 2009, the system was 

demonstrated at Russia’s Institute of Nuclear & Radiation Research, All-Russian Scientific Research 
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Institute of Experimental Physics (RFNC-VNIIEF) in the presence of American scientists and 

officials.221  

 The Trilateral Initiative also involved external partners in limited capacities, allowing their 

expertise in safeguards and other verification activities to be integrated to the initiative. The United 

Kingdom hosted a technical workshop related to the state’s PuO2 verification system and plutonium 

storage system under Euratom safeguards.222 Japan held a workshop related to the state’s modern 

verification protocols applied to plutonium storage and mixed oxide fuel production.223 Italy also 

participated by hosting technical workshop at the Joint Research Centre of the European Commission 

related to ensuring system certification and authentication.224 This international collaboration indicated 

expectations about the shape of things to come – future disarmament would eventually expand to 

states outside the U.S.-Russia context.   

Ultimately, the greatest challenge encountered under the Trilateral Initiative collaboration was 

the authentication of the verification system.225 The critical questions related to the manufacturing of 

the system and its components and the subsequent authentication that would be required.226 The first 

logical option would be that the IAEA, or other international verification body, would produce the 

measurement equipment and allow the host state to authenticate its legitimate operability.227 In the 

Trilateral Initiative, it became evident that this would pose challenges. Russian security officials 

indicated their requirement to use intrusive and unidentified methods to inspect the equipment for up 
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to 18 months, with the authority to deny the equipment without providing their rationale.228 If the 

system was accepted, on the other hand, the IAEA would need to repeat this authentication procedure 

for ensuring that the system was intact.229 This would lead to a long cycle of authentication and re-

authentication, without certainty for either side of system integrity and validity.230  

The second option, which the Trilateral Initiative ultimately adopted, would be for the host 

state to manufacture the equipment.231 This is referred to as the host-supply principle, according to 

which the party whose classified information is at risk has the right to supply the equipment and also 

the right to be the last party with access to the equipment in the authentication process.232 The three 

parties would jointly develop the detailed design of the system, the computer processors used, as well 

as test it together.233 The actual equipment would be produced within the state where it would be used, 

with monitoring from the other two partners.234  

While doing critical technical work for multilateral disarmament relating to classified forms of 

nuclear material, the Trilateral Initiative left several important issues unaddressed. The AVNG system 

focused on verifying plutonium, but developing a parallel system for highly enriched uranium could 

pose unique challenges. Furthermore, in future disarmament steps this material could still be contained 

within warheads when the IAEA begins the verification mission. The verification mission would 

expand the whole dismantlement cycle, from demounting deployed warheads from their delivery 

vehicles and uniquely identifying them, to monitoring their transportation and storage and ultimately 
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their dismantlement process.235 In addition to IAEA involvement in this process, non-nuclear 

weapons states may also become important agents in multilateral verification. The Trilateral Initiative’s 

engagement demonstrated that expertise relating to safeguards and other dimensions of the civilian 

nuclear sector can also be applied to verification in the military sphere. Furthermore, non-nuclear 

weapons states would also want to gain confidence in the irreversibility and validity of the disarmament 

process and would likely be interested in gaining understanding of the process. In preparation for 

future nuclear disarmament, extensive multilateral engagement especially in the technical research and 

development process would be highly beneficial. This would contribute to multilateral disarmament 

prospects by pushing the technical solutions forward, but also by creating a common language 

between the states involved and building the foundations of trust and confidence in the international 

community. 

III. U.K. Efforts and the U.K-Norway Initiative 
 

The Trilateral Initiative was an important stepping stone for multilateral engagement in 

verifying classified nuclear materials and items and highlighted the importance of future work in this 

field. The idea of involving non-nuclear states in the disarmament process has been explored in 

multiple dimensions since the end of the initiative. The legitimacy of the global disarmament effort 

requires that all sides are knowledgeable of the process – not only nuclear weapons states engaged in 

it. The 2005 NPT Review Conference introduced several working papers from non-nuclear weapons 

states related to the disarmament process, including enhancing disarmament and non-proliferation 

education and developing multilateral verification mechanisms, independent of national technical 
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means.236 Particularly important was the final report on a set of studies undertaken by the United 

Kingdom since 1998, focused on the verification of nuclear warheads and their components.237 This 

research was initiated after the 1998 U.K. Strategic Defence Review, which stated that the U.K. is 

willing to engage in future multilateral nuclear disarmament efforts, on the condition that the process 

is multilaterally verified.238 The goals of the project were to explore multilateral verification 

mechanisms of authenticating warheads and their components, dismantling these items securely, 

disposing the resulting fissile material irreversibly, and monitoring the overall nuclear weapons 

complex.239  

The United Kingdom provided the first interim report of the initiative in 2003 to the 

Preparatory Committee for the 2005 Review Conference, focused on the first objective of warhead 

authentication. The focus on the initiative had been on radiometric non-destructive assay (NDA) 
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measurement technologies, including passive gamma ray spectrometry, passive and active neutron 

coincidence counting, and neutron multiplicity, as well as demonstrated their implementation on real 

warheads and their nuclear components.240 This work on passive radiation signatures was based on 

identifying the spontaneous neutron or gamma radiation emitted by the warhead’s plutonium and 

uranium content, which would reveal the presence, distribution, quantity, and isotopic type and 

composition of the fissile material.241 The active radiation signatures, on the other hand, relied on 

active gamma or X-ray irradiation of the low atomic number elements contained in the warheads, such 

as deuterium, tritium and beryllium.242 In addition, the technical work also involved computer 

modelling.243 These active and passive measurement systems and models were tested on 

decommissioned warheads (WE177 and Chevaline) and still deployed warheads (Trident), including 

their primary and secondary sub-assemblies and re-entry bodies, inside and outside different 

containers.244 

The first interim report concluded that extensive knowledge about a warhead held in a 

container can be assessed through these radiation measurements, including type, components, 

geometrical shape, and internal characteristics.245 Access to the raw measurement data would make it 

possible to reverse engineer the design and configuration of the warhead.246 Thus, one of the key 

conclusions is that this proliferation-sensitive and classified information ought to be fully protected in 
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any verification scenario.247 In addition, the interim report highlighted the importance of developing 

chain of custody, provenance, and managed access mechanisms in support of the authentication.248 

The second interim report focused on the dismantlement of warheads, emphasizing that 

protecting design and security information is one of the most critical aspects of the process.249 

Furthermore, it will be important to develop continuity of knowledge mechanisms to prove that the 

end products of the dismantlement process came from the intended authenticated warhead.250 To this 

end, a template verification system could be implemented with non-destructive analysis images of 

warheads, enabling the identification of the warhead and its type through time-correlated template 

comparison.251 These radiation signature comparisons have been researched in the past, for example 

in the context of a technical study by the U.S. Department of Energy in 1996.252 The second U.K. 

interim report also discussed a mock inspection that the project implemented, including the future 

importance of these activities and the challenges that remain unresolved.253 

The final report focused on the management of the nuclear weapons complex, but also 

brought together the other dimensions of the project.254 One key conclusion is that advancements in 

technical fields, such as neutron detection accuracy, can increase the information that is possible to 

collect in the verification process, but also that this must be balanced with proliferation and national 
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security concerns.255 The combination of different non-destructive assay methods, such as passive 

auto radiography, gold foil activation, and photo-neutron interrogation, was discussed as a potential 

mechanism to detect spoofing, but more work needs to be done on identifying the benefits and risks 

of the different measurement techniques.256 In addition, information barriers were also researched as 

a way to protect classified and sensitive information.257 Overall, the final report concluded 

authentication to be the most difficult task in disarmament verification, as the techniques would need 

to simultaneously protect sensitive and classified information, have a high confidence of detecting 

spoofing, and be otherwise fully secure.258 

This work contributed to the United Kingdom’s continued engagement in developing 

verification mechanisms for the future. The state began a joint effort with Norway in 2007, which was 

a first case of close collaboration between a nuclear and non-nuclear weapons state on warhead 

dismantlement.259 The initiative also involved VERTIC, a UK-based non-governmental organization 

focused on verification, monitoring and confidence-building in international agreements.260 The 

overarching theme of the U.K.-Norway Initiative was on understanding how non-nuclear weapons 

states could facilitate trust and confidence in multilateral nuclear disarmament and become involved 

in the process while not gaining access to proliferation-sensitive information.261 In practice, it focused 

on continuing the efforts of the Trilateral Initiative on information barrier technology, as well as 

conceptualizing managed access methodologies through simulated exercises.262 First, the initiative 
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established that the limited information available about past experiments on information barriers 

could undermine the trust that non-nuclear weapons states could have on verification systems.263 In 

order to facilitate the legitimacy of these instruments, non-nuclear weapons states should be involved 

in their development and demonstration efforts.264 The Trilateral Initiative had concluded that the 

host country should be allowed to manufacture the verification equipment, such as the AVNG system, 

but the U.K.-Norway Initiative explored how non-nuclear weapons states could be involved, as a 

means of increasing transparency and trust in the process.265At the beginning, the initiative also 

surveyed the lessons learned from the previous studies carried out by the United Kingdom. One key 

insight was that the human side of verification has been largely neglected, both from the perspective 

of undermining the successful use of a verification technologies, but also from the viewpoint of 

promoting trust through non-technological means.266 In addition, it was also concluded that a 

particular technical solution to verification increases in legitimacy based on several characteristics, 

including the ability to protect sensitive information, its simplicity, familiarity, and lower level of 

intrusiveness.267 

The two technical aspects that the initiative focused on, information barriers and managed 

access, were considered complimentary and interconnected.268 Managed access would allow inspectors 

to access sensitive warhead environments and conduct their verification measurements behind an 

information barrier, allowing proliferation-sensitive information to remain intact.269  
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The initiative addressed the initialization problem, which refers to the challenge of 

authenticating a warhead to be real at the beginning of its dismantlement process.270 Particularly, the 

focus was on the involvement of inspectors from non-nuclear weapons states in the process, which 

would make information integrity even more important, as any breach would violate Article I of the 

NPT.271 Two proof-of-concept information barriers were built, one in the United Kingdom and one 

in Norway, such that strict non-proliferation concerns were addressed and that the involved non-

nuclear weapon state would gain confidence through its direct involvement in the design and 

manufacturing process of the system.272 As the focus was on illuminating this interactive process, 

rather than developing a fully demonstrable system, the system detected cobalt-60 inside a mock 

warhead, instead of weapons-grade fissile material contained in a real warhead.273 The system was 

similar to that developed under the Trilateral Initiative, but instead of having three attributes measured, 

it only determined the presence or absence on cobalt-60.274 Overall, the system design emphasized 

simplicity, affordability, and easy maintenance, which are considerations that will be important in the 

future but have received less attention in past research and development efforts.275 

On the managed access side, the research started from the assumption that foreign inspectors 

would need to access highly sensitive facilities and environments, which could risk proliferation-

sensitive and security information at risk.276 Thus, traditional on-site inspection practices must be 

modified such that the specific conditions are considered.277  
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The disarmament research in the United Kingdom also led to ongoing bilateral collaboration 

with the United States since 2000, focused on monitoring and verifying future nuclear disarmament.278 

The collaboration is facilitated by the fact that the states are able to exchange classified nuclear 

weapons information between each other, based on the 1958 Mutual Defense Agreement (MDA), 

which diminishes concerns about breakdowns in information integrity in the testing phases of new 

measurement technologies or other cases.279 Thus, the collaboration has tested measurement 

technologies and methods with actual warheads and components and has been able to discuss and 

compare differences between the states at a highly detailed level.280 The focus in the initiative is also 

on authentication and certification of the measurement technologies, parallel with protecting sensitive 

information related to warheads and their environments.281  

Activities under the collaboration have focused on warhead measurement and data analysis, 

managed access, and other technical fields.282 In 2011, the states engaged in the Warhead Monitored 

Dismantlement (WMD) Exercise, which was a fictious scenario of two states negotiating an arms 

reduction treaty and the affiliated verification provisions, which involved monitored dismantlement.283 

Through joint planning at a Joint Chain of Custody Working Group and Joint Nondestructive Assay 

Methods Working Group, the states agreed on a monitoring protocol that was tested in an exercise at 

an operational British nuclear facility that utilized a mock warhead with actual fissile material and 

simulated explosives.284 Similar to the findings ender the Trilateral Initiative, one of the important 
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conclusions was that the simultaneous and mutually agreed equipment certification by the host and 

authentication by the inspector is difficult to achieve.285  

Another important example of the collaboration’s work was the Active Measurement 

Campaign, which explored the use of active interrogation technologies in verification.286 The 

experiment focused on assessing the value of active interrogation systems in warhead verification, as 

well as solving the concerns relating to shielding and radiation environment dangers for personnel.287 

The researchers concluded that these systems can be highly valuable for verification purposes, 

especially when the specific technique is chosen based on the target radiation source.288 The 

collaboration has also involved two Authentication Workshops, in 2009 and 2014, with one of the key 

conclusions being that states have differing priorities and concerns in the authentication and 

certification of measurement equipment in warhead verification.289 These past joint exercises have 

contributed to the collaboration’s current work on the development of a radiation portal monitoring 

system under the U.S.-U.K. Portal Monitor for Arms Control (PMAC) project that aims to develop a 

system enabling simultaneous host certification and inspector authentication.290 Since 2012, the 

collaboration has also engaged in collecting a radiation signature data set of nuclear warheads and 

components, which could significantly contribute to future research on warhead verification.291 

The U.K.-Norway and U.S.-U.K. collaboration are important examples of engagement in joint 

development of future verification systems, each initiative contributing unique insights into this field. 
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Going forward, collaboration must become increasingly inclusive and engage states that have not been 

involved in these efforts, whether nuclear or non-nuclear weapons states. In 2009, the U.S.-U.K. 

