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Figure 1.2 A picture of a school of fish exhibiting swarming behavior. The
group of fish have alligned motion and are exhibiting milling behavior (Hannant,
2009).

1.2 Dynamic Models

Dynamical models incorporate the forces felt by particles in the swarm.
Whereas a kinematic model describes how the position changes as a func-
tion of time, a dynamic model describes how the velocity changes as a
function of time. In this paper, we will focus our research on the dynamic
model.

1.2.1 The Discrete Model

The model we investigate is based on a paper by Chuang et al. (2007) on
self-propelled particle systems. This model was first investigated by Levine
et al. (2000). The authors investigate the solutions that exist for a rotating
mill state in two dimensions. In the discrete model, movement of each
individual is governed by the dimensioned equation

miẍi = (α− β|ẋi|2)ẋi −∇xi Qi,

where Qi is the potential

Qi = ∑
j 6=i

(
−Cae−

|xi−xj |
`a + Cre−

|xi−xj |
`r

)
.
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This is known as the Morse potential, which is the potential function
we will be working with for our model. Below is a description of the pa-
rameters used in this model.

α : determines the self propelling force in the model
β : provides the drag force in the model
`a : length of attraction scale between particles
`r : length of repulsion scale between particles
Ca : amplitude of the attraction between particles
Ca : amplitude of the repulsion between particles
mi : mass of the ith particle in the swarm

In order for the Morse potential to have long range attraction we require
that the length scale `a > `r. We nondimensionalized the potential above
to

Q(z) = e−|z| − Ce−|z|/L,

where C = Ca/Cr and L = `a/`r. We will use this nondimensionalized
potential to investigate the model. Since we want `a > `r, we are interested
in behaviors for L > 1.

1.2.2 The Continuum Model

The continuum model is derived by considering the limit as the number of
particles N → ∞. The formulation of this model is derived in Chuang et al.
(2007) which leads to the following equations:

ρt +∇ · (vρ) =0,

vt + (v · ∇)v =αv− β|v|v− 1
m2

∫
∇Q

(
|x− x′|

)
ρ(x)dx′.

Here, m represents the mass of an individual particle. We will choose
the mass of the individual particle to be 1 which simplifies the equations to

ρt +∇ · (vρ) =0,

vt + (v · ∇)v =αv− β|v|v−
∫
∇Q

(
|x− x′|

)
ρ(x)dx′.

The first equation here reflects the conservation of mass while the sec-
ond reflects the change in velocity that follows the discrete model. This
model is useful to determine the steady state behavior of the swarms, so
we will use this model to perform our analysis.
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1.3 Kinematic Models

Kinematic models study how the movement of the particles changes over
time, without an inclusion of the acceleration due to forces. This class of
models has been investigated in Leverentz et al. (2009) and Bernoff and
Topaz (2011). In the continuum model, the equations governing the motion
are given in Bernoff and Topaz (2011) by

ρt + (ρv)x = 0,

v =
∫ ∞

−∞
q(x− y)ρ(y)dy + f (x).

The first equation represents the conservation of mass for the continuum
density ρ. The second equation represents the social interactions felt by
the particle in addition to an exogenous force f (x). In this model q(x −
y) = −∇Q represents the effect of social interactions, which is a function
of the distance between the particles. These equations are derived from the
analogous discrete model,

dxi

dt
= Vi(x1, . . . , xn),

Vi(x1, . . . , xn) = ∑
j 6=i

mq(xi − xj) + f (xi),

where xi represents the location of the ith particle in the swarm, Vi repre-
sents the velocity of the ith particle, and f (xi) is the exogenous force exerted
by the ith particle.

This class of models has been used to model the behavior of locust
swarms. These locust swarms can be destructive when they travel in a
rolling motion due to the force by the wind. These solutions have been
shown to exist in the kinematic model in the presence of an exogenous
force. Other solutions have also been shown to exist involving solutions
that spread asymptotically, contract to a single location, or go to a compact
steady state (Leverentz et al., 2009). We will refer to swarms that contract
to a single location as attractive swarms.

1.4 Literature Review

Previous work by Leverentz, Topaz, and Bernoff (2009) examined ways to
predict the qualitative behavior of a swarm for the kinematic model. They
showed that knowing the first moment of the social interaction kernel and
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Figure 1.3 The swarm density obtained numerically from the paper by Levine
et al. (2000).

the limiting behavior of the origin were sufficient to determine the long
term behavior of the swarm.

There is an alternative model constructed by Couzin, Krause, James,
Ruxton, and Franks (2002) which incorporates a zone of attraction, a zone
of repulsion, and a zone of orientation. In the zone of orientation, there is
an alignment term which states that particles at a certain distance prefer to
align with each other. This model also exhibits the migration and milling
solutions observed in our model.

A similar model to ours was investigated in 2000 by Levine, Rappel, and
Cohen in constructing the continuum solution. They observed increases in
the swarm density near the boundary of the support. A diagram illustrat-
ing one of their solutions is shown in Figure 1.3.

This increase in the swarm density near the boundary resembles an un-
resolved singularity. We observe the phenomenon in our model results and
are able to classify it as a square root singularity.

Bernoff and Topaz (2011) demonstrated that there cannot be a δ concen-
tration located in the interior of a domain. In our study of the dynamic
model, we find a solution whose density diverges. However, it does not
violate the above condition since the singularity observed is a square root
singularity on the boundary.



Chapter 2

Steady States

When investigating swarms, one aspect of interest is the long term behavior
of the swarm. We are interested in three different steady states that arise
from this model. The first one is a migration solution along a ribbon. This
is an infinite swarm that is moving with a constant velocity in a direction
parallel to the ribbon. The second steady state solution we are interested in
is a circular swarm that is also migrating with a constant velocity. Our last
steady state of interest is a milling solution. This corresponds to a solution
with a constant velocity that is rotating in a circle. Since the angular velocity
is not constant, this is different from rigid body rotation. In this section, we
derive the integral equation that arises out of the continuum model, which
allows us to solve for the density function ρ.

