Math 197: Senior Thesis
Sensitivity of a Laplacian Family of Ranking Methods
Claire Chang

Introduction
We focus on a family of ranking methods for pairwise comparisons introduced by Devlin and Treloar (2018) which encompasses the well-known Massey, Colley, and Markov methods.

Through the lens of sports, we study systems of n teams and examine the
• maximal upset: the last ranked team beats the first, and the
• perfect season: the i-th team plays one game against each team

and beats all lower ranked teams $i + 1, i + 2, \ldots, n$

Objective
We will investigate this family in order to
1. connect it to the graph Laplacian to motivate a network diffusion interpretation, and
2. analyze its sensitivity by studying the maximal upset.

Methods
For any family (parametrized by p):

$$L_p \mathbf{v}_p = \mathbf{s}_p,$$

with rating vector \mathbf{v}_p, Entries in right hand side vector (\mathbf{s}_p) $n \times 1$:

• General: $W_i - L_i$
• Perfect season: $n - 2i + 1$

The matrix is a variant of the graph Laplacian:

$$L_p = W + pL_1,$$

and W and L are defined entrywise as

$$W_{ij} = \begin{cases} -w_{ij} & \text{if } i \neq j \\ L_i & \text{if } i = j \end{cases} \quad \text{and} \quad L_{ij} = \begin{cases} -l_{ij} & \text{if } i \neq j \\ W_i & \text{if } i = j \end{cases}$$

1. Apply Sherman-Morrison inversion formula to find L_p^{-1}
2. Multiply by s_p to determine ratings in the perfect season
3. Prove rating formula with Gaussian elimination and induction
4. Find e wins needed for Team j against Team i for $i < j$ to start to overtake Team i in rank

Network Diffusion
In Figure 1 notice (true for any n):

• p increases \rightarrow rating magnitudes decrease.
• low p \rightarrow ratings for high ranked teams highly separated ratings for low ranked teams very similar
• high p \rightarrow ratings evenly spaced overall

Figure 1: The network diffusion with ratings in blue outside each node. The flows in blue are from wins, and in pink are from losses.

Imagining rank as a liquid/gas diffusing among the nodes. Why are \bullet, \bullet, and \bullet true, and what conclusions can we then draw?

• p increases \rightarrow overall flow of system increases (especially for strong teams) \rightarrow rank “leaks” out from losses \rightarrow rating magnitudes are lowered
• \bullet and \bullet

• Partial ranking (top k) \rightarrow lower p desirable, as top k teams will have more distinct ratings
• Data with high variability \rightarrow higher p desirable, as n teams are more evenly distributed so the rankings are more stable

Sensitivity
Partially inspired by Chartier et al. (2011),

1. Apply Sherman-Morrison inversion formula to find L_p^{-1}
2. Multiply by s_p to determine ratings in the perfect season (Figure 2)
3. Prove rating formula with Gaussian elimination and induction
4. Find e wins needed for Team j against Team $i < j$ for Team j to start to overtake Team i in rank (Figure 2)

For n teams and $p \neq 0$, the i-th rating in the perfect season is

$$v_i = \frac{(n - i + 1)(n - i) + i - 1}{((n - i + 1)p + i - 1)((n - i)p + i - 1)}.$$

The perturbed rating vector is

$$v_p = v_0 + [-e + \frac{1}{4p + 1} + \frac{1}{p + 4} - \frac{e}{4(p + 1)}(p + 4) + 2(b)^2 + p + 2(e - 4)]a_e.$$ (4)

Figure 2: Sensitivity (a) in the perfect season and (b) with upsets.

Conclusions
• Proved a general formula for the ratings of all n alternatives for any point in our Laplacian ranking family
• Lower p values are desirable for partial ranking applications
• For $0 < p < 1$ ratings can also be negative and sum to 0.

References

Acknowledgments
Thank you so much to Professor Jamie Haddock for all the mentorship and support, and to the rest of the math department (especially Professors Michael Orrison and Jon Jacobsen)!

Advisor: Jamie Haddock
Reader: Michael Orrison
Email: cschang@g.hmc.edu