collaboration took an important step towards this direction, expanding the collaboration to the other 

five nuclear weapons states recognized under the NTP through briefing the states of the findings of 

the U.S.-U.K. collaboration.292 This was taken further in the form of a joint presentation in 2014 at 

the Preparatory Committee for the 2015 NPT Review Conference.293 

The Trilateral Initiative and the U.K.-Norway Initiative are only two examples of research 

efforts to develop systems that can handle classified forms of fissile materials, and thus could be used 

for warhead verification. Several systems have been developed in U.S. national laboratories that have 

also been demonstrated to Russian officials. Similar to the systems developed in the Trilateral Initiative 

and the U.K.-Norway Initiative, these systems include TRADS (Trusted Radiation Attribute 

Demonstration System), AMS/IB (Attribute Measurement System using Information Barriers), NG-

AMS (Next Generation Attribute Measurement System), and 3GAMS (Third Generation Attribute 

Measurement System), which have been created in collaborative efforts between different U.S. 

national laboratories.294 Independent efforts have also been done in other countries, including China, 

where the Institute of Nuclear Physics and Chemistry (INPC) in China Academy of Engineering 

Physics (CAEP) has developed an attribute verification system for plutonium subassemblies using an 

information barrier.295 
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IV. Future Dimensions 

 

The development of verification systems in a multilateral context is critical, as in a potential 

future disarmament scenario these systems would be used to verify nuclear weapons under 

international agreements. Pursuing multilateral development efforts, however, also requires a 

diplomatic framework for facilitating communications between states. An example of a group that has 

formed in recent years is the International Partnership for Nuclear Disarmament Verification, which 

is a joint initiative led by the U.S. State Department and the Nuclear Threat Initiative involving 28 

nuclear and non-nuclear weapons states focused on nuclear disarmament verification.296 The 

fundamental objective of the partnership is to foster common understanding and trust among all 

involved parties, as well as explore the technical challenges related to multilateral verification.297 The 

partnership engages in practical collaboration on new technologies in different phases of disarmament 

through its three working groups, but the underlying understanding is that a collective sense of 

confidence is required to establish legitimacy in the all novel verification technologies.298   

The focus of IPNDV on engaging states with little to no experience in verification outside the 

civilian IAEA safeguards, which includes most states apart from the United States, Russia, the United 

Kingdom, and Norway. The partnership enables these states to think about challenging verification 

issues for the first time, enabling them to understand the professional skills needed in the process and 

the complexity of the issues involved. One of the key outcomes of the partnership so far is that non-

nuclear weapons states could be involved in most activities in disarmament verification without 

compromising proliferation-sensitive information. This goes against the prevailing assumption among 
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certain actors in the non-proliferation and disarmament communities, according to which the 

involvement of non-nuclear weapons states could be highly risky. In addition to this key insight, the 

partnership has also engaged in dialogue on the relationship between political and technical needs and 

capabilities in verification.  

These past multilateral efforts to develop technical verification capabilities demonstrate that 

states are aware of the criticality of having new verification options available for future stages of arms 

control. As the previous discussion has shown, the critical challenge will be maintaining the 

confidentiality of classified and sensitive information related to the inspected warheads, while 

providing transparency and a high level of confidence in the verification process. Both for nuclear 

weapons states and non-nuclear weapons states alike, these values would be critical in a future 

multilateral disarmament agreement. As has been discussed here, past technical solutions have 

employed information barriers to allow these two objectives to be reached simultaneously. With 

information barriers, the prevailing challenge continues to be the authentication and certification of 

the technical equipment, and developing trusted processors that can be used in these processes.299 
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4. Physics of Nuclear Weapons 
 

I. Introduction 

 

The political and historical perspectives provided in previous chapters pave the way for a 

discussion on a set of emerging warhead authentication methods, which rely on zero-knowledge 

proofs to solve the challenge between maintaining the confidentiality of design information and 

providing transparency in the verification process. Before explaining these emerging approaches in 

the following chapter, however, it is necessary to explore more in depth the physics and design of 

nuclear warheads, as well as the methods that can be used to detect them. This will allow for a more 

detailed discussion of the techniques under consideration in the following chapter. 

This chapter explains the fundamental physics of how nuclear weapons operate and illustrates 

what the key drivers of behind nuclear weapons design are. These general details about the physics of 

nuclear weapons are available to the public, but as will be discussed later in this chapter, the specifics 

of modern design features are highly guarded by nuclear weapons states.300 The discussion in this 

chapter is limited to the principles that are important to understand from a policymaker’s perspective, 

particularly for the purposes of the following chapter, which leaves out considerations about the 

quantum mechanical and many other effects associated with the physics. The motivation is to 

illuminate what the realities of detecting nuclear warheads are, as well as discuss why such a high level 

of secrecy is associated with specific design features of nuclear warheads. This leads to the discussion 

in the next chapter, which focuses on verification mechanisms that allow the design details to be kept 

concealed, while also providing a high-accuracy mechanism for authenticating the warheads. The 

                                                 
300 Even if states knew the details of each other’s warheads, political barriers also come into play: “Aside from 

commonality in application of basic physical principles and practices, neither side in a treaty is likely to have much 
detailed knowledge of each other’s nuclear warhead design, and if they did they're not likely to admit it.” (Alexander 
DeVolpi, “Tagging and Fissile Material Verification Concepts for Nuclear Warhead Dismantlement,” INMM 31st Annual 
Meeting (1990), 1.) 
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discussion in the chapter shows that the concerns about revealing classified design information can 

be genuine, although these concerns are also inherently political, which illuminates why these high-

security verification mechanisms will remain relevant in the future. 

II. Fissile Material 
 

Nuclear weapons can be based on two different physical mechanisms – fission and fusion. 

The discussion here will be limited to fission weapons, which were the first type of nuclear weapons 

that was developed, with the Little Boy and Fat Man used during the Second World War representing 

this category of weapons. In modern nuclear weapons, fission and fusion are used jointly in the same 

warhead, which explains why they are significantly more powerful than weapons using either 

mechanism alone. In these weapons, the fission mechanism is first initiated by explosives, which 

compress the nuclear material to a critical state. This fission reaction results in the release of high-

energy, short-wavelength radiation (X-rays) that increases the temperature and pressure in the material, 

which then facilitates the fusion mechanism.301 In this description, the focus is on the first stage – the 

fission reaction. 

Fission reactions, which were discovered in the late 1930s, occur when a heavy nucleus splits 

into two lighter nuclei, which are called fission fragments.302 This process releases a large amount of 

energy – although comparatively much less than fusion reactions do – which can be inferred from the 

difference in nuclear binding energy between the original and the new nuclei. Binding energy is defined 

as the energy gain of forming the nucleus, compared to the condition where the constituent protons 

                                                 
301 Union of Concerned Scientists, “How Do Nuclear Weapons Work?” last modified September 30, 2016, accessed 

March 27, 2017, http://www.ucsusa.org/nuclear-weapons/how-do-nuclear-weapons-work#.WNXvrjvytPY. 

302 Noboru Takigava and Kouhei Washiyama, Fundamentals of Nuclear Physics (Tokyo: Springer, 2017), 46. 
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and neutrons are separated, and is the result of the residual strong interaction between protons and 

neutrons.303 For a mass M(A,Z) the binding energy B(A,Z) is formally defined as: 

𝐵(𝐴, 𝑍) = 𝑍 𝑀𝑝𝑐2 + (𝐴 − 𝑍)𝑀𝑛𝑐2 − 𝑀(𝐴, 𝑍)𝑐2  

The two relevant isotopes for fission reactions utilized in nuclear weapons are 𝑈 
235  and 

𝑃𝑢 
239 . The first one can be accumulated through enriching natural uranium, which is mostly 𝑈 

238 . 

The plutonium isotope can be produced by irradiating 𝑈 
238  with neutrons in a reprocessing facility. 

These isotopes are important because they are fissile, meaning that their fission can be initiated when 

they interact with thermal neutrons.304 These fissile isotopes are distinct from isotopes that are merely 

fissionable, where the fission reaction can be induced with high-energy neutrons.305 This difference 

stems from the composition of the nuclei, where the odd-even (odd number of neutrons, even number 

of protons) nucleus of 𝑈 
235  has a higher ground state, or lower binding energy, than the even-even 

nucleus of 𝑈 
238  (even number of both protons and neutrons).306 This is because the even-even type 

of nucleus are generally more stable than even-odd or odd-even one, due to the Pauli exclusion 

principle.307 The principle states that no two particles with a half-integer spin (fermions) can be in the 

same quantum state within the same quantum system. In this context, the principle precludes protons 

and neutrons (which have half-integer spins as baryons, so they are also fermions) from occupying the 

same quantum state and they thus would be expected to have opposite spins. Thus, nucleus 

configurations where there are equal numbers of protons and neutrons are favored, and when this is 

                                                 
303 Ibid., 32. 

304 Thermal neutrons are defined based on their kinetic energy, which is approximately 0.025 eV. They are formed as a 
result of elastic collisions with other particles (Source: Ashik Das and Thomas Ferbel, Introduction to Nuclear and Particle 
Physics (2nd Edition) (Singapore: World Scientific Publishing, 2003), 106.) 
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92 
 

not true, there is a correction term that increases in significance as the atomic number increases.308 

This asymmetry term thus contributes to the binding energy: 

 

Figure 4.1. Binding energy per nucleon as a function of the atomic mass number, divided between 
its different components. Source: Sylvie Braibant, Giorgio Giacomelli, and Maurizio Spurio, Particles 

and Fundamental Interactions: An Introduction to Particle Physics (Verlag: Springer, 2009), 428. 
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93 
 

The binding energy associated with each isotope can be inferred from the graph representing 

nuclear binding energy: 

 

Figure 4.2. Average binding energy per nucleon as a function of mass number. Note 𝑈 
235  and 

𝑈 
238  on the right. Source: Sylvie Braibant, Giorgio Giacomelli, and Maurizio Spurio, Particles and 

Fundamental Interactions: An Introduction to Particle Physics (Verlag: Springer, 2009), 421. 

Importantly, both uranium and plutonium are on the right, where the binding energy per 

nucleon is decreasing as the atomic mass number is increasing. This means that the protons and 

neutrons in the nucleus are relatively lightly bound together, and the relative contribution of 

electromagnetic force increases.309 The resulting fission fragments are medium-sized nuclei that have 

a higher binding energy per nucleon.  

                                                 
309 Das and Ferbel, Introduction to Nuclear and Particle Physics, 106. 



94 
 

For 𝑈 
235 , there are almost 400 potential fission pathways, with some being more probable 

than others and involve the transition isotope 𝑈 
236  due to the neutron absorption.310 One example of 

a fission reaction is the nuclei’s breakdown into 𝐿𝑎 
148  and 𝐵𝑟 

87 : 

𝑈92 
235 + 𝑛 → 𝐿𝑎 57

148 + 𝐵𝑟 35
87 +  𝑛   

The distribution of these fission fragments of 𝑈 
235  are concentrated such that one of them is 

highly likely to have a mass number of approximately 90, and the other of 140.311 

 

 

Figure 4.3. The probabilistic distribution of fission fragments that result from the fission of 𝑈 
235  

induced by thermal neutrons. Source: Noboru Takigava and Kouhei Washiyama, Fundamentals of 
Nuclear Physics (Tokyo: Springer, 2017), 46. 

                                                 
310 Mark Tuckerman, “CHEM-UA 127: Advanced General Chemistry I,” New York University, 
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Figure 4.4. The distribution of the neutrons, with varying energy levels, that are released in the 

fission of 𝑈 
236 . Source: Bruce Cameron Reed, The Physics of the Manhattan Project (New York: 

Springer, 2015), 27. 

Energy equivalent to the difference in binding energy between the original and the resulting 

nuclei is released in nuclear fission, in the form of the kinetic energy of the fission fragments, kinetic 

energy associated with the released neutrons, and photons.312 For 𝑈 
235 , the binding energy per 

nucleon is -7.5 MeV, and for the lanthanum and barium isotopes together it is -8.4 MeV.313 Thus, the 

energy release is 0.9 MeV per nucleon in a fission reaction, so in total for the 235 nucleons 

approximately: 

235 ∗ 0.9 𝑀𝑒𝑉 = 210 𝑀𝑒𝑉   

 The average number of immediate neutrons released in the reaction is 2.5, each of which can 

initiate a new fission reaction.314 For 𝑃𝑢 
239 , the average number of neutrons is 2.9. Since the number 

                                                 
312 Braibant, Giacomelli, and Spurio, Particles and Fundamental Interactions, 446. 

313 Das and Ferbel, Introduction to Nuclear and Particle Physics, 106. 
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of neutrons produced in the reactions is greater than the number consumed by it, the fission of one 

nucleus can create more than just one new fission reaction. This feature makes it possible for the 

fission reaction to proceed as a chain reaction, which is self-sustaining. This process is defined to be 

critical when self-sustainability is achieved, which can be calculated based on the effective neutron 

multiplication factor k: 

𝑘 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 (𝑛 + 1) 𝑠𝑡𝑎𝑔𝑒 𝑜𝑓 𝑓𝑖𝑠𝑠𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑛 𝑠𝑡𝑎𝑔𝑒 𝑜𝑓 𝑓𝑖𝑠𝑠𝑖𝑜𝑛
   

The factor k describes the number of fission reactions that are initiated, on average, by 

neutrons that leave the reaction. When k reaches the value of 1, the mass is said to be critical and thus 

self-sustaining.315 Below this value, the process is sub-critical. When k is above one, the mass reaches 

a supercritical stage, where the rate of neutrons produced and thus energy-releasing fission reactions 

increases exponentially. Reaching this stage is the core idea in nuclear weapons, where the energy 

release increases exponentially due to the supercritical conditions. 