2.1 Migration on a Ribbon

For a migrating swarm along a ribbon, we are working under the ansatz
that the density will only be a function of its relative height (y-position) in
the swarm and that the velocity will be constant. For this solution, we are
solving on the domain Ω = (−∞, ∞)× [−`, `]. Mathematically this implies
ρ = ρ̄(y) and v = v̄x̂. A diagram of this ansatz is shown in Figure 2.1.

We substitute this ansatz into the governing equations for the contin-
uum model below:

ρt +∇ · (vρ) = 0,

vt + (v · ∇)v = αv− β|v|v−
∫
∇Q

(
x− x′

)
ρ(x)dx′.
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Figure 2.1 A diagram of the ribbon steady state solution.

First we evaluate the left-hand side of the conservation of mass equa-
tion. Since the velocity is constant and ρ is not changing in time, this gives

ρt +∇ · (vρ) = ∇ · (v̄ρ̄(y)x̂) = 0.

The conservation of mass equation is satisfied under this ansatz since
the density ρ isn’t changing in time, and the density is a function in an
orthogonal direction to the motion of the swarm. Next, we evaluate the left-
hand side of the equation of motion for the migrating swarm. Substituting
the ansatz into this equation gives

vt + (v · ∇)v = (v̄
∂

∂x
)v̄x̂ = 0.

We define the convolution as

ρ ∗Q ≡
∫

Q
(
|x− x′|

)
ρ(x)dx′.

Now we evaluate the right-hand side of the equation of motion for the
migrating swarm which gives

αv− β|v|v−
∫
∇Q

(
|x− x′|

)
ρ(x)dx′ = (α− βv̄2)v̄x̂−

∫
∇Q

(
|x− x′|

)
ρ(x)dx′,

= (α− βv̄2)v̄x̂−∇(ρ ∗Q).
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This follows from the property of the convolution ∇(ρ ∗ Q) = (∇ρ) ∗ Q.
We equate this with the result from above which gives

0 = (α− βv̄2)v̄x̂−∇ρ ∗Q.

This gives the following two equations:

0 = (α− βv̄2)v̄− ∂

∂x
ρ ∗Q,

0 =
∂

∂y
ρ ∗Q.

If we write out the convolution ρ ∗Q we see that

ρ ∗Q =
∫ ∞

x′=−∞

∫ ∞

y′=−∞
ρ(y′)Q

(√
(x− x′)2 + (y− y′)2

)
dy′dx′.

If we let z = x− x′ this becomes

ρ ∗Q =
∫ ∞

z=−∞

∫ ∞

y′=−∞
ρ(y′)Q

(√
z2 + (y− y′)2

)
dy′dz = Λ(y).

This implies that
∂

∂x
ρ ∗Q = 0,

which implies
(α− βv̄)v̄ = 0.

Therefore, we know that the steady state velocity will be v̄ =
√

α
β . Sub-

stituting this back into the equations gives

0 =
∂

∂x
ρ ∗Q,

0 =
∂

∂y
ρ ∗Q.

Together, these two equations imply that on a migrating ribbon

ρ ∗Q = λ ∈ Ω.
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Figure 2.2 A diagram of the circular steady state solution.

2.2 Circular Swarm Migration

We can perform a similar analysis for a migrating circular swarm. For a
migrating circular swarm, the velocity will be constant, v = v̄x̂, and the
density will only be a function of the radius in the moving frame. A dia-
gram of this ansatz is shown in Figure 2.2.

In the moving frame we use the change of variables,

ξ = x− v̄t,
η = y.

Thus our steady state solution becomes ρ = ρ̄(r) where r =
√

ξ2 + η2 and
v = v(ξ, η) = 0. Substituting this ansatz into the conservation of mass
equation gives

−v̄ρξ +∇ · (vρ) = −v̄ρξ + v̄ρξ = 0.

This follows since the density isn’t changing in time. Similarly, for the equa-
tions of motion we get

vt + (v · ∇)v = −v̄vξ + (v · ∇ξ + v̄
∂

∂ξ
)v,

= (v · ∇ξ)v = 0.
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Now evaluating the right-hand side in our original reference frame yields

αv− β|v|v−
∫
∇Q

(
|x− x′|

)
ρ(x)dx′ = (α− βv̄2)v̄x̂−

∫
∇Q

(
|x− x′|

)
ρ(x)dx′,

0 = (α− βv̄2)v̄x̂−∇ρ ∗Q.

This yields the same two equations as in the ribbon case,

0 = (α− βv̄2)v̄− ∂

∂x
ρ ∗Q

0 =
∂

∂y
ρ ∗Q.

Since ρ only depends on r, by symmetry we get that ρ ∗ Q is a function
of r. If we integrate both sides of the first equation from x = −L to L, we
get

(α− βv̄2)v̄ = ρ ∗Q
∣∣∣∣`
−`

= 0.

Thus, the steady state velocity will still be v̄ =
√

α
β , so for a circular migrat-

ing swarm,
ρ ∗Q = λ ∈ Ω.

Here, we note that the domain Ω = r ∈ [0, R], θ ∈ [0, 2π] is different since
we are solving the integral equation over a circular domain.

2.3 Milling Swarm

For a milling steady state, we are looking to find solutions under the ansatz
that the potential function and the density function only depend on radius,
and that the velocity is in the θ̂ so we have a rotating solution. This means
that Q = Q(r), ρ = ρ(r), and v = v̄θ̂. A diagram of this ansatz is shown in
Figure 2.3.

We substitute this ansatz into the governing equations,

ρt +∇ · (vρ) = 0,

vt + (v · ∇)v = αv− β|v|v−
∫
∇Q

(
|x− x′|

)
ρ(x)dx′.