An important concept to understand in this context is critical mass, which determines how 

much fissile material is required to start the self-sustaining chain reaction. The challenge in sustaining 

the chain reaction relates to the spatial scale of the events associated with fission reactions, where the 

nuclei fills only one-thousandth of the space contained in an atom.316 In order for the fission chain to 

continue, a released neutron must encounter the nucleus of another atom.317 The likelihood of this 

encounter, however, is exceedingly small due to the tiny size of the nucleus as well as the neutron, and 

the neutron can reach the material’s surface before encountering a nucleus.318 This is the case even in 
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extremely dense materials, such as solid uranium or plutonium. Quantitatively, the neutron’s behavior 

is described by the variable mean free path, which is the average distance between the collisions.319 As 

the size of this mass increases, so does the likelihood that neutrons encounter nuclei on their path and 

thus spark new fission reactions. Critical mass is the threshold at which the continuation of the fissile 

chain reactions is ensured and the density of neutrons within the mass is increasing as a function of 

time.320  

Critical mass does not only depend on the neutrons’ behavior, but also varies as a function of 

the density of the fissile material, the cross-section of the material, the number of neutrons released, 

and the kinetic energy of these neutrons.321 Making calculations about critical mass requires the use of 

time-dependent diffusion theory, which allows the calculation of a critical radius at which the chain 

reaction becomes self-sustaining. This radius can then be converted to a critical mass based on which 

fissile material is used and what its attributes are.322 

III. Warhead Design 

 

This fission chain-reaction takes place inside nuclear warheads, which can be either implosion- 

or gun-type. Little Boy, the nuclear weapon used in Hiroshima, was a gun-assembly warhead, whereas 

Fat Man, the weapon used in Nagasaki, was implosion-type. The benefit of a gun-assembly weapon is 

its simple design, but it is less efficient (only 1.38% of the uranium in Little Boy was fissioned), only 

compatible with using 𝑈 
235 , and heavier and larger than implosion-type warheads.323 Thus, modern 

nuclear arsenals contain warheads that employ the implosion design, which have the advantage of 
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compatibility with plutonium, which has a higher fission rate than uranium; better efficiency while 

using lower amounts of fissile material; and thus overall lower-weigh weapons.324 The following 

section briefly describes the mechanisms used in these two warhead types, based on the Little Boy and 

Fat Man designs. 

In a gun-assembly nuclear weapon, “a conventional explosion forces together two subcritical 

masses of uranium creating critical mass and starting a nuclear chain reaction.”325 The first subcritical 

mass is a hollow spherical pit, and the second one is a cylindrical core.326 Bringing together these two 

subcritical masses at high speed produces the a supercritical mass, in an assembly where the core is 

fired through a gun barrel, similar to a bullet, into the pit.327 This is due to the fact that the density of 

the system is defined as mass divided by volume, where volume varies as a cube of radius (for a 

spherical mass). When the original spherical pit (containing one or more critical masses) is made 

hollow, and a certain amount of fissile material is removed from the core, two subcritical masses are 

formed.328 This is because the critical mass has an inverse-square relationship with the density of the 

fissile material.329 The core idea is to reunite these two subcritical masses at a later point, under high 

pressure conditions, to create a mass that is supercritical.  
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Figure 4.5. Little Boy. Source: Bruce Cameron Reed, The Physics of the Manhattan Project (New York: 
Springer, 2015), 71, originally Alan Carr, Los Alamos National Laboratory. 

 

 

 

 

Figure 4.6. Mechanism of an implosion assembly. Source: Bruce Cameron Reed, The Physics of the 
Manhattan Project (New York: Springer, 2015), 70. 
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Figure 4.7. The structure of Little Boy. Bruce Cameron Reed, The Physics of the Manhattan Project 
(New York: Springer, 2015), 71. Original source: John Coster-Mullen, Atom Bombs: The Top Secret 

Story of Little Boy and Fat Man. 

The fissile material is at the core of the weapon, with the gun design forming its spine.330 In 

Little Boy, the core was in the shape of a projectile, which was fired into uranium target discs to form 

the supercritical mass. This fissile material is surrounded by tamper or reflector material.331 The 

purpose of the tamper material, made out of tungsten carbide mixed with cobalt, is to contain the 
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fissile material in its shape as the chain reaction starts to exert pressure on it and reflect neutrons back 

into the material.332 Depleted uranium is another option for the tamper material. Outside this reflector, 

a heavy steel case supports the material and holds the weapon together. 

The mechanism that activates the chain reaction is formed out of four polonium-beryllium 

initiators, which serves as a neutron generator.333 Alpha decay takes place in polonium, and the 

resulting alpha particles ( 𝐻𝑒 2
4 ) are captured by the beryllium, which then releases neutrons in the 

reaction. The two materials are initially separated by a thin gold foil, but when the uranium projectile 

hits its uranium target discs, this foil is also torn in the process and the two materials mix.334 This 

results in the immediate release of a large number of neutrons, feeding the chain reaction. The bomb 

also contains an arming and fusing system that consist of “clock switches, safing and arming plugs, 

six barometric (baro) switches, and the Radar Network” that together made it possible to send the 

firing signal when the bomb reached the desired burst height.335 

An implosion assembly weapon brings its enclosed fissile material to subcriticality through 

compression.336 It contains a spherical or cylindrical fissile material mass, originally in a subcritical 

state, and uses high explosives at the outer surface of the mass to create an implosion shock wave that 

compresses the mass, increasing its density, and thus allowing it to become supercritical.337 The mass 

can also be hollow, with the shock wave collapsing it in the process.338 The density of the material can 

become two-fold or more, as the pressure brings the atoms closer together.339 As was discussed earlier, 
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the critical mass varies inversely as a square of density, so by increasing the density by a factor of two, 

the critical mass becomes four times as large.340 This means that a mass that starts subcritical becomes 

supercritical in the compression process. Another effect of the compression is a reduction in the mean 

free path, or the average distance that a neutron travels between collisions. Mean free path is inversely 

proportional to density, so an increase in density shortens the mean free path and thus increases the 

number of neutron collisions in the matter, leading to more rapid and efficient chain reactions.341 

Similar to the gun-type assembly, implosion devices have initiators in the design, but they are located 

at the center of the core and are mixed when the shock wave from the explosion hits the initiator.342 

In the case of Fat Man, the fissile material contained was plutonium, but implosion weapons can use 

either highly enriched uranium or plutonium. 

 

Figure 4.8. Fat Man. Source: James Corson, “Overview of Nuclear Weaponry,” University of Virginia, 
Metals in Medicine and the Environment, accessed March 26, 2017, 

http://faculty.virginia.edu/metals/cases/corson3.html. 
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Figure 4.9. The structure of Fat Man. Source: Bruce Cameron Reed, The Physics of the Manhattan 
Project (New York: Springer, 2015), 133. Original Source: John Coster-Mullen, Atom Bombs: The Top 

Secret Story of Little Boy and Fat Man. 

 

IV. Modern Nuclear Weapons 

 

These two simplified descriptions of the dynamics of the two initial designs of nuclear 

weapons only provide a hint of the complexity associated with the design of modern nuclear weapons. 

Little Boy and Fat Man were developed under intense pressure during the Second World War and the 

design decisions “were products of the circumstances in which they were created, and those 
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circumstances would not apply to any nation building a bomb since then.”343 The sophistication of 

modern nuclear weapons designs is exponentially greater and include several important design 

breakthroughs that have made the weapons significantly more powerful. With respect to implosion-

type fission weapons, these advancements include levitated pits, more efficient high explosives, 

multipoint detonation, and solid state neutron generators as higher-efficiency initiators.344 In addition, 

the delivery systems and mechanisms for nuclear warheads have been transformed since the Second 

World War, which has directed the design of weapons in important ways.345 The greatest 

transformation came about with the development of thermonuclear weapons (hydrogen weapons), 

which employ nuclear fusion. As was discussed earlier, most modern weapons utilize both fission and 

fusion in their design, for example as fusion-boosted fission weapons, fission-fusion weapons, or 

fission-fusion-fission weapons.346 Another modern design feature is variable yield, or ‘dial-a-yield’ 

weapons, where the yield of the weapon can be adapted.347  

The advancements made in weapon miniaturization and other technical features can be 

tracked through the yield-to-weight ratio, as shown in Figure 4.10, which is one measure of bomb 

efficiency. It also provides a way to compare Little Boy (Mk-1) and Fat Man (Mk-3) to modern U.S. 

nuclear weapons.348 Thermonuclear weapons, which are much higher yield, but also significantly 

heavier – note that both the x and y axis are logarithmic – are towards the upper-right hand corner. 

Tactical nuclear weapons are on the lower left, showing that the demands of lighter weight and smaller 
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yield also result in a worse yield-to-weight ratio.349 Most currently deployed U.S. nuclear weapons are 

in the middle, as indicated by the redder shade, that are high-accuracy, moderate-yield, and relatively 

lighter, and have a comparatively good yield-to-weight ratio. One example is the W-88, whose design 

is shown in Figure 4.11, which is a two-stage implosion weapon with a yield of 475 Kt and weight of 

approximately 360 kg.350 The ratio of these modern weapons is still less than half of the optimum that 

has been possible to reach.351 The yield-to-weight ratio is also useful for comparing the nuclear 

capabilities across nations. For example, with respect to the increasing yields of weapons during the 

peak of the U.S.-Soviet arms race, it was evident that the higher-yield Soviet weapons relied more on 

direct scaling up rather than technical developments, as the yield-to-weight ratios of the weapons 

remained stable.352 

                                                 
349 Ibid. 

350 Carey Sublette, “The W88 Warhead,” Nuclear Weapons Archive, accessed March 25, 2017, 
http://nuclearweaponarchive.org/Usa/Weapons/W88.html. 

351 Wellerstein, “Kilotons per Kilogram.” 

Original source: Theodore B. Taylor, “Third Generation Nuclear Weapons,” Scientific American 256, No. 4 (April 1987), 
34. 

352 Wellerstein, “Kilotons per Kilogram.” 
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Figure 4.10. The weight of warheads in the U.S. nuclear arsenal as a function of their yield. Source: 
Alex Wellerstein, “Kilotons per Kilogram,” Restricted Data: The Nuclear Secrecy Blog, December 23, 

2013, http://blog.nuclearsecrecy.com/2013/12/23/kilotons-per-kilogram/ 
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Figure 4.11. The design of W88, one of the modern U.S. warheads. Source: Carey Sublette, “The 
W88 Warhead,” Nuclear Weapons Archive, accessed March 25, 2017, 

http://nuclearweaponarchive.org/Usa/Weapons/W88.html 

 

V.   Physics of Radiation Signatures and Warhead Detection 

 

The previous sections discuss the general physics and design of warheads, which can be 

employed in different ways to create mechanisms to detect these objects. These techniques mainly rely 

on identifying the radiation outputs from the warheads. As has been explicated, the most important 

fissile materials used in warheads are 𝑈92 
235  and 𝑃𝑢94 

239 . These two isotopes are radioactive, meaning 

that they are unstable and spontaneously undergo fission reactions that emit particles and radiation. 

This process can also be induced externally by using a radiation source. In general, radioisotopes can 

produce neutrons, alpha particles (emission of 𝐻𝑒2 
4 ), or beta particles (emission of an electron) in the 

reactions.353 In the case of 𝑈92 
235  and 𝑃𝑢94 

239 , the emitted particles are neutrons, but other isotopes also 

                                                 
353 W. N. Cottingham and D.A. Greenwood, An Introduction to Nuclear Physics (Cambridge: Cambridge University Press, 

2004), 15, 74. 
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undergo alpha decay, which results in more complex reactions in the materials contained in 

warheads.354 The reactions also release electromagnetic radiation of various wavelengths, most 

importantly gamma radiation.355 The spectrum of gamma rays emitted by a specific isotope is unique 

to that isotope, which can be used as a mechanism to identify it.  

As has been discussed, the design of nuclear weapons includes different conformations of the 

fissile material, as well as other features such as tamper materials, a casing, and non-nuclear 

components. All of these characteristics affect the way that particles and electromagnetic radiation 

travel through the materials, including being scattered and absorbed in the process, and thus also affect 

the radiation signature that is obtained.356 The interactions can also result in new releases of radiation, 

such as when the neutrons escape from the fissile material and interact with other materials in the 

warheads.357 The geometry of the design and the composition of the materials in the warhead thus 

result in a distinguishable radiation signature that is unique to each type of warhead. Figure 4.11 shows 

an example of the radiographic profile of a Soviet warhead, measured in the Black Sea experiment in 

July 1989, using gamma rays.358 The warhead design and the radioactive materials determine the 

techniques that can be used for detection, as they define the range of radiation outputs that reach the 

warhead environment without being tampered.359 

                                                 
354 Steve Fetter et al., “Detecting Nuclear Warheads” in Reversing the Arms Race: How to Achieve and Verify Deep Reductions 

in the Nuclear Arsenals, eds. Frank von Hippel and R. Z. Sagdeev (New York: Gordon and Breach Science Publishers, 
1990), 268. 

355 Cottingham and Greenwood, An Introduction to Nuclear Physics, 15, 74. 

356 Committee on International Security and Arms Control, National Research Council, Monitoring Nuclear Weapons and 
Nuclear-Explosive Materials: An Assessment of Methods and Capabilities, 99. 

357 Ibid. 

358 Steve Fetter, Thomas Cochran, Lee Grodzins, Harvey Lynch, and Martin Zucker, “Gamma-Ray Measurements of a 
Soviet Cruise-Missile Warhead,” Science 248 (1990), 248. 

359 Steve Fetter et al., “Detecting Nuclear Warheads,” 267. 
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Figure 4.11. The radiographic signature obtained in the Black Sea experiment. Source: Steve Fetter 
et al., “Gamma-Ray Measurements of a Soviet Cruise-Missile Warhead,” Science 248 (1990), 248. 

Spectroscopy refers to passive techniques that detect the electromagnetic radiation absorbed, 

emitted, or scattered from materials.360 When spectroscopy is used in the context of warhead detection, 

the systems mostly focus on detecting neutrons or gamma rays (energy above the 0.1 MeV range), as 

they are detectable at least at two meters’ distance from the warhead.361 This is because the radiation 

flux (of either particles or electromagnetic radiation) decreases inversely as a function of the square of 

the distance from the warhead.362 Detecting the gamma-ray spectra of a warhead can be done with a 

                                                 
360 ‘Passive’ refers to the fact that the method does not involve active measures to excite the nuclei to induce the 

emission of radiation. 

361 Steve Fetter et al., “Detecting Nuclear Warheads,” 268. 

362 Ibid., 271. 
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high level of accuracy, and the measurement data also conveys the specific material composition of 

the fissile and other materials in the warhead.363 Neutron detectors, on the other hand, are less accurate 

with respect to the energy of the emitted neutrons, and cannot identify the origin. These passive 

methods, overall, have some disadvantages with respect to specific weapons designs, such as those 

that use neither plutonium as the fissile material nor depleted uranium as the tamper material.364 

Warheads without these design features, combined with heavy casings, might be very difficult to detect 

using passive methods.365 

Active methods can also be used in detecting warheads. Radiography refers to an imaging 

method that uses of electromagnetic radiation, below the wavelength of visible light, to determine the 

composition and structure of objects. Radiography can also be used with particles; neutron 

radiography, for example, is the process of using thermal neutrons to construct high-definition images. 

The idea is that the transmission of actively produced electromagnetic radiation or particles is 

measured, with the detection apparatus being on the other side of the object. In the context of 

warheads, this allows for the identification of the fissile material inside the warhead, because the 𝑈92 
235  

and 𝑃𝑢94 
239  isotopes react differently to the radiation than other materials.366 

The benefit of neutron radiography, compared to electromagnetic radiation, is that the 

attenuation patterns are more dissimilar between different elements and materials. The X-ray 

radiographs of the objects, for example, can be too similar to differentiate.367 This is shown in Figure 

4.12, which compares the attenuation patterns of materials for 120 keV X-ray radiography and neutron 

                                                 
363 Ibid., 270. 

364 Ibid., 278. 

365 Ibid. 

366 Ibid., 280. 

367 Attenuation refers to the reduction in intensity, as the radiation traverses through matter. (Source: Harold Berger, 
Neutron Radiography (Amsterdam: Elsevier Pub. Co., 1965), 335.) 
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radiography. The greater variation in neutron attenuation patterns, which are distinct even between 

isotopes, indicates the greater distinguishing ability of this method, compared to X-ray radiography. 

When comparing the use of neutron and gamma rays for radiography, the latter is not as effective for 

distinguishing heavy elements from fissile materials. On the other hand, gamma rays produce a higher-

resolution radiographs, because developing a well-collimated and monoenergetic neutron source and 

measuring the energy of transmitted neutrons is more difficult than that of gamma rays.368 Overall, 

the choice of radiography method is dependent on what the other potential materials in the warheads 

are. Thermal neutrons, for example, may not be sufficient to distinguish between the weapons-grade 

plutonium and uranium from materials that absorb thermal neutrons as efficiently, such as lithium 

and boron.369 

 

Figure 4.12. The mass attenuation coefficient as a function of the mass number, both for X-rays 
and thermal neutrons. Source: Harold Berger, Neutron Radiography (Amsterdam: Elsevier Pub. Co., 

1965), 335. 

                                                 
368 Collimation refers to the alignment of the transmitted neutrons from the source. (Source: Steve Fetter et al., 

“Detecting Nuclear Warheads,” 280.) 

369 Steve Fetter et al., “Detecting Nuclear Warheads,” 280. 
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The methods discussed in this section are used in the verification approaches described in the 

next chapter. As has been shown here, both radiography and spectroscopy are useful in different ways 

for verification purposes, and the choice of the measurement system depends on the specific 

conditions in question. Radiography would describe more precisely the shape of the object, whereas 

spectroscopy would determine what materials were used in it. These could also be combined with 

other techniques, such as neutron multiplicity counting and other assay methods.370 As will be 

discussed next, the central issue in these measurements is that the raw data of the spectra could be 

used to understand the design details of the warheads, which would be hard for states to accept for 

both technical and political reasons.371 This is the core challenge that the next chapter will discuss. 

 

VI. Significance of Weapon Design for Verification 
 

The previous analysis of the physics and design of nuclear weapons illustrates how the details 

of the warheads matter to the efficiency and yield of the weapons. From a state perspective, the value 

and utility of nuclear weapons is highly dependent on these two parameters, which is one dimension 

of why they prioritize secrecy with respect to the design of their nuclear weapons. A range of political 

and psychological variables are also at play, of course, but the following discussion focuses on the 

technical rationale for maintaining secrecy about weapons design. This is the fundamental reason why 

it will be important to develop verification mechanisms for warheads that maintain these design secrets 

concealed, to not force states to choose between disarmament and compromising this classified 

knowledge.  

                                                 
370 Shea, “The Trilateral Initiative: A Model for The Future?” 

371 Cliff, Elbahtimy and Persbo, “Verifying Warhead Dismantlement: Past, Present, Future,” 59. 
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Several arguments can be made in support of this culture of secrecy regarding nuclear arsenals. 

First, if the assumption is that the United States and Russia, or previously Soviet Union, have not been 

able to discover the details of each other’s nuclear arsenals through the means of intelligence, then 

maintaining these details would be a strategic advantage.372 From a technical perspective, the details 

of the bomb design determine the weapon’s efficiency, yield, and reliability. The parameters that are 

relevant to the efficiency of nuclear weapons involve the core size, expansion rate, pressure, neutron 

density, and energy dynamics.373 All of these variables change as a function of time, so the specific 

mechanics of the bomb design are critical for understanding its efficiency and yield.374 Information 

that would reveal these parameters can include details about warhead design and configuration, the 

capabilities of specific components, the quantity and isotopic composition of the weapons material, 

and other aspects relating to how the warheads operate. Sensitive information can also relate to the 

warhead environment, including the launch vehicles, storage operations, and many other aspects.   

Thus, a strategic argument can be made for maintaining a strict level of secrecy regarding design details. 

Another strategic argument for secrecy is that knowing the design details would allow other 

states develop countermeasures against the specific design characteristics of the state’s nuclear 

warheads.375 For example, “neutrons, in the right quantity, can “kill” a warhead, causing its plutonium 

to heat and expand, and causing its chemical high-explosives to degrade; if you knew exactly what 

level of neutrons would kill a nuke, it would play into strategies of trying to defend against a nuclear 

attack.”376 The revelation of design secrets would undermine nuclear deterrence, if other states would 

                                                 
372 Alex Wellerstein, “Secrecy, Verification, and Purposeful Ignorance,” Restricted Data: The Nuclear Secrecy Blog, 

September 23, 2016, http://blog.nuclearsecrecy.com/2016/09/23/secrecy-verification-purposeful-ignorance/. 

373 Reed, The Physics of the Manhattan Project, 70. 

374 Ibid. 

375 Wellerstein, “Secrecy, Verification, and Purposeful Ignorance.”  
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be able to neutralize the nuclear warheads. As will be discussed in the next chapter, the measurement 

of radiographic profiles of warheads, or other intrusive verification methods, could make ‘reverse-

engineering’ the warhead’s exact design possible.377 

Concerns about classified or sensitive information are specific to each state, due to the 

differences in their government-regulated classification systems but also based on the distinct status 

of their nuclear weapons program. States can be concerned that the information could be exploited 

by competing states and enable them to utilize the information to enhance their capabilities, if they 

perceive their capabilities superior to adversaries. On the other hand, the information can also reveal 

vulnerabilities about their capabilities and provide knowledge about the performance and reliability of 

the warheads, which are amplified if states regard their capabilities to be comparatively inferior or less 

developed. Especially if states are still in the warhead or material build-up phase, as the states are 

concerned with relative advantages to others. This could be interpreted from U.S.-Soviet relations 

during the Cold War, as well as in the current conditions in India and Pakistan. In the U.S.-Russia 

context, concerns about intrusiveness have decreased as the states have engaged in collaborative 

disarmament measures. The absence of this history of engagement, however, is likely to make other 

nuclear weapons states much more cautious regarding the revelation of design secrets. 

These differences between state perceptions of confidentiality and their sensitivity to different 

levels of intrusiveness in inspections should be acknowledged in the process of devising future 

verification approaches for disarmament treaties. Insights about specific state concerns can inform 

officials and experts of the best mechanisms in verification approaches that promote legitimacy and 

confidence in the eyes of different states, advancing their willingness to cooperate in the processes of 

negotiation, signature, and ratification. On the other hand, these perceptions are also malleable, which 
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is visible in the U.S.-Russia disarmament history. The entire idea of accessing classified and sensitive 

nuclear facilities, containing some of the most important national security capabilities that states can 

possibly have, was unimaginable before the United States and the Soviet Union established precedence 

in this during the Cold War. Progressively, they started opening up their facilities bilaterally for on-site 

inspections, overflight and satellite monitoring, and many forms of national technical means that 

enabled the buildup of trust between the two states. 

This chapter illustrates how technical, political, and historical factors relate to the design of 

nuclear weapons, and how a strong culture of secrecy continues to surround states’ nuclear weapons 

programs. One of the key challenges for future steps in nuclear arms control is to find ways around 

this veil of secrecy, acknowledging state sensitivities but also devising ways to overcome these barriers. 

This challenge is particularly important for creating new verification mechanisms for individual 

warheads, which is the focus of the next chapter. 
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5. Zero-Knowledge Verification 
 

I. Introduction 
 

As has been detailed in previous chapters, the core challenge in nuclear arms control 

verification is balancing the concerns of the host state in maintaining a strict level of confidentiality, 

and the interests of other involved parties in establishing confidence in the verification process. This 

balance between secrecy and transparency has been discussed in relevant arms control literature and 

evidenced in the negotiating dynamics of past disarmament efforts. The current verification 

approaches place more significance to host state concerns, as has been evidenced in the context of 

disarmament between the United States and Russia. Multilateral disarmament is likely to introduce 

even deeper and complex anxieties about the confidentiality and transparency dimensions of nuclear 

arms control verification processes. 

The conceptualization of this balancing act as a zero-sum game, however, may be misguided. 

As will be discussed in this chapter, new verification technologies and approaches can contribute to 

adjusting the scale between confidentiality and transparency, enabling future disarmament verification 

provisions to equalize these critical interests. Specifically, this chapter focuses on the process of 

warhead verification, where state concerns about protecting classified information about warheads 

and their design are contrasted with the interests of the inspecting party in ensuring the authenticity 

of the measurement process. Emerging approaches that employ physical cryptographic protocols aim 

to create a mechanism of high-security warhead verification where neither confidentiality or 

transparency would need to be sacrificed.  

This chapter will first provide a brief overview of the issues that drive the need for verification 

mechanisms that focus on individual warheads, with previous chapters providing a more detailed 

analysis of the historical background and past technical efforts. Next, the technical basis for physical 
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cryptographic warhead verification is introduced by discussing the general cryptographic concept of 

zero-knowledge proofs, and then focusing on their application in the physical domain, specifically in 

the authentication of nuclear warheads. After detailing the three most advanced implementations of 

these systems, the chapter will address the core unsolved challenge relating to authenticating the 

reference warhead. Finally, potential solutions to this question are explored through an analysis of 

relevant tools in modern cryptography and their application to analogous high-security authentication 

systems. 

II. Contextualizing the Challenge 
 

Disarmament verification is a complex interactive process that is connected to a wide range 

of technical and political mechanisms, depending on the content and context of the treaty being 

verified. The technical and political sides are in many ways decoupled from one another, but also 

inherently interconnected. When considering what forms of verification will be needed for any given 

disarmament treaty, a critical question is the informational value that the selected verification 

mechanisms provide for monitoring the treaty provisions, either independently or in conjunction with 

other mechanisms.378  

In future agreements focused on individual warheads, the most critical questions relate to the 

high-security authentication of warheads, their unique identification, and maintaining the continuity 

of knowledge until they have been dismantled.379 Perhaps the most challenging one of the three is the 

ability to conclusively and accurately authenticate a warhead and distinguish its type, while still 

maintaining the highest level of confidentiality in the process.380 The use of verification approaches 

                                                 
378 Private communication with Dr. Thomas Shea, current affiliation with the Federation of American Scientists. Cited 

with permission. 

379 Nuclear Threat Initiative, “Verifying Baseline Declarations of Nuclear Warheads and Materials.” 

380 Comley et al., “Confidence, Security and Verification: The challenge of global nuclear weapons arms control,” 11. 
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that would allow this are inherently intrusive and can reveal extremely detailed, classified information 

about warhead design. This is a non-negotiable for nuclear weapons states, as the information could 

be exploited by other states, could reveal vulnerabilities in warhead function, and would also place the 

states in noncompliance with Article I in the NPT, which prohibits nuclear weapons states from 

disclosing proliferation-sensitive information.381  

The future of nuclear disarmament will look very different from previously applied arms 

reduction mechanisms, which have not defined warheads themselves as the treaty-accountable item, 

but have rather focused on delivery vehicles and launchers.382 As discussed in an earlier chapter, unique 

characteristics of the U.S.-Russia context have facilitated this form of disarmament, enabling the states 

to circumvent the challenge of accurately counting and verifying individual warheads. Both sides have 

had a high tolerance for uncertainty in treaty limits and verification effectiveness, driven by the vast 

size of their nuclear arsenals, and have been able to independently monitor compliance through 

advanced capabilities in national technical means (NTM).383 Importantly, analysis of the different 

negotiation circumstances illustrate that in many cases there would have been political will for deeper 

reductions and wider capability coverage, if verification mechanisms had been available. 

As has been detailed in an earlier chapter, few of the facilitating factors in past disarmament 

processes will hold true for future disarmament, whether in the context of continued U.S.-Russia 

bilateral agreements or multilateral disarmament treaties, which will make it essential to shift to a 

disarmament paradigm that focuses on addressing individual warheads as the treaty-accountable item. 