When we evaluate the conservation of mass equation, we see

ρt +∇ · (vρ) = ρ(y)t + v̄∇ · ρ(r)θ̂,
ρt +∇ · (vρ) = 0 + v̄ · 0 = 0.
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Figure 2.3 A diagram of the milling steady state solution.

Thus, the conservation of mass equation remains satisfied under these as-
sumptions. Next, we evaluate the equations of motion,

vt = 0,

(v · ∇) = v̄
1
r

d
dθ

,

(v · ∇)v = v̄2 1
r
(−r̂).

This simplifies the equation of motion to

(α− β|v|2)v−∇ρ ∗Q = −v̄2 1
r

r̂.

Next, we can break this up into the radial and angular components.
Since ρ ∗ Q is radial this implies that ∇ → r̂ d

dr because the θ component
vanishes. Thus, we get the two equations

Angular: (α− βv̄2)v̄ = 0.

Radial: − ∂

∂r
ρ ∗Q = −v̄

1
r

.

For both of these to be satisfied we must have v̄ =
√

α
β so the velocity is

v =

√
α

β
θ̂.
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We can substitute this velocity into the radial equation which gives

− ∂

∂r
ρ ∗Q = −

√
α

β

1
r

.

Now we can integrate both sides of the radial equation which gives

α

β
ln r + λ = ρ ∗Q ∈ Ω.

This provides the integral equation that is satisfied for the milling solution.
Here we are also working on a circular domain Ω = [a, b]× [0, 2π].





Chapter 3

Ribbon Solution

In this section we will investigate the ribbon steady state solution. The rib-
bon solution is when a swarm is migrating in a specific direction on a rib-
bon, or more formally on the domain Ω = (−∞, ∞)× [−`, `]. In Section 2.1
we showed that a ribbon has the steady state solution ρ = ρ(y), v =

√
α
β x̂.

This led to the following integral equation:∫
Ω

p(x′)Q(|x− x′|)dx′ = λ.

3.1 Reducing the Dimension

The integral equation we are solving is currently a two-dimensional inte-
gral equation. We can reduce this to a one-dimensional integral equation
by letting

Q2D(|y′ − y|) =
∫ ∞

−∞
Q(|x− x′|)dx.

Following Bernoff and Topaz (2011), we let s = x′− x and z = y′− y, which
simplifies the above equation to

Q2D(z) =
∫ ∞

−∞
Q(
√

s2 + z2)ds = 2
∫ ∞

0
Q(
√

s2 + z2)ds.

From Bernoff and Topaz, we see that we can evaluate the integral Q2D using
a finite domain by using the substitution s = z tan θ so ds = z sec2 θdθ. This
gives the integral

Q̃2D(z) = 2|z|
∫ π/2

0
e−|z| sec θ sec2 θ dθ.
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This provides the value Q̃2D for Laplace’s potential which only includes
repulsion. The nondimensionalized Morse potential is given by

Q(z) = e−|z| − Ce−|z|/L.

Thus, we can compute the two-dimensional potential

Q2D(z) = Q̃2D(z)− CQ̃2D

( z
L

)
.

Using this formulation leads a one-dimensional integral equation,∫ `

−`
ρ(y′)Q2D(|y− y′|)dy′ = λ ∈ Ω.

This can be solved by discretizing the domain [−`, `] with points y0, y1, . . . , yn
and evaluating Q2D(z) for different distances |yi − yj|.

3.2 Numerical Solution

To solve the integral equation numerically, we start by letting

ρ = ∑
i

miδ(x− xi),

and define the energy to be

W =
1
2 ∑

i,j
mimjQ2D(|xi − xj|).

The numerical result is obtained by minimizing this energy. A mini-
mum to the energy will be a solution to the discretized ribbon. This is seen
by taking the derivative of the energy with respect to mi,

dW
dmi

= ∑
j

mjQ2D(|xi − xj|).

Next, we solve this numerically using Matlab’s fmincon method in the
optimization toolbox. The interior-point algorithm was selected to perform
the minimization. The tolerance for the objective function and the con-
straints was set to 10−15. A center of mass constraint was added to the
problem to ensure that that any attractive swarm would be located at the
origin. There was a total mass constraint that ∑i ρ(xi) = M and for all
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Figure 3.1 The swarm density and the corresponding potential function for an
attractive swarm with a delta function at the origin.

points in the interval ρ(xi) ≥ 0. The gradient and the Hessian were sup-
plied to the optimization. The Hessian is computed below:

d2W
dmidmj

= Q2D(|xi − xj|).

Using this framework, we can numerically solve for the swarm den-
sity using the Morse potential. The behavior of the swarm is altered based
on the choice for the relative length scale L, and relative strength of at-
traction C. In order for this social interaction potential to be realistic, we
only consider the case when L > 1 since this corresponds to attraction at
longer length scales. When varying the parameters for C, L, we observe 3
different types of density function for the swarm. The results are shown in
Figures 3.1, 3.2, and 3.3.

For the compactly supported swarm, we notice that the swarm density
has a square root singularity. This suggests that Carleman’s equation might
be involved in the solution, which we investigate in Section 3.4.

3.3 Swarm Behavior

The behavior of the swarm can be characterized as attractive, spreading, or
a compact swarm. The Fourier transform is used to determine the param-
eter region where a spreading swarm exists. A spreading solution exists
when the Fourier transform,Q̂2D(k), is positive definite. It is sufficient to
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Figure 3.2 The swarm density and the corresponding potential function for a
spreading swarm which spreads off to infinity. Here, we get two delta functions
on the boundary of the domain we are minimizing the energy on since the mass
wants to spread.
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Figure 3.3 The swarm density and the corresponding potential function for a
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check that the value of Q̂2D(k) at k = 0 and k = ∞ are both positive since
the function is monotonic (Bernoff and Topaz, 2011). We will define the
function

F2D(z) =
∫ ∞

s=−∞
e−
√

s2+z2
ds.