When discussion concerns hundreds of warheads or fewer, the tolerable margin of error diminishes. 
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At these levels, verifying and tracking each individual warhead will become critical. This also involves 

obtaining knowledge about the type and status of a specific warhead and being able to re-authenticate 

these attributes in later stages of the dismantlement process. Agreements at these levels will also 

involve new categories of warheads and items, including non-deployed and non-strategic warheads 

and warhead components.384 Non-strategic warheads would be impossible to verify through previously 

employed accounting methods, as these capabilities are deployed on dual-capable launchers and other 

delivery systems.385 Unless the arms reduction agreements would also eliminate these dual-capable 

systems, such as fighter aircraft, the only option would be to individually verify and eliminate 

warheads.386 In either case, defining individual warheads as the treaty-accountable item becomes 

essential when arms control negotiations start addressing nuclear warheads in storage, whether 

strategic or non-strategic.387 

III. Past Verification Approaches 
 

The verification mechanisms in the INF, START I and II, and New START have started to 

approach the issue of individual warhead verification. Importantly, however, the verification 

provisions thus far have been a binary true/false measurement of the absence of a nuclear warhead.388 

These agreements do not allow the use of radiation detection equipment to confirm an object to be 

                                                 
384 Benjamin Loehrke, “A nuke by any other name,” Bulletin of the Atomic Scientists, May 12, 2012, 
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385 Non-strategic nuclear weapons are defined as shorter-range and lower-yield capabilities, such as ballistic or cruise 
missiles. (Source: Amy Woolf, Nonstrategic Nuclear Weapons (Washington D.C.: Library of Congress, Congressional 
Research Service, 2016), available at https://www.fas.org/sgp/crs/nuke/RL32572.pdf.) 
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nuclear, let alone more specific information about warhead characteristics or configuration.389 As 

disarmament continues, this may become a key capability requirement for verification provisions, 

driven by the need to distinguish warheads or their components based on their type or characteristics, 

not only their nuclear or non-nuclear nature.390  

Prior efforts to overcome this challenge have explored the use of an attribute verification 

approach, combined with information barriers that employ complex algorithmic mechanisms 

embedded to the equipment software or hardware.391 Attribution verification intends to authenticate 

a warhead by confirming that the claimed item conforms to a pre-defined set of characteristics, such 

as the presence of nuclear material, its isotopic composition, and mass above a certain threshold.392 

One of the challenges with this approach is whether it can use sufficiently targeted attributes to 

authenticate and distinguish warheads.393 The selected attributes must be unclassified, as they are 

known to all involved parties, which limits the options that could be considered.394 States may be 

concerned that by defining the specific attributes of a certain treaty-limited warhead, they would be 

disclosing too detailed information about their design and functional characteristics. In the case of the 

INF Treaty, for example, the United States needed to provide detailed information that would allow 

the differentiation between the treaty-accountable SS-20 intermediate-range ballistic missiles from the 

non-limited SS-25 intercontinental ballistic missiles.395 The challenge was that the missile types used 
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the same first stages, including engines and fuel tanks, and were indistinguishable based on external 

characteristics.396 In this case, determining the crude fingerprint with a simple neutron detector was 

sufficient to distinguish the missiles accurately and was acceptable to both the United States and the 

Soviet Union.397 Identifying and distinguishing other types of treaty-accountable items, however, may 

require much more detailed information. The use of non-nuclear attributes has also been proposed in 

differentiating between weapons types, but these may also be classified and thus unavailable for use 

as attributes.398 

The attribute verification approach makes it essential to use information barriers to protect 

the measurement information. This, however, also makes the measurement system inaccessible to the 

verifier and thus makes it difficult to establish trust in the obtained data.399 These requirements result 

in highly complex systems, making it difficult to simultaneously achieve equipment certification by the 

host and authentication by the inspector.400 For information protection purposes, the information 

barrier used in the Trilateral Initiative contained a threshold comparison analyzer, an output data 

barrier, a security status monitor, cabinets and cable shielding, and other structures that intended to 

protect the measurement information.401 For data collection, the system employed a multiplicity shift 

register and a multichannel analyzer, as well as an input data barrier, that aimed to ensure legitimate 

data collection capability.402 The host concern with the analysis equipment and software, however, is 
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that extraneous code could be integrated to the system.403 In addition, these systems must be used 

with trusted processors, which must adhere to equally strict requirements for non-intrusiveness, 

transparency, and authenticity, and validity.404 Mistrust in the use of information barriers also emerges 

at the processor level, as reflected in Russia’s engagement in developing their own trusted processor 

design based on a specific set of priorities.405 

Information barriers are necessary for the system’s ability to protect information, but on the 

other hand, also make certifying and authenticating the equipment very difficult. This may be 

technically feasible, especially as their development goes further. From a political perspective, 

however, this complexity and lack of transparency could be used against them. It would be easy to 

argue – as the Russians did towards the end of the Trilateral Initiative – that they will require a 

significant amount of time to certify the equipment, and even then, they may not be able to gain 

sufficient confidence that it would not conduct proscribed measurements or collect the data 

clandestinely. This time burden and trust deficiency could eventually be used as a reason to disqualify 

these systems from actual use, which would facilitate a justification for not proceeding with 

disarmament. This highlights the dual-use nature of verification as a political tool – it can be used as 

a confidence-building asset, but also as a means of fostering suspicions. 

The template approach employs a different strategy in warhead verification, relying on 

differential measurements between an inspected item and one that is known to be authentic.406 The 

basic axiom is that if an item is sufficiently similar, in ideal conditions identical, to a warhead that has 
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previously been proven as authentic, it can legitimately be declared as a warhead as well.407 

Comparative measurement systems based on the template approach can be designed to be simpler 

and easier to authenticate and certify, but in traditional template verification systems, information 

barriers are still needed to protect the collected data.408 These past efforts to develop template-based 

approaches include the Nuclear Material Identification System (NMIS) by the Oak Ridge National 

Laboratory; the Controlled Intrusiveness Verification Technology (CIVET) system, developed by the 

Brookhaven National Laboratory; the Trusted Radiation Identification System (TRIS) by the Sandia 

National Laboratories; and the Next Generation Trusted Radiation Identification System (NG-TRIS) 

by Sandia as well.409 The development of these systems has also been driven by the need of nuclear 

weapons states to identify their own warheads.410 These measurements systems have a demonstrated 

ability to distinguish between warhead and component types, but all of them rely on information 

barriers and as a Russian assessment of the CIVET system shows, important concerns about 

intrusions remain.411 Particularly, the systems preserve the template data, which represents the 

classified warhead signature and thus needs to be protected throughout the verification process.412 
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Most systems developed thus far have used gamma-ray or neutron spectra as the signature, but it 

would be possible to use other, non-nuclear characteristics as well.413  

Novel verification protocols developed in the past several years have overcome the use of 

information barriers by employing physical measurement methods that inherently protect classified 

information.414 These protocols employ physical cryptography to protect classified information, 

conforming to the idea of zero-knowledge proofs. Their strength in circumventing the use of 

information barriers by using the zero-knowledge property, however, has also created challenges that 

remain unsolved. First, while these novel approaches push the issue of information protection from 

electronic barriers to physical ones, all implementations thus far require the host to maintain some 

aspects of the measurement system secret in order to maintain the zero-knowledge property of the 

protocol. Second, all the current implementations of these protocols are based on template verification 

protocols, which rely on the use of an authentic reference warhead. Even if the measurements 

conclusively prove that the two compared items are identical, this result doesn’t provide assurance of 

the authenticity of the reference warhead. This ‘golden warhead’ challenge remains the core challenge 

in all template verification systems, whether based on traditional or zero-knowledge protocols. 

IV. General Idea of Zero-Knowledge Proofs in Cryptography 
 

Goldwasser et al. introduced interactive proof systems for the first time in 1985, establishing a 

computational complexity measure that would determine how much additional knowledge is needed, 

apart from the end result, to prove a theorem to be true.415 The insight was that interaction between 
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the prover and the verifier would allow this to be zero in an ideal case, constituting a zero-knowledge 

proof.416 The main application of these proofs are in cryptographic protocols, which are 

communication mechanisms that ensure the confidentiality, authentication, and integrity of 

interactions in an insecure environment.417 When cryptographic protocols employ zero-knowledge 

proofs, the authentication of a statement or other exchange of knowledge is done without revealing 

the underlying solution or any additional information.418 

Three important properties apply to all zero-knowledge proofs – completeness, soundness, 

and zero-knowledge.419 In the ideal case, these properties are fully true, but in non-ideal conditions 

they exist on a probabilistic distribution, defining a completeness error and a soundness error for the 

protocol.420 Completeness refers to the fact that an honest verifier can always be convinced of the 

truthfulness of a genuinely true statement by an honest prover. Thus, with perfect completeness, the 

likelihood of false negatives is zero. Soundness, on the other hand, controls for false positives – if a 

statement is false, a cheating prover could not prove it to be true to an honest verifier. As with 

completeness, however, soundness is not necessarily perfect. Lastly, the zero-knowledge aspect 

certifies that even when cheating, the verifier cannot learn any information about a correct proof or 

from an honest prover.421  

Commitment protocol is another important dimension of zero-knowledge proofs.422 Here, the 

first party to an interaction commits to some value, which remains hidden to the second party 
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throughout the proof process. After the proof has been completed, however, the two parties can 

decide to reveal or decommit the value. This enables the second party to learn the value and ensure 

that it was what was originally agreed. This leads to binding, meaning that after the second party knows 

the unique value, it is impossible for the first party to change it.423 

V. Physical Zero-Knowledge Proofs 
 

The concept of zero-knowledge proofs can also be applied to propositions relating to the 

physical world.424 In this context, zero-knowledge proofs verify propositions about physical properties 

of objects without revealing any information apart from the true/false result. Physical zero-knowledge 

proofs can be carried out without the involvement of computers, only through human-aided 

implementation of the protocol in question. This is a key feature of the protocols, addressing the 

confidentiality and integrity issues that the involvement of computers may create. It is also possible to 

construct hybrid systems that are based on human-implemented systems that are also complemented 

by hardware, such as physical measurement systems. Only one of the parties has full access to the 

considered object and the measurement system, with the intent of keeping them out of bounds to the 

verifier but still being able to verify the obtained results.425  

Physical zero-knowledge proofs can be formalized using Universally Composable (UC) 

security framework, under which a physical protocol is separated into a logical and physical layer.426 

The logical layer exists in a hybrid world, which is essentially a reduced and abstracted version of the 

real world. The physical measurements of the protocol only interact with the physical layer, but any 
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interaction at this level also creates an effect on the logical layer in the hybrid reality. The verifier has 

access only to this logical layer, but the universal composition property implies that the knowledge 

obtained from this layer also reflects the nature of the physical layer. Thus, the properties of zero-

knowledge proofs – completeness, soundness, and zero-knowledge – can be computed at the level of 

the logical layer. As any statement that is valid on the logical level in the hybrid world is also valid in 

the physical world, the inspector also can be convinced of the correctness or incorrectness of the 

original proposition in the real world.427 

VI. Application to Warheads 
 

Applying the idea of physical zero-knowledge proofs to warhead verification could be 

instrumental for addressing the conflict between state interests in confidentiality and inspector 

concerns about transparency.428 When applied in this context, the host state serves in the role of the 

prover, and the inspecting agent or agency conforms to the role of the verifier.429 The nature of the 

propositions, relating to warhead properties, defines the conditions of the protocol and could 

theoretically represent either an attribute or template verification approach. Proving a proposition 

such as “The fissile material at the core of this warhead has a ratio of  𝑃𝑢 
240  to 𝑃𝑢 

239  of less than 0.1 and thus 

represents an authentic warhead” would represent an attribution statement, derived from the conditions 

defined in the Trilateral Initiative, and could be assessed using physical zero-knowledge proofs.430 The 
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statement “The radiographic signature of this warhead is statistically indistinguishable from that of a pre-authenticated 

warhead of the same type and thus the warhead is authentic,” on the other hand, would refer to a template 

verification protocol and could similarly be proven using physical zero-knowledge proofs.431 

The concept of physical zero-knowledge proofs from this abstract mathematical level has been 

demonstrated in practice using the template verification approach.432 These proposals employ physical 

measurement systems that inherently protect the sensitive information contained by warheads. These 

measurement systems are non-electronic, which prevents interference and tampering with the system 

before, during, or after the measurement.433 The approaches have been proven capable of achieving 

the principles of completeness, soundness, and zero-knowledge in the correct conditions.434 As 

discussed earlier, the last principle only remains true if the host maintains honesty.435 Thus, the zero-

knowledge property requires the host to follow the procedure, but it is resistant to verifier cheating – 

no sensitive information can be leaked even if the verifier does not follow the protocol.436 

VII. Neutron Radiographic Profile Comparison 
 

The idea proposed by Glaser et al. from Princeton University employs differential 

measurements of the neutron radiographic profiles of warheads.437 As was discussed in the previous 
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chapter, neutron radiographs are created by allowing neutrons to penetrate material and then 

measuring this transmission with detectors on the other side of the object. The system used in this 

approach does not record the neutron signatures of the two warheads being compared, but instead 

utilizes superheated emulsion detectors as a proxy for carrying out the comparison.438 These emulsion 

detectors are made of superheated octafluorocyclobutane (C4F8) that are made to be sensitive to 

neutrons above 1 MeV, but insensitive to gamma radiation.439 In addition, the emulsion detectors do 

not reveal information about neutron multiplicity, only about neutron fluence.440 When neutrons that 

pass through the inspected object interact with the superheated emulsion, macroscopic bubbles are 

generated in the emulsion matrix.441 This is because the matrix is in a meta-stable state and contains 

specific sites that can undergo vaporization when a small amount of energy enters the system, such as 

through a neutron.442 Thus, the neutron radiographs of the warheads are manifested as ‘bubbles’ on 

the superheated emulsion detectors. These bubbles can be counted with magnetic resonance imaging 

or optical tomography, and the neutron count in each detector is reflected as a pixel in the final 

image.443 The detectors can be certified at any point by using a calibrated neutron source, or using a 

test object to check the calibration data given by the host state.444 

The neutron source used in the system is a 14 MeV collimated neutron beam, with a 4-minute 

exposure time that creates a maximum of 1,200 bubbles (Nmax), with some variance inherent to the 
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measurement system. This system is depicted in Figure 5.1. The 14 MeV neutrons were decided on 

the basis that these penetrating high-energy neutrons are sensitive enough for differences both in 

geometric conformation and material composition of the warhead.445 Neutrons at this energy, 

however, may not be able to sufficiently distinguish between fissile and fissionable materials, but 

combining the use of 250 keV neutrons could solve this potential challenge.446 The neutron source 

used was a deuterium-tritium neutron generator, which yields approximately 108 neutrons per 

second.447 The exposure time is dependent on what the target number, Nmax, of bubbles is, which also 

determines the confidence level in the experiment. The variance associated with the detectors is shown 

in Figure 5.2. 
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Figure 5.1. The system design incorporates the principle of template approach (a), superheated 
emulsion detectors (b), neutron radiography (c), and positional variance (d). Source: Sébastien 

Philippe, Robert Goldston, Alexander Glaser, and Francesco d’Errico, “A physical zero-knowledge 
object-comparison system for nuclear warhead verification,” Nature Communications 7 (2016), 3. 
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Figure 5.2. The variance associated with the superheated emulsion detectors. Source: Sébastien 
Philippe, Robert Goldston, Alexander Glaser, and Francesco d’Errico, “A physical zero-knowledge 

object-comparison system for nuclear warhead verification,” Nature Communications 7 (2016), 6. 

 The fluence response function, ƒ reflects the relationship between neutron interactions, 

whose number depends on the neutron fluence that arrived at the detector, and the resulting bubble 

count. This establishes the calibration of the equipment, which can be certified by the inspector at any 

point. After this, unique radiographs of warheads can be measured, determined by its configuration, 

shielding, and material properties, and with the measurements being dependent on the fluence 

response function. The complimentary radiographs can be created through an inverse of the fluence 

response function.448  
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In the first stage of the protocol, the complement neutron radiograph of the reference warhead 

is preloaded into the detector.449 This pre-loading phase is done privately by the host, without inspector 

access to the system. Next, the inspected warhead is irradiated, with the resulting signature being added 

to the preloaded detectors. If the two warheads are sufficiently similar – in the optimal case, identical 

– the inverse signature that was preloaded, and the newly measured signature, should complement 

each other and the end result should be essentially a blank reading, only reflecting the Poisson noise 

in the measurement environment. This is because the spread of neutrons is inherently governed by 

Poisson statistics, similar to many other physical measurement data.450 Any deviation from this should 

be due to the statistical error in the measurement process, which can be corrected partially via 

calibration, or the small variance in the reference radiographs. The ability to repeat the measurements, 

however, allows the inspector to determine the acceptable margin for error for false positives and 

negatives.451  

Experimental results from the verification approach are shown in Figures 5.3-5.6. Figure 5.3, 

panel a, shows the difference between a valid item and different diversion scenarios, and has been 

corrected for occultation, or the fact that some of the bubbles are hidden in the bubble counting 

process.452 It is evident that the spoofs can be distinguished from the valid item, with each diversion 

scenario providing a different pattern. Panel b shows how the experimental results compare with the 

computational Monte Carlo simulations. 
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Figure 5.3. Experimental results from detector exposure (a) and comparison to Monte Carlo 
simulations (b). Source: Sébastien Philippe, Robert Goldston, Alexander Glaser, and Francesco 

d’Errico, “A physical zero-knowledge object-comparison system for nuclear warhead verification,” 
Nature Communications 7 (2016), 5. 
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As was discussed before, neutron counts on the detectors can be reflected as pixels to form 

an image. This is reflected in Figure 5.4, where the resulting images of the detector arrays are shown. 

When the comparison of the reverse radiograph of the template (middle image) is subtracted from a 

valid item (left), only Poisson noise would be visible in the resulting comparison. If this reverse 

radiograph is compared to a significantly different spoof item, the resulting comparison will reflect 

this. These diversion scenarios are shown in Figure 5.5. These results show that any modifications to 

the reference or the inspected item, both in terms of configuration or material composition, could be 

detected. Importantly, the physical implementation of the system did not reveal the underlying 

information about identical items, reflecting the zero-knowledge nature of the system.453 

 

 

Figure 5.4. The comparison of a valid and invalid item based on the template approach. Source: 
Alexander Glaser, Boaz Barak, and Rob Goldston, “A New Approach to Nuclear Warhead 

Verification Using a Zero-Knowledge Protocol,” INMM 53rd Annual Meeting (2012), 8. 
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Figure 5.5. The Monte Carlo simulation results from a match scenario and three diversion 
scenarios. Source: Alexander Glaser, Boaz Barak, and Rob Goldston, “A New Approach to Nuclear 

Warhead Verification Using a Zero-Knowledge Protocol,” INMM 53rd Annual Meeting (2012), 8. 

 Inspector and host interaction with the system is a critical dimension of the implementation 

of the approach.454 After the preloading is done, the host must offer a certain number of pre-loaded 

detectors and their calibration data to the inspector, who randomly chooses which ones are used in 

the measurements. The rest can still be tested for their proper functionality. In addition, the protocol 

also involves several warheads that could be chosen for verification by the inspector. Since the host 

claims that all of the warheads are of the same type as the reference warhead(s), then any combination 

should result in a valid result. The randomization facilitated by these two choice conditions is intended 

to prevent the host from modifying the reference warhead such that it would match the warhead being 

verified. In addition, both parties are allowed to monitor the source neutron fluence to ensure that the 

agreed amount is being transmitted to the detector.455 Overall, the zero-knowledge nature of the 

system is dependent on the host following the protocol, as the host must offer a warhead that matches 

the template in order to prevent any information from being revealed. If this is not the case, the 
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resulting bubble count, Nmax, will differ from the expected one, and may convey sensitive 

information.456 

VIII. Isotopic Tomography Approach 
 

A second implementation of a physical cryptographic system, proposed by Kemp et al. from 

the Massachusetts Institute of Technology, has important conceptual similarities with the approach 

proposed by Glaser et al., but also clear differences. The approach is based on the proposition that if 

a warhead is identical, or sufficiently identical, to an authentic warhead configurationally, spatially, 

isotopically, and is otherwise comparable in macroscopic features, then it is an authentic warhead as 

well. While there can be microstructural differences that are not captured by these comparison points, 

it would be exceedingly difficult to manufacture a mock warhead that would only diverge from the 

authentic warhead at a microscopic level. Thus, the appropriate physical measurement system must 

be able to accurately determine these macroscopic features, but it does not need to distinguish 

microscopic structure.457  

The system of choice is isotopic tomography, which allows the determination of the 

distribution of each isotope present in the warhead and creates a single-pixel radiograph of the 

template and inspected warheads, with the measurements taken at random orientations.458 The 

measurement system is shown in Figure 5.6 and 5.7. The two signatures are created through three-

dimensional information, but the reduction of the image conceals the actual spatial composition of 

the objects. The isotopic tomogram, depicting the warhead, is created through transmission nuclear-

resonance fluorescence that employs a monoenergetic high-energy X-ray beam. In simulations of the 
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system, a bremsstrahlung X-ray source was used as a photon source, which is not ideal from the 

perspective of information processing or radiation dose, but other options are also available.459  

 

Figure 5.6. The system design in the Kemp et al. approach. Source: R. Scott Kemp et al., Figure S.3, 
“Supporting Information Physical Cryptographic Verification of Nuclear Warheads,” for R. Scott 
Kemp et al., “Physical Cryptographic Verification of Nuclear Warheads.” Proceedings of the National 

Academy of Sciences 113 (2016): 8618–8623. 

 

Figure 5.7. The system design in the Kemp et al. approach. Source: R. Scott Kemp et al., “Physical 
Cryptographic Verification of Nuclear Warheads,” Proceedings of the National Academy of Sciences 113 

(2016): 8619. 
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The warhead contains a large number of nuclei from different elements, each of which will 

absorb photons of certain energy from the beam, based on their unique absorption spectrum. These 

spectra are unique to each isotope and can thus be used to identify each material. The confluence of 

these interactions between the beam and the warhead materials, reflected as absorption lines in the 

beam spectrum, depends on the structural and isotopic features of the warhead.460 When these 

measurements are repeated at different orientations, the overall geometry of the warhead is produced. 

This information contained in the beam, however, is not directly collected by the measurement system, 

as it would reveal the warhead structure. The beam travels through foils, which are composed of the 

isotopes of interest at different concentration levels and thus also interact with the beam. Some of the 

photons in the beam are still at energy levels that can be absorbed by the foil nuclei, if a resonant 

isotope is present. When the excited foil nuclei return to the ground state, a gamma ray is emitted. 

This nuclear-resonance fluorescence, which is a function of both the warhead and foil characteristics, 

is detected by high-purity germanium (HPGe) detectors and constitutes the final, unclassified results. 

Using the same foil, but measuring different items, thus enables the comparison of these results and 

determines whether or not the objects are identical.461  

Sensitive information is inherently protected by the system, as long as the composition of the 

foil remains secret.462 Thus, the foil serves the role of a one-time-pad physical encryption key. The foil 

is created by the host, who maintains possession of the device throughout the measurement process 

and discards it after the process has been completed. The foils should contain a minimum level of all 

agreed isotopes and thus produce a minimum signal in the final results, which allows the inspector to 

certify the sensitivity of the foil. The inspector leads the measurement process and defines the specific 
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measurement orientations, which constitutes one obstacle to cheating from the host side.463 In this 

method, similar to the previously described neutron-based approach, confidence can be built through 

having a large number of reference and inspected warheads available from which the inspector will 

choose.  

Simulations of the system illustrate that it is able to detect several spoof scenarios, including 

some that may be indiscernible through other radiological techniques.464 In general, information 

protection is inherent to the physical processes used by the system, but some concerns remain about 

the inspector’s ability to discern estimations of the foil or the warhead’s composition. These can be 

managed through different physical and mathematical approaches, enabling a level of confidence that 

is acceptable in practical conditions. The system has not been demonstrated in a real setting, however, 

which creates both opportunities and challenges. 

One important concern in this approach is that the foil, or the physical cryptographic key, is 

completely inaccessible to the verifier. Compared to the previous approach, which constructed a 

physical template through the superheated emulsion detectors, this does not provide anything tangible 

for the inspector to assess after the measurement. This could be a concern, if the inspector wanted to 

certify that no interference had taken place during the process. 

A critical challenge in both the Glaser et al. and Kemp et al. approaches is that the template 

and the instrumentation becomes inaccessible to the inspector after they have been prepared for 

measurement.465 Both ideas pre-load the measurement system with sensitive information, which also 

rules out inspector access to the system after the measurement has been completed. In the Glaser et 
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al. proposal, the host preloads a reverse radiographic signature to the detector, which is not revealed 

to the inspector. Furthermore, the positive result would be a null result within a certain margin of 

error, which would not allow the inspector to understand what the starting point was. In the Kemp et 

al. proposal, the host constructs the foil and maintains its composition as a secret throughout the 

experiment, discarding it after use. These approaches make it impossible for the inspector to 

authenticate the template or the measurement system after the conclusion of the measurement 

process.466 

IX. Two-Dimensional Imaging Approach 
 

A third approach developed by Marleau et al. at the Sandia National Laboratories intends to 

solve this challenge by not preloading the system with any sensitive information.467 This would allow 

the inspector to authenticate the instrumentation post-measurement, which would provide confidence 

that there was no interference during the measurement process. The system still conforms to the 

principle of zero-knowledge proofs by not measuring sensitive information during the process. A key 

difference to the previous approaches is also that the blank result is maintained throughout the 

dynamic measurement process, as opposed to only becoming evident at the end. This could enable 

the verifier to interact with the system during the measurement process, not only in assessing the end 

results.468 

The system combines a two-dimensional time-encoded imaging (2D-TEI) system and a 

neutron-emitting source to create a high-resolution radiograph of the items under measurement.469 

This system is shown in Figure 5.8. This measurement concept is referred to as CONFIDANTE 
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(CONfirmation using a Fast-neutron Imaging Detector with Anti-image NULL-positive Time 

Encoding), highlighting the fact that no information barriers are needed in the measurement process. 

The 2D-TEI is a cylindrical coded mask, composed of high density polyethylene, that rotates around 

the item under measurement. In the center, there are one or more deep liquid scintillator cells, which 

serve as the detector pixel. These pixels are time-encoded, with the rate being modulated by the mask 

rotation. Here, the information about the radiation fields produced by the warheads is composed into 

the coded mask, which is essentially a manifestation of the warhead design and composition.470 This 

is shown in Figure 5.9. 