From Bernoff and Topaz (2011), we can express the social interaction
potential for the ribbon as

Q2D(x) = F2D (x)− CF2D

( x
L

)
.

In order to compute the Fourier transform for this, we start by evaluating
the Fourier transform for F2D:

F2D(z) = 2|z|
∫ ∞

s=0
e−|z|

√
1+s2

ds,

F̂2D(k) =
∫ ∞

z=−∞
F2D(z)e−ikzdz,

=
∫ ∞

s=0

∫ ∞

z=−∞
2|z|e−|z|

√
1+s2

e−ikzdzds.

This gives that the inner integral evaluates to∫ ∞

z=−∞
2|z|e−|z|

√
1+s2

e−ikzdz =
4(1 + s2 − k2)

(k2 + (1 + s2))2 .

Now we substitute this back into the original equation,

F̂2D(k) =
∫ ∞

s=0

4(1 + s2 − k2)

(k2 + (1 + s2))2 ds,

F̂2D(k) =
2π

(1 + k2)
3
2

.

This result allows us to compute the Fourier transform for the Morse
potential with attraction and repulsion,

Q̂2D(k) = F̂2D (k)− CF̂2D

(
k
L

)
.

We substitute the result for the Fourier transform F̂2D, which yields

Q̂2D(k) =
2π

(1 + k2)
3
2
− CL

2π

[1 + (kL)2]
3
2

.
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Then, we evaluate this Fourier transform at k = 0 to find the condition for
when Q̂2D(0) > 0. This gives

Q̂2D(0) = 2π − 2π
C
L
> 0,

which implies that C < 1
L . Next, we evaluate Q̂2D(k) in the limit k→ ∞,

lim
k→∞

Q̂2D(k) = lim
k→∞

2π
1
k3

(
1− C

L2

)
> 0.

This limit implies that C < L2. In order to have a realistic social inter-
action potential, the length scale L > 1. The condition C < 1

L implies the
condition C < L2, so we only need the condition C < 1

L for a spreading so-
lution. In order to have a purely attractive swarm, the potential must reach
a minimum at the origin. This can be evaluated using an asymptotic expan-
sion of the potential. We show in Section 3.5 that the asymptotic expansion
of the potential is given by

Q2D(z) = Bz2 ln |ze
A
B |,

where A = (1− C
L2 )(γ− 1

2 − ln 2)+ C
L2 ln |L| and B = (1− C

L2 ). The function
z2 ln |z| obtains a local maximum at z = 0, so z2 ln |ze

A
B | will also obtain a

local maximum at the origin. In order for Q2D(z) to be a minimum at the
origin, the constant B must be less than 0 to flip the sign of the function
z2 ln |ze

A
B |. Therefore, we know that for

1− C
L2 < 0,

or L2 < C implies an attractive swarm that will form a delta function.
If neither of these two conditions are met, then there will be a swarm

with compact support. To determine if the numerical and predicted results
for the swarm density match, a test over the parameter space is run. The
swarm is classified as attractive if at least 95% of the mass lies at the cen-
ter point. It is classified as a spreading swarm if at least 95% of the total
mass lies on the boundaries. If neither of these conditions are met, then the
swarm will be classified as having compact support if at least 90% of its to-
tal mass lies on the interior. Otherwise, the swarm is labeled ambiguous if
none of the conditions are satisfied. As seen in Figure 3.4, the observed be-
havior from the numerical simulations matches with the predicted swarm
behavior.
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a. Analytic

0 1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

5  
State 1− Attraction, State 2− Repulsion, State 3− Compact Swarm, State 4− Ambiguous

Value of C = Ca/Cr

 

V
al

ue
 o

f L
 =

 L
a/

Lr

1

1.5

2

2.5

3

3.5

4

b. Numeric

Figure 3.4 A diagram describing the different regions of swarm behaviors over
a range of parameter values for C and L. On the left is the analytic prediction for
the regions and on the right is the numerical solution.

3.4 Carleman’s Equation

For the Ribbon solution, we are solving the equation ρ ∗ Q = λ. Since the
asymptotic expansion of the potential has the form Q(z) = z2 log |z|, we
try to solve the integral equation for this potential. We start by taking two
derivatives of the potential,

Q′′(z) = 2 log |z|+ 3.

Taking two derivatives of both sides of the equation above yields

d2

dy2

∫ `

−`
ρ(y′)Q(y− y′)dy′ =

d2

dy2 λ,∫ `

−`
ρ(y′)Q′′(y− y′)dy′ = 0,∫ `

−`
ρ(y′)(2 log |y′ − y|+ 3)dy′ = 0,

2
∫ `

−`
ρ(y′) log |y′ − y|dy′ + 3

∫ `

−`
ρ(y)dy′ = 0,

2
∫ `

−`
ρ(y′) log |y′ − y|dy′ + 3M = 0,
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∫ `

−`
ρ(y′) log |y′ − y|dy′ = −3M

2
.

This is Carleman’s equation, which has solution ρ(y) =
c√

`2 − y2
for some

constant c. The constant c is obtained by integrating the mass,

M =
∫ `

−`
ρ(y)dy,

=
∫ `

−`

c√
L2 − y2

dy,

= cπ,

c =
M
π

.