 

Figure 5.8. The system design for the Marleau et al. approach. Source: Peter Marleau and Erik 
Brubaker, “An Implementation of Zero Knowledge Confirmation using a Two-dimensional Time-

Encoded Imaging System,” INMM 57th Annual Meeting (2016): 3. 
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Figure 5.9. The principle of the two-dimensional imaging system. Source: Peter Marleau and Erik 
Brubaker, “An Implementation of Zero Knowledge Confirmation using a Two-dimensional Time-

Encoded Imaging System,” INMM 57th Annual Meeting (2016): 5 

Similar to the Glaser et al. method, the system protects sensitive information by superimposing 

the reverse measurement result of the reference warhead with the measurements obtained from the 

inspected warhead.471 The reverse result has the opposite modulation from the other result. In practice, 

the comparison is carried out by constructing the mask out of two parts, with the first half of the mask 

pattern being the anti-mask of the reference warhead and the second half the mask of the inspected 

warhead. The cylindrical mask is placed between the two warheads under measurement. As the 

cylindrical mask rotates, the signals are superimposed, with the contributions from each direction 

varying as a function of the measurement angle. Since the signals from the two warheads are 

complements of each other, the resulting signal should always be the same (blank) independent of the 
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rotation angle. The resulting signal should only reflect random noise that is inherent to any physical 

measurement system.472  

Modeling this system with two identical items creates a count value distribution that is similar 

to expected random noise (Poisson noise).473 The variance between the noise in the measurement 

results and an ideal Poisson distribution is reflected in the Feynman Y value, which essentially 

measures how Poisson-like the noise is. In the ideal case, where the noise consists only of statistical 

noise, the Feynman Y value should be zero. Experimentally, comparing two identical items produces 

a result very close to that.474 Experimental results of the system are shown in Figures 5.10 and 5.11. 

Knowledge of the count distribution, however, would not allow the reconstruction of the original 

source distributions, since the signal is a summation of complements. This is only true, however, if 

the two measured items are identical and symmetrically aligned. In the case that only one item is 

present, or that the two measured items are very different in configuration, it is possible to infer the 

source configurations based on the measurement data. This may create the risk of information 

disclosure, including in situations where two identical warheads are improperly situated vis-à-vis the 

cylinder.475 Thus, the count distribution may need to be modified through sequestration or other 

means to prevent any information being accidentally or purposefully revealed in the process.476  
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Figure 5.10. Simulation results. Source: Peter Marleau and Erik Brubaker, “An Implementation of 
Zero Knowledge Confirmation using a Two-dimensional Time-Encoded Imaging System,” INMM 

57th Annual Meeting (2016): 6. 

 

Figure 5.11. Simulation results. Source: Peter Marleau and Erik Brubaker, “An Implementation of 
Zero Knowledge Confirmation using a Two-dimensional Time-Encoded Imaging System,” INMM 

57th Annual Meeting (2016): 7. 
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One benefit of the system design is also that it serves as a full imaging system, capturing all 

radiation sources in the measurement environment.477 This creates an opportunity for the inspector to 

control the measurement conditions, for example by inserting an additional radiation source that can 

be checked during the result analysis. When the source is placed symmetrically with respect to the two 

measured items, it does not interfere with their comparison, but adds an additional measurement 

result. The system function, thus, could be authenticated through this control radiation source. Other 

aspects of the system also support authentication by the inspector, including that the system is 

accessible before and after the measurement is done, since no information about the test items is pre-

loaded into the system.478  

Both of these system characteristics also lend confidence to the host’s certification assessment. 

If the total signal strength measured by the system is considered to be sensitive, the host could be 

allowed to place an additional radiation source, whose value is only known by the host, above the 

detector pixel and thus offset the measurement signal such that the contributions from the two 

measured items would remain confidential.479 

X. Authenticating the Reference Warhead 
 

These physical cryptographic protocols based on the zero-knowledge property do not rely on 

electronic information barriers that can be impossible to authenticate for the verifier.480 Thus, they are 

able to solve one of the key challenges that all previous verification systems, both attribute- and 

template-based, have faced. Physical cryptographic verification systems inherently protect sensitive 

information based on the measurement technologies employed in the protocols, which never measure 
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the sensitive information itself.481 Proper design can ensure easy certification and authentication of the 

systems for all parties involved and can theoretically be implemented with any equipment, making the 

issue of host- or verifier-supply insignificant.482 

The most significant challenge with the current implementations of physical cryptographic 

verification approaches, as with all template-based verification systems, relates to the question of 

trusting the reference warhead.483 In all forms of template verification, an authentic ‘golden warhead’ 

must be established, allowing the comparison of this reference to an item under inspection.484 When 

considering this challenge, one important question relates to terminology. In the traditional template 

approach literature, the reference measurement, not the item, is considered as the template. In the 

context of warhead verification, this would translate to considering the radiological signature or other 

measurement result of the warhead as the template, not the physical reference warhead itself.485  

Neither the Glaser et al. or Kemp et al. proposals, however, establish a template in the same 

way as traditional template verification systems do.486 The Glaser et al. approach uses the preloaded 

reverse radiographs as templates of a different kind, but as discussed earlier, those are not accessible 

or authenticable to the inspector. The preload data is classified, in the same sense as a template behind 

an information barrier. The Kemp et al. approach does not establish anything comparable to a template 

– the reference warhead is always used as the template. This makes maintaining continuity of 
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knowledge of the reference warhead essential for the protocols, since the legitimacy of the comparison 

is contingent on the warhead’s authenticity.  

The Marleau et al. proposal does not preload any sensitive information to the system and thus 

enables the inspector access to the instrumentation at all times, but it also circumvents the 

establishment of a traditional template.487 This approach is very similar to Glaser et al. in the sense that 

a measurement and its complement are compared to each other, with a confirmatory result being a 

blank. The challenge with these approaches, however, is that the inspector cannot access the data that 

produced this result – it only confirms that the reference item was identical to the inspected item. 

This, of course, is the core idea of zero-knowledge protocols and allows the protection of sensitive 

information. On the other hand, it also prevents the assessment of the authenticity of the reference 

warhead. 

Several ideas have been proposed for ensuring the authenticity of the reference warhead. The 

inspector could be allowed to select the reference warhead from active delivery systems, as states 

would be highly unlikely to deploy counterfeit warheads in these conditions and undermine the 

weapons’ deterrent capability.488 Deception mechanisms are still conceivable, for example a situation 

where the host state learns beforehand which actively deployed warheads would be selected as 

templates and can replace them with blanks. Furthermore, this template selection mechanism could 

not be used for non-strategic nuclear warheads deployed in dual-capable systems, or those located in 

storage. Chain of custody methods could be one possible solution, but states may be unwilling to allow 

this level of access to their critical defense facilities and information.489 As discussed in a previous 
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chapter, START I and New START contained provisions for verifying the non-nuclear nature of 

warheads through radiological measurements, but confidentiality concerns prevented more intrusive 

measurements on nuclear warheads. 

XI. Future Directions 
 

The fundamental assumption in zero-knowledge verification protocols is that no information 

should be released, or even measured, beyond the validity of the proposition under consideration. 

This property makes it inherently impossible to infer anything about the reference warhead. Would it 

be possible to allow some measurement information to be accessible to the verifier, however, for the 

purpose of authenticating the reference warhead? Relaxing the condition of zero-knowledge could 

open new opportunities for solving the ‘golden warhead’ challenge. Verification protocols that rely on 

electronic information barriers aim to do this by allowing the measurement of classified information, 

but then concealing it behind a trusted information barrier and only displaying an unclassified result.490 

This gain in the legitimacy of the measurement results, however, comes with the increased vulnerability 

to intricate spoofing attempts from either the host or the verifier.491 Thus, both mechanisms of 

information integrity have inherent tradeoffs. Creating a verification system that would integrate both 

the attribute approach and the template approach could be one potential way to balance the different 

advantages and obstacles.492  

As mentioned earlier, the core criteria for selecting the methods used in verification protocols 

should be the questions they are able to answer, either alone or in parallel with other verification 
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mechanisms.493 This informational value can justify the use of a particular mechanism, but this 

justification must be perceived as legitimate by all involved parties in the treaty. Reflecting back to 

mechanisms based on information barriers, their ability to provide information about the legitimacy 

of the measurement result – potentially, that a warhead is authentic based on the parameters defined 

by the verifier – could be a justification for involving this approach in authenticating the reference 

warhead. Integrating some form of measurement of the reference warhead behind an information 

barrier to a physical zero-knowledge verification protocol, thus, could be a powerful way of solving 

the ‘golden warhead’ challenge.  

The question is, then, what should be measured about the reference warhead to establish 

confidence in its authenticity. These forms of information can be categorized in three groups – basic 

information, quantitative information, and disarmament information.494 In the Trilateral Initiative, the 

United States and Russia followed a modest and careful approach, essentially establishing the lowest 

common denominator in deciding what characteristics could be determined. They agreed to measure 

three attributes that would provide basic information about the warheads and thus provide assurance 

of warhead authenticity: whether fissile material was present; whether its isotopic composition was 

typical for nuclear weapons; and whether the mass of the fissile material was above a minimum 

threshold, defined by the context where it was deployed.495  

These attributes, however, only establish basic information about the warhead and remain at 

the lowest ladder of informational value. A further step into certifying the authenticity of a warhead 

would be using measurement approaches that provide quantitative information about the fissile 
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material: the establishment of the exact mass of the material; or certification that the mass is within 

certain limits.496 Going beyond fissile material, the last category of questions would probe into the 

fundamental characteristics of ‘warheadedness’: whether the object contains core nuclear weapons 

components, such as the physics package, pits, or secondaries; and whether the specific model of these 

components can be identified and confirmed.497 

Negotiating the levels and characteristics that could be determined to authenticate the 

reference warhead will be an important, but challenging task. Nuclear weapons states have highly 

divergent classification standards in relation to their nuclear capabilities, as well as different decision-

making mechanisms for determining what can and cannot be considered. If something is considered 

acceptable by policy-makers, different declassification procedures may be needed before the reference 

warhead authentication provision could be included in a verification protocol. The history of 

declassification actions related to restricted information about the U.S. nuclear capabilities provides 

an important example of shifts in classification considerations.498 This collection of unclassified 

characteristics and information about warheads could be used as a basis for negotiating authentication 

measures for the reference warhead used in verification protocols. These authentication measures 

could be based on warhead signatures established from radiation measurements, with the declassified 

characteristics offering several options for consideration.499 

One potential mechanism would be to establish a database of the radiation signatures of the 

state’s declared types of warheads, which would be then used in the process of authenticating the 

reference warheads used in the inspection process. This is not entirely unprecedented, the United 
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States has engaged in collecting a comprehensive database of its nuclear warhead and component 

signatures with a potential disarmament verification purpose in mind.500 Starting in 2012, this has been 

done in collaboration with the United Kingdom in the form of a modeling and measuring campaign 

that intends to establish a comprehensive signature database of warheads and components.501 The 

effort seems to be ongoing, having been iterated in the 2015 NPT Review Conference.502 Expanding 

dialogue on this effort to other nuclear weapons states could be the next step. A potential starting 

point for implementation could also be the collection of partial signatures of the warhead types that 

would first come under arms reduction negotiations.503 

This mechanism would create similar concerns as with all previous attribute-based verification 

approaches. While states may be compelled to relax their classification protocols related to certain 

nuclear warhead characteristics to enable the authentication of the reference warhead and its type, they 

would still seek mechanisms to maintain restriction of this information and only allow its disclosure 

under necessary and legitimate conditions. This would entail the use of a secure arrangement that 

would allow the information to flow between a protected and an open state. The base case would be 

that the information is concealed, but under certain managed access conditions during reference 

warhead authentication, it could be disclosed to authorized officials. In the most optimal case, the 
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warhead signature data would never be directly accessed in the reference warhead authentication 

process.   

If a warhead signature was established through radiographic measurements, one potential 

approach to hide sensitive design information would be to blur or defocus the radiograph’s spatial 

resolution.504 Some measurement data in combination with image-reconstruction algorithms, however, 

could allow the regeneration of the high-resolution version of the signature if the signal-to-noise ratio 

was sufficient.505 Other image reduction techniques could be considered to transform the 

measurement data only contain non-sensitive features, such as histogram comparison, material 

recognition, and active/passive pixel correlation.506 Other alternative imaging information protection 

techniques include controlled image formation and constrained image analysis, neither of which 

constructs a full image in the traditional sense through the available imaging data.507  

Modern cryptography contains several concepts that could prove useful for this challenge, 

basing their security on mathematical operations.508 Kemp et al. implemented the idea of a physical 

encryption key in the verification protocol, but only on the side of the host.509 The classified foil, 

whose composition is only known to the host, serves as a physical encryption key that allows the 

decryption of the measurement data.510 Cryptographic protocols, however, have established a much 

wider range of ways to use encryption keys and other mechanisms in protecting sensitive information. 
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In the context of warhead verification, an encryption key that allowed the inspector to certify the 

underlying data could be a critical confidence-building mechanism, potentially allowing the 

indisputable authentication of the reference warhead.511 Novel concepts in modern cryptography 

include arrangements such as digital signatures, physically unclonable functions, and quantum key 

distribution.512 In the context of zero-knowledge cryptographic protocols, different physical and non-

physical protection techniques have also been suggested.513 Evaluation of fully homomorphic 

encryption has been initiated in the specific context of arms control, but overall, the consideration of 

all of these cryptographic information protection mechanisms are at very elementary stages.514  

One interesting analogy to the challenge of reference warhead authentication are biometric 

authentication systems, which face several similar challenges as the radiological signature system under 

discussion. Biometric verification systems are based on template databases of different physical 

signatures or characteristics, such as fingerprints or iris scans, which are used to uniquely identify 

individuals.515 These systems are designed to manage nonuniform and irregular data and tolerate some 

level of error in the measurements, as the physical signatures obtained from individuals can vary 

depending on the measurement conditions.516 This is done by employing mechanisms such as secure 

sketches and fuzzy extractors, which allow the valid identification of nonuniform inputs.517 A very 

similar challenge would also be faced when matching the reference warhead to its type in the database, 
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as any physical measurement will contain some level of uncertainty. In addition, the reference 

warheads are not necessarily perfect matches to their legitimate references, as warheads of the same 

type may have small differences due to irregularities in the production process or other factors.518 

Another critical similarity is that the template measurements are highly sensitive and would 

need to be securely protected in the database. With biometric data, the risk is that the information 

from the database is stolen and could be used for false identification, or that an artificial biometric 

data point is constructed such that it matches one of the templates.519 The signature measurement data 

obtained from warheads could reveal sensitive design information that could be exploited by 

adversaries, or reveal weaknesses about the state’s defense capabilities. In biometric systems, this 

challenge is addressed through private verification mechanisms. These systems do not make 

comparisons of the original data, but instead employ cryptographic one-way functions to transform 

all inputs to the system. The database stores the transformed template, as opposed to the original, and 

compares the measurement data after it has been processed by this same function. Thus, even if data 

is disclosed, it cannot be used as long as the cryptographic function remains unknown. In addition to 

the raw measurements, helper data is also collected in the database creation phase that can be used to 

derive the same unique string from the input, such as a fingerprint, even if the measurement is not 

perfectly the same. This involves processes such as information reconciliation and privacy 

amplification, which handle the inaccuracy and randomness in the measurement data. Overall, 

biometric verification systems represent secure mechanisms to accurately authenticate data containing 
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some level of uncertainty, while protecting the underlying sensitive information from abuse or 

dishonest verifiers.520   

In the context of a radiation signature database, similar cryptographic mechanisms could be 

used to encrypt the input measurements, protecting the information even if leaked.521 As discussed 

earlier, some work has already been done in exploring these methods in the context of protecting 

information obtained from warheads.522 The process described above for biometric authentication 

systems is only a simplified example of the involved processes, but more advanced mechanisms are 

also under development. Ongoing research is exploring concepts such as threshold homomorphic 

encryption schemes, where only binary biometric templates are stored and the verification process 

does not involve accessing the original template measurement data.523 The processes used in these 

approaches also protect the templates against malicious database owners, which is a critical 

shortcoming in previous approaches. Overall, biometric authentication systems offer an important 

real-world analogy to the challenge of authenticating the reference warhead and could offer a direction 

for future study. 

Trust in the integrity and confidentiality of nuclear disarmament verification is a critical 

precipitating factor that allows states to engage in disarmament. One of the most important 

dimensions of this trust is information protection – how well states consider their sensitive or classified 

information to be protected in all the complex stages of the process. The risks of unauthorized access 

and illegitimate disclosures can emerge both from the technologies utilized, as well as the human 

interaction with these systems. Verification protocols founded on physical zero-knowledge proofs 
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would be an instrumental contribution to addressing these verification concerns. Their successful 

development and implementation could precipitate a paradigm shift in disarmament treaty 

architecture, enabling agreements that limit individual warheads. Conceptually, the veil that physics 

provides to these approaches enables inherent secrecy, but this lack of transparency also prevents 

trust-building.  

The critical prevailing challenge in these template-based protocols is the authentication of the 

reference warheads. Confidence in the authentication process establishes the foundations of trust in 

the entire verification mechanism, which is why it is imperative to identify effective mechanisms to 

securely verify the authenticated standard.524 The establishment of a warhead signature database that 

contains a comparison point for each warhead type could be one option, among others. These 

approaches, however, would require the zero-knowledge property of these verification approaches to 

be relaxed. Different concepts from modern cryptography could provide ideas for solving the 

subsequent challenges relating to the protection of sensitive information, as biometric authentication 

systems have demonstrated in practice.  

Even though the prospects for further reductions in the near term are bleak, it is essential to 

invest and engage in this fundamental research now to create new verification tools and confidence-

building assets for when political interests become aligned with disarmament goals. Critically, this 

process must be carried out in collaboration with all states with nuclear weapons capabilities, especially 

those that have thus far been isolated from the international nuclear policy architecture and security 

collaboration. Future verification conditions are likely to engage new states, address novel categories 

of nuclear weapons, and target much lower arsenal sizes, all of which create unique pressures for the 

verification mechanisms employed. Having the capacity to confidently authenticate, track, and 
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dismantle individual warheads will become the priority in these conditions. The failure to develop 

sufficient readiness for these new verification requirements could become a significant barrier for 

future disarmament efforts. 
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Conclusion 
 

The challenge of warhead authentication is an illustrative example of a verification issue where 

the current lack of technical capabilities has prevented certain measures of arms control from being 

implemented, and where a breakthrough in verification technologies could have a significant impact 

in shifting the dynamics of the political discussions. This illuminates how the theoretical processes 

discussed in the first chapter are manifested in practice. The development of zero-verification 

approaches would eliminate the technical argument that warhead reductions cannot be verified with 

a high level of accuracy, or that the verification process would reveal classified information and 

therefore threaten national security.525 Thus, these novel verification capabilities would influence the 

arguments available both to arms control opponents and proponents, facilitating new treaty 

architecture options for further warhead reductions. 

It must be recognized that novel verification technologies, such as zero-knowledge verification 

approaches, will not be a panacea for making arms control possible. Changes in the available 

verification capabilities cannot single-handedly make an arms control agreement possible, in the 

absence of political will. They can, however, shift the dynamics of the negotiations by changing the 

arguments available to the different stakeholders and creating new, feasible verification options. This 

is where the importance of verification technologies lies – they can increase the likelihood of achieving 

an agreement in verification provisions, and thus enhance the prospects of future rounds of arms 

control.   

                                                 
525 These arguments were visible, for example, in the U.S.-Russian transparency and irreversibility dialogue between 1994 
and 1995. (Source: Steven Pifer, “The Next Round: The United States and Nuclear Arms Reductions After New 
START,” Brookings Institution, Arms Control Series Paper 4 (2010): 31, available at https://www.brookings.edu/wp-
content/uploads/2016/06/12_arms_control_pifer.pdf; also see Eugene Miasnikov, “Non-strategic Nuclear Weapons in 
Europe: Possible Scope and Conditions for Information Sharing, Transparency Measures and Verification,” presented at 
the Warsaw Workshop: Prospects for Information Sharing and Confidence Building on Non-Strategic Nuclear Weapons in Europe (2013), 
3, available at https://www.pism.pl/files/?id_plik=12843.) 



160 
 

This is why the development of novel verification capabilities is important. Even if the new 

verification capabilities are never fully implemented in an arms control agreement, their existence 

matters, because these new capabilities can both open the dialogue on new treaty architecture options, 

as well as shape the political dynamics of the treaty negotiations themselves. In the case of warhead 

authentication methods relying on zero-knowledge proofs, these mechanisms may be implemented 

jointly with an authentication system relying on the attribute approach, or otherwise be combined with 

verification mechanisms that do not rely on ideas drawn from physical cryptography. Even if this new 

innovation in warhead authentication methods was not implemented in its full capacity, the 

development of this verification approach would have an impact by allowing policymakers to envision 

the possibilities of verifying the next stages in warhead reductions, and by shaping the dialogue on 

these next steps in arms control.  

No verification option will be perfect, and there will always be gaps in confidence about 

compliance, which can be operationalized by the opponents of arms control. As was discussed in the 

first chapter, however, other factors and processes can help compensate for these gaps in technical 

capabilities. Iterated interactions are one important reason why even imperfect verification capabilities 

can be sufficient for facilitating cooperation on arms control. Furthermore, as Figure 2 in the first 

chapter demonstrated, each larger verification challenge can be disaggregated into separate, specific 

challenges. Warhead authentication, for example, is only one of the challenges related to verifying 

disarmament agreements that focus on individual warheads, among other challenges that include 

tracking the warheads, managing access to the dismantlement facilities, and detecting undeclared 

warhead stockpiles.  It is not necessary to have all of the verification challenges solved before 

negotiations can begin, because solutions in one of the areas can compensate for less progress in 

another one. In this view, a feedback loop also exists in the way that these different segments of the 

greater verification issue interact with each other. When combined with the fact that the negotiating 
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dynamics themselves also help fill the technical gaps that may remain, it is possible to envision how 

progress can be driven by incremental enhancements in the available technical verification capabilities. 

The current political environment with respect to future reductions in nuclear arsenals remains 

challenging. In terms of further bilateral reductions between the United States and Russia, the 

domestic political context in both states is currently dire and the relations between the countries are 

tense. In discussions after New START was established, Russia has maintained that the next round of 

warhead reductions should be carried out multilaterally, calling for other nuclear weapons states to 

become involved.526 Other states, however, have argued that further progress must be made in the 

U.S.-Russia context before any discussions about the multilateralization of the process. As the United 

States and Russia continue to hold approximately 90% of the global nuclear weapons stockpile, this 

assertion has clear legitimacy.527  

It is conceivable, however, to engage the other nuclear weapons states in efforts that may fall 

short of substantive reductions in their nuclear weapons arsenals, but would still contribute to 

enhancing the future prospects of multilateral warhead reductions. Engagement in technological 

development is one important dimension of this, including in the context of the verification 

capabilities discussed in this thesis, and those referred to in Figure 2 in the first chapter. Other 

important dimensions for engagement include the development of common definitions about nuclear 

weapons terminology; discussing how non-nuclear weapons states could become involved; what role 

multilateral institutions, such as the IAEA, will have in multilateral disarmament; and other important 

aspects that remain to be contested.528 The P5 states have already engaged in developing a framework 
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of definitions, the P5 Glossary of Key Nuclear Terms, but more work remains to be done in developing a 

common language about nuclear arms control, for example with respect to tactical nuclear weapons.529 

Ultimately, as a first step towards multilateral arsenal reductions, the other nuclear weapons states 

could halt the buildup of their nuclear forces and engage in discussions about the pace and proportion 

of eventual warhead reductions.530  

Transparency is one critical dimension where progress can be pursued now. The P5 nuclear 

weapons states, as well as the non-NPT nuclear weapons states, are in a position to take further steps 

towards disclosing information about their nuclear arsenals, stockpiles of fissile material, and other 

aspects of their nuclear weapons programs.531 These transparency measures will be important steps in 

the path towards multilateral nuclear disarmament, which requires the facilitation of trust between 

nuclear weapons states, as well as with the rest of the international community.532 At the moment, the 

P5 states take very different approaches to transparency, with the United States providing quite 

detailed information about current warhead numbers, whereas other P5 providing little, if any, 

information.533 This highlights the fact that decisions about transparency, and its relation to security, 

are fundamentally subjective. Thus, the challenge is finding the avenues for transparency that states 

                                                 
Safeguards Syposium 2010, available at 
https://www.iaea.org/safeguards/symposium/2010/Documents/PapersRepository/280.pdf. 

Chalmers, “The IAEA and Nuclear Disarmament Verification: A Primer.” 

529 P5 Working Group on the Glossary of Key Nuclear Terms, P5 Glossary of Key Nuclear Terms (Beijing: China Atomic 
Energy Press, 2015), available at https://www.state.gov/documents/organization/243287.pdf. 

Micah Zenko, Toward Deeper Reductions in U.S. and Russian Nuclear Weapons (New York: Council on Foreign Relations, 
2010), 11. 

530 Norris and Kristensen, “Global nuclear weapons inventories, 1945–2010,” 82.    

531 Steven Pifer and James Tyson, “Third-Country Nuclear Forces and Possible Measures for Multilateral Arms 
Control,” Brookings Institution, Arms Control and Non-Proliferation Series Paper 12 (2016): 2. 

532 First Preparatory Committee for the 2015 NPT Review Conference, “Transparency of nuclear weapons: the Non-
Proliferation and Disarmament Initiative: Working paper submitted by Australia, Canada, Chile, Germany, Japan, 
Mexico, the Netherlands, Poland, Turkey and the United Arab Emirates,” (NPT/CONF.2015/PC.I/WP.12), available at 
http://www.reachingcriticalwill.org/images/documents/Disarmament-fora/npt/prepcom12/documents/WP12.pdf. 

533 U.S. Department of State, “Transparency in the U.S. Nuclear Weapons Stockpile,” available at https://2009-
2017.state.gov/t/isn/npt/statements/241165.htm. 
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find acceptable and that do not lead to unwelcome tradeoffs with security. The verification approaches 

discussed in this thesis do this in the context of warhead authentication, which is a later-stage process, 

but progress needs to be made in earlier stages as well. Conceiving ways to prevent information 

disclosure about stewardship practices, military facilities, and other sensitive aspects of the operations 

of states’ nuclear enterprises will be important for making nuclear weapons states more willing to 

engage in transparency measures, paving the way for their involvement in verification processes. 

Future stages of nuclear disarmament will be more challenging than the efforts undertaken in 

the past, for the reasons discussed in this thesis: addressing lower numbers of warheads, where 

uncertainty becomes riskier; considering new categories of weapons under limitations, where past 

verification approaches will become impossible; and involving other nuclear weapons states, who see 

verification in a different light and may have less advanced capabilities in national technical means. 

Especially when thinking about the ‘hardest’ cases of nuclear disarmament, such as between India and 

Pakistan or with Israel, concerns about the tradeoffs between secrecy and transparency will become 

prioritized. Especially in these types of conditions, novel verification capabilities can make or break 

future prospects for arms control.   

Important future work needs to be done on the technical side of the verification challenges 

discussed in this thesis, as well as on other prevailing verification issues. In addition to this technical 

development work, the political dynamics discussed in the first chapter will require more research. 

One important question for future investigation is how changes in norms and perceptions about 

scientific knowledge, particularly among political elites and leaders, influences the impact of the 

dynamics discussed in the first chapter. In a world where scientific expertise is being contested, and 

‘alternative facts’ are understood as a part of reality, how is the influence that science and technology 

has on public policy modified? As has been discussed in this thesis, technologies are often politicized, 
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but this phenomenon of politicization becomes more complex when our understanding of what 

constitutes a scientific fact is distorted.  

Ultimately, nuclear weapons states’ decisions to disarm their nuclear capabilities are going to 

be shaped by a range of strategic, political, and other factors both at the domestic and international 

levels. As has been illuminated in this thesis, however, verification capabilities can play a part in 

shaping the dynamics of the states’ decision-making processes, especially if and when they engage in 

direct negotiations over disarmament efforts. Looking into the future, the technical development of 

verification capabilities can be an important path towards making multilateral negotiations on warhead 

reductions possible, in parallel with other confidence-building measures among the nuclear weapons 

states and with the rest of the international community. 

-  
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