Next, we need to find the length of the interval. This is done by evaluating

the integral I =
∫ `

−`
ρ(y) log |y− y′|dy′,

I =
∫ `

−`
ρ(y) log |y− y′|dy′,

=
∫ `

−`

c√
`2 − y′2

log |y′ − y|dy′,

= c
∫ 1

−1

log (L|z− w|)√
1− z2

dz,

which follows from the substitution z = y′
L and w = y

L . Next we use the
trig substitution z = sin θ and w = sin φ which gives

I = c
∫ π

2

− π
2

log (L| sin θ − sin φ|) cos θ

cos θ
dθ,

I
c
= π log `+

∫ π
2

− π
2

log | sin θ − sin φ|dθ,

= π log `+
∫ π

2

− π
2

log |2 cos
θ + φ

2
sin

θ − φ

2
|dθ,

= π log `+ π log 2 +
∫ π

2

− π
2

log | cos
θ + φ

2
|dθ +

∫ π
2

− π
2

log | sin
θ − φ

2
|dθ.
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Using the substitution u = θ+φ
2 and v = π−θ+φ

2 , we get

I
c
= π log `+ π log 2 + 2

∫ π
4 +

φ
2

− π
4 +

φ
2

log | cos u|du− 2
∫ π

4 +
φ
2

3π
4 + φ

2

log | cos v|dv,

= π log `+ π log 2 + 2

(∫ π
4 +

φ
2

− π
4 +

φ
2

log | cos u|du +
∫ 3π

4 + φ
2

π
4 +

φ
2

log | cos v|dv

)
,

= π log `+ π log 2 + 2
∫ 3π

4 + φ
2

− π
4 +

φ
2

log | cos u|du.

Since this function is periodic, this simply becomes

I
c
= π log `+ π log 2 + 2

∫ 3π
4

− π
4

log | cos u|du,

= π log `− π log 2.

Next, we equate this with the result I = −3M
2 , which gives

I
c
= π log `− π log 2,

π
−3
2

= π log `− π log 2,

log ` =
−3
2

+ log 2,

` = 2e
−3
2 .

This gives us the length scale of our interval. We know ρ was a solution
for ∫ `

−`
ρ(y′)Q′′(y− y′)dy′ = 0,

and this will also be a solution for

J =
∫ `

−`
ρ(y′)Q(y− y′)dy′ = λ.

This follows since the general form of J = λ + by2, because the integrand is
an even function here. We chose the length scale such that b = 0. Thus we
can find the value for λ by evaluating the integral when y = 0. This gives

λ =
∫ `

−`
ρ(y)Q(y)dy, which is

λ =
∫ `

−`

M
π

1√
L2 − y2

y2 log |y|dy =
1
4

L2M(1 + log
L2

4
).
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Putting everything together gives us the overall solution to the equation,
which is

ρ(y) =
M

π
√

4e−3 − y2
.

3.5 Asymptotic Expansion

The asymptotic expansion of Q̃2D(z) for small |z| is given in Bernoff and
Topaz (2011) for a strictly repulsion interaction,

Q̃2D(z) = 2 + (γ− 1
2
− ln 2)z2 + z2 ln |z|+ O(z4 ln |z).

When using the Morse potential we have both attraction and repulsion,
so Q2D(z) = Q̃2D(z) − CQ̃2D(

z
L ). Now we compute the asymptotic ex-

pansion of this for small value of |z| by substituting the expression for the
asymptotic expansion of Q̃2D above,

Q2D(z) = Q̃2D(z)− CQ̃2D(
z
L
),

= 2 + (γ− 1
2
− ln 2)z2 + z2 ln |z| − C(2 + (γ− 1

2
− ln 2)

z
L

2
+

z
L

2
ln | z

L
|),

= 2(1− C) + (1− C
L2 )(γ−

1
2
− ln 2)z2 + (1− C

L2 )z
2 ln |z|+ C

L2 ln |L|,

= 2(1− C) +
[
(1− C

L2 )(γ−
1
2
− ln 2) +

C
L2 ln |L|

]
z2 + (1− C

L2 )z
2 ln |z|.

This is of the form Q(z) = k + Az2 + Bz2 ln |z|, where k = 2(1− C),
A = (1 − C

L2 )(γ − 1
2 − ln 2) + C

L2 ln |L|, and B = (1 − C
L2 ). The constant

2(1− C) is a constant shift to the potential so this term can be disregarded.
Thus, we can write Q2D(z) in the form

Q2D(z) = Bz2 ln |ze
A
B |.

3.6 Carleman with the Morse Potential

Since the asymptotic expansion of the Morse Potential has the same form of
the potential we solved Carleman’s equation with, we can expect a solution
of the form

ρ(y) =
M

π
√
`2 − y2



Carleman with the Morse Potential 25

for some value of `. Here, we see that the value of the constant k = M
π

doesn’t change since it only depended on the mass. Given the Morse po-
tential function, we can compute what the length of the interval will be
using this approximation. If we take two derivatives of the potential, we
get Q′′(z) = 2A + B(2 log |z|+ 3). Now we solve

∫
ρ(y′)Q(y− y′)dy′ = λ

in the same manner as before. We get

d2

dy2

∫ `

−`
ρ(y′)Q(y− y′)dy′ =

d2

dy2 λ,∫ `

−`
ρ(y′)Q′′(y− y′)dy′ = 0,

2B
∫ `

−`
ρ(y′) log |y− y′|dy′ + (3B + 2A)

∫ `

−`
ρ(y′)dy′ = 0,

2B
∫ `

−`
ρ(y) log |y− y′|dy′ + (3B + 2A)M = 0,∫ `

−`
ρ(y′) log |y− y′|dy′ = −M

3B + 2A
2B

= −M(
3
2
+

A
B
).

Now we use the result from the integral I in the previous section to
compute the length scale,

I
C

= π log `− π log 2,

−π(
3
2
+

A
B
) = π log `− π log 2,

log ` = −(3
2
+

A
B
) + log 2,

` = 2e−(
3
2+

A
B ).

Next, we substitute in the value for A, B to solve for the length scale
exactly,

A
B

=
(1− C

L2 )(γ− 1
2 − ln 2) + C

L2 ln |L|
(1− C

L2 )
,

A
B

= γ− 1
2
− ln 2 +

C
L2 ln |L|

L2−C
L2

,

A
B

= γ− 1
2
− ln 2 +

C
L2 − C

ln |L|,

3
2
+

A
B

= γ + 1− ln 2 +
C

L2 − C
ln |L|.
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Substituting this above gives the length of the interval is

` = 4e−(γ+1)L
C

C−L2 .

We wish to find for which values of C, L the analytic solution for Car-
leman’s equation matches the numerical solution. Above we used the ap-
proximation that

Q(z) ≈ 2(1−C)+
[
(1− C

L2 )(γ−
1
2
− ln 2) +

C
L2 ln |L|

]
z2 +(1− C

L2 )z
2 ln |z|.

This only holds for small values of |z|, so the analytic solution should only
match for certain values of C, L when the asymptotic expansion of the po-
tential is an accurate representation of the actual potential. For this to be
the case, we want the zero of the asymptotic expansion to be close to 0.
From Section 3.5, we saw that we could write

Q2D(z) = Bz2 ln |ze
A
B |.

From this, we see that Q2D(z) = 0 for z = e−
A
B . For this to occur close to

the origin, we need for A
B >> 1.

A
B

= γ− 1
2
− ln 2 +

C
L2 − C

ln |L|.

In order for A
B >> 1; so we need for C ≈ L2, with the added condition

that C < L2. Thus we expect the analytic and numerical solution to be
approximately equal near C = L2. We compare how well the two solutions
match by computing the width of the interval for the analytic and numeric
solutions.
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d. C = 4

Figure 3.5 A comparison between Carleman’s and the numerical solution as
a function of L for 4 different values of C. The width of the interval predicted by
Carleman’s solution is in red and the numerical solution is in blue.
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Figure 3.6 A comparison between Carleman’s and the numerical solution as
for C = 2, and L = 1.5, 1.6. Carleman’s solution is in red and the numerical
solution is in blue.



Chapter 4

Migration of a Circular Swarm

In this chapter we investigate the steady state solution of a migrating circu-
lar swarm. This steady state is frequently observed in the discrete model.
In Section 2.2 we showed that a migrating circular swarm has the steady
state solution ρ = ρ(r), v =

√
α
β x̂. This led to the integral equation,

∫
Ω

ρ(x′)Q(|x− x′|)dx′ = λ,

where the domain Ω = r ∈ [0, R], θ ∈ [0, 2π].

4.1 Energy Formulation

In order to solve this numerically, we use the same idea of minimizing an
energy. The energy function needs to be modified so that a minimum is a
solution to our integral equation,

λ = ρ ∗Q.

We start by rewriting the convolution,

ρ ∗Q =
∫

R2
ρ(y)Q(|x− y|) dy.

Then we convert the integral to polar coordinates and replace ρ(y) = ρ(r)
since the density is only a function of radius:

ρ ∗Q =
∮ ∫ ∞

R=0
ρ(R)Q(|r− R|)R dR dθ.
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Here,
∮

dθ indicates that the integral is taken from 0 to 2π. Now we define
µ(r) = rρ(r), which simplifies the above integral to

ρ ∗Q =
∮ ∫ ∞

R=0
µ(r)Q(|r− R|) dR dθ.

Next, we apply the law of cosines,

|r− R| =
√

r2 + R2 − 2rR cos θ,

and define the kernel function,

K(r, R) =
∮

Q
(√

r2 + R2 − 2rR cos θ
)

dθ.

We let the domain Ω = {r : a < r < b} be the support of ρ. This allows the
above convolution to be written as

ρ ∗Q =
∫

Ω
µ(r)K(r, R) dR = λ.

Here the mass constraint is given by

M(ρ) ≡
∫ 2π

θ=0

∫
Ω

ρ(r)r dr dθ = M̄ = 2π
∫

Ω
µ(r) dr.

Using this formulation, we can now write this as a minimization prob-
lem to the energy function

W =
1
2

∫
Ω

∫
Ω

µ(r)µ(r′)K(r, r′) dr dr′.

When this is minimized subject to M(ρ) = M̄ using the calculus of varia-
tions (Bernoff and Topaz, 2011), it yields

λ =
∫

Ω
µ(R)K(r, R) dR.

Thus, a minimization to this energy provides us with a solution for

λ = ρ ∗Q.
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Figure 4.1 The swarm density ρ(r) for a migrating circular swarm which con-
tains a singularity. The plot on the right in the density µ(r) which is solved for
by minimizing the energy. On the left is the actual density ρ(r). This is for the
parameter values C = 1.5 and L = 2.

4.2 Numerical Solution

Using this energy formulation, we can solve for a numerical solution of the
density by using the same energy minimization technique as before. This
provides a solution for µ(r) = rρ(r). Thus, we compute the swarm density
by taking

ρ(r) =
µ(r)

r
.

The density for the circular swarm with parameter C = 1.5 and length scale
L = 2 is given in Figure 4.1. In this numerical solution, we again notice a
square root singularity occurring at the edge of the swarm. Locally, the
swarm looks like an infinite ribbon for a particle near the boundary of the
swarm. As a result, the same singularity observed on a ribbon occurs on a
circular swarm.

4.3 Swarm Behavior

We are interested in the different types of steady state behaviors that we can
observe. For biologically realistic potentials the value L > 1, so we focus
our analysis to this regime. We investigate the different swarm behaviors
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Figure 4.2 A diagram determining the different regions of swarm behaviors for
a migrating circular swarm. On the left is the analytic prediction for the regions
and on the right is the numerical solution.

over a range of parameter values in this regime. The results are shown in
Figure 4.2.

The behaviors that are observed are a delta function at the origin, a
spreading swarm, and a compactly supported swarm. We would like to
be able to quantify the parameters for which these behaviors are observed.
We obtain when a delta function occurs from an expansion of the potential.
Expanding Q(z) gives

Q(z) = (1− C) + (
C
L
− 1)|z|+ O(z2).

For C > L, the potential will have a local minimum at the origin. This
implies that the solution ρ(r) will contain a delta function at the origin for
C > L, which matches our numerical results.

A spreading solution occurs when E∞ > 0, where E∞ is the potential
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integrated over R2. Evaluating this gives

E∞ =
∮ ∫ ∞

r=0
Q(r)r dr dθ,

= 2π
∫ ∞

r=0

(
e−r − Ce−r/L

)
r dr dθ,

= 2πr
(
−e−r + CLe−r/L

) ∣∣∣∣∞
r=0

+ 2π
∫ ∞

r=0
e−r − CLe−r/L dr dθ,

= 2π
(
−e−r + CL2e−r/L

) ∣∣∣∣∞
r=0

,

= 2π
(
1− CL2) .

For a spreading solution we require E∞ > 0, so

1− CL2 > 0.

This implies that C <
1
L2 for a spreading solution which agrees with the

numerical results.





Chapter 5

Milling Swarm

In this chapter we investigate the steady state solution of a milling swarm.
A milling swarm is a swarm that rotates in a circle about its center. The mill
is a common state observed in nature (Figure 1.2) and in the discrete model.
In our previous Section 2.3,we showed that the steady state solution for a
mill has the form ρ = ρ(r), v =

√
α
β θ̂. Analyzing this led to the integral

equation ∫
Ω

ρ(x′)Q(|x− x′|)dx′ =
√

α

β
ln r + λ,

where we are on the circular domain Ω = r ∈ [a, b], θ ∈ [0, 2π].

5.1 Energy Formulation

In order to solve this numerically, we use the same idea of minimizing an
energy. The energy function needs to be modified so that a minimum is a
solution to our integral equation,

α

β
ln r + λ = ρ ∗Q.

We begin by proceeding in the same way as in the migrating circular swarm.
After converting to radial coordinates we have

ρ ∗Q =
∮ ∫ ∞

R=0
ρ(R)Q(|r− R|)R dR dθ.
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Now we define µ(r) = rρ(r) and define the kernel function in the same
way as before. After applying the law of cosines, we get

K(r, R) =
∮

Q
(√

r2 + R2 − 2rR cos θ
)

dθ.

We let the domain Ω = {r : a < r < b} be the support of ρ. We again have
the mass constraint given by

M(ρ) ≡
∫ 2π

θ=0

∫
Ω

ρ(r)r drdθ = M̄ = 2π
∫

Ω
µ(r) dr.

Using this formulation gives us the integral equation

ρ ∗Q =
∫

Ω
µ(r)K(r, R) dR = v0 ln r + λ,

where we let v0 =
α

β
. Here we have a function on the right side of the

equation. To turn this into an energy minimization problem, we define the
function

W =
1
2

∫
Ω

∫
Ω

ρ(r)ρ(r′)K(r, r′) dr dr′ +
∫

Ω
ρ(r) f (r)dr.

When this new energy functional is minimized subject to M(ρ) = M̄
via calculus of variations (Bernoff and Topaz, 2011), it yields

− f (r) + λ =
∫

Ω
µ(r)K(r, R) dR.

Now if we let f (r) = − α
β ln r, then a minimization to this energy provides

us with a solution for
α

β
ln r + λ = ρ ∗Q.

5.2 Numerical Solution

Using this energy formulation, we solve for numerical solutions of the den-
sity using the same energy minimization technique as before. The only dif-
ference is the addition of the function f (r) = −v0 ln r. This function adds
another parameter v0 that we need to investigate. Using the energy mini-
mization method provides us with a solution for µ(r) = rρ(r), so we obtain

the actual density ρ(r) =
µ(r)

r
.
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Figure 5.1 The swarm density for milling solutions for the parameter values
C = 1.2 and L = 1.5. Here, µ(r) is solved for by minimizing the energy. On the
left is the actual density ρ(r).

We again observe singularities on the boundary of the swarm for a
swarm with compact support. From a Lagrangian point of view, the milling
swarm looks like the infinite strip. Therefore, we expect the density to
be similar to that of the infinite strip with square root singularities on the
boundary.

5.3 Swarm Behavior

The addition of a velocity parameter v0 creates a three-dimensional param-
eter space to investigate. We investigate this for different fixed values of
C, L to determine the different swarm behaviors. Since the potential Q(z)
here is the same as the potential used for the migrating circular swarm, we
still get a minimum in the potential for C > L. This implies that the density
µ(r) will be a delta function for C > L. Also, we know that a spreading

solution will occur for C <
1
L2 . The analytical phase diagram is identical to

the one observed in the migrating circular swarm in Figure 4.2. These con-
straints match our numerical solutions for the behavior seen in Figures 5.2
and 5.3.

When we examine the swarm behaviors in the milling case, we notice
that a new solution of a delta function away from the origin exists. This oc-
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Figure 5.2 A diagram determining the different regions of swarm behaviors
for a milling swarm. Here we are holding L = 2 fixed and investigating over
parameter ranges for v0 and C.
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curs because the milling solution has a centripetal force that pushes the par-
ticles outwards. Mathematically, this is the forcing function v0 ln r which
shifts the radius where the minimum energy density occurs.

Near the boundary where C = L, we notice a transition from a delta
function to a compactly supported swarm. The width of the compactly
supported swarm will be very small near this boundary so we expect for
Carleman’s approximation to hold near this boundary. We would like to
find a region where Carleman’s solution agrees with the numerical solu-
tion. In order to do this, we must first investigate how the swarm behaves
on the boundary C = L to determine how the ring radius is affected by the
parameters in our model.

5.4 Solutions on the Boundary C = L

Here we are looking for solutions on the boundary where C = L. Our
potential function Q is given by

Q(z) = e−|z| − Ce−|z|/L,

= e−|z| − Le−|z|/L.

Next, an asymptotic expansion of the potential is performed in the same
manner as in the Ribbon Chapter 3. This gives the quadratic potential

Q(z) = (1− L) +
L− 1

2L
z2 + O(z3).

Let A = (L−1)
2L . Since a quadratic potential allows for the kernel to be com-

puted analytically, we can compute

K(r, r′) =
∮

Q
(√

r2 + r′2 − 2rr′ cos θ
)

dθ

=
∮
(1− L) +

L− 1
2L2

(
r2 + r′2 − 2rr′ cos θ

)
dθ,

which yields
K(r, r′) = 2π(1− L) + 2πA(r2 + r′2).

Now let the parameter v0 = α/β. Substituting this into the energy func-
tional

W =
1
2

∫
Ω

∫
Ω

µ(r)µ(r′)K(r, r′) dr dr′ +
∫

Ω
µ(r) f (r)dr,
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Figure 5.3 A diagram determining the different regions of swarm behaviors for
a milling swarm. Here we hold C fixed and investigating over parameter ranges
for v0 and L.



Solutions on the Boundary C = L 41

and evaluating this yields

W =
1
2

∫
Ω

∫
Ω

µ(r)µ(r′)
(

2π(1− L) + π
L− 1

L
(r2 + r′2)

)
dr dr′ − v0

∫
Ω

µ(r) ln rdr,

= π(1− L)
M
2π

2
+ AM

∫
Ω

µ(r)r2 dr− v0

∫
Ω

µ(r) ln r dr,

= π(1− L)
M
2π

2
+ AM

∫
Ω

µ(r)
(

r2 − v0

AM
ln r
)

dr.

Since we are trying to minimize the potential, the addition of any con-
stant term will have no effect on the solution. We let W0 = π(1− L) M

2π

2

and define 2R2 = v0
AM . This simplifies our potential to

W = W0 + AM
∫

Ω
µ(r)

(
r2 − 2R2 ln r

)
dr. (5.1)

Now define the function g(r) = r2− 2R2 ln r and expand this around r = R.
Evaluating the first and second derivative yields g′(r) = 2r − 2R2/r and
g′′(r) = 2 + 2R2/r2. This gives the expansion

g(R + σ) = (R2 − 2R2 ln R) + 2σ2 + O(σ3).

Substituting this into the energy above gives

W = W̃0 + 2AM
∫

Ω
µ(R + σ)σ2 dσ.

Any perturbation to a delta function at r = R causes an increase in en-
ergy. Therefore, the density for this must follow µ(r) = Mδ(r− R), where
the radius

R =

√
v0

2AM
=

√
v0L

M(L− 1)
. (5.2)

We investigate whether the delta function is stable numerically for this
case. The energy for a delta function µ(r) = M

2π δ(r− R) is given by

W =
1
2

M
2π

2
K(R, R)− M

2π
v0 ln r.

We compute the energy numerically for this and perturbations to this to
confirm that this is indeed a minimum for the energy. From Figure 5.4, we
see that a delta function is stable on the boundary where C = L.
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Figure 5.4 The left graph shows the energy density as a function of the radius
from the origin. On the right is the energy as a function of ε where ε represents
a solution µ(r) to be a top hat function of width ε centered at r = 0.47. This is
for the parameter values C = L = 2, M = 10, and v0 = 0.6.

Next, we investigate how well the actual radius of the ring matches the
value predicted by the asymptotic expansion of the potential. The asymp-
totic expansion of Q(z) is a good approximation for small values of z.
Therefore, we expect the radius of the ring to match the predicted value
of R for small R. This means we want v0 = α/β to be small, or the mass
M to be large. A comparison between the numerical and predicted value
from the asymptotic expansion is shown in Figure 5.4. We observe that the
approximation works well for small v0 or large M as expected.

5.5 Carleman with the Morse Potential

Now we consider the behavior of the swarm as we move slightly from the
boundary. We consider the case when C = L− ε. An asymptotic expansion
of the potential gives

Q(z) = (1− L + ε)− ε

L
|z|+ L2 − L + ε

2L2 z2 + O(z3).

We will let A = L2−L+ε
2L2 and B = −ε

L . Define Q0 = B|z| and Q1 = Az2. Then
we have the kernel, K = K0 + K1. From above, we already know the effect
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Figure 5.5 A comparison between numerical ring radius in red and the asymp-
totic result in blue as functions of M and v0. The left plot shows the effect that
the mass has on the ring radius R. The right plot shows the effect of v0 on
the ring radius. This is for the parameter values C = L = 2, M = 10, and
v0 = 0.5.

of the kernel K1 on the energy. Therefore, all that is left is to evaluate K0.
Computing the integral gives

K0(r, r′) =
∮

Q0

(√
r2 + r′2 − 2rr′ cos θ

)
dθ = B

∮ √
r2 + r′2 − 2rr′ cos θ dθ,

which yields

K0(r, r′) = 4B(r + r′)EllipticE

(
2
√

rr′

r + r′

)
.

Now let r = R + σ1 and r′ = R + σ2 where we assume σ1, σ2 << 1 and

R =

√
v0

2AM
is given by Equation 5.2. An asymptotic expansion of the

kernel K0 under these conditions gives

K0 = 8RB + 4B(σ1 + σ2) + B
|σ1 − σ2|2

R
(2 ln 8R− 1− ln |σ1 − σ2|).

Combining the terms into one log gives

K0 = 8RB + 4B(σ1 + σ2)− B
|σ1 − σ2|2

R
ln
√

e
8R
|σ1 − σ2|.
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Now we evaluate the effect of the energy from this kernel after defining
C =

√
e

8R . The new effect comes from Wε = 1
2

∫
Ω

∫
Ωµ(r)µ(r′)K0(r, r′) dr dr′.

Evaluating this gives

Wε =
1
2

∫
Ω

∫
Ω

µ(R + σ1)µ(R + σ2)K0(σ1, σ2) dσ1 dσ2,

=
1
2

∫
Ω

∫
Ω

µ(R + σ1)µ(R + σ2)

(
8RB + 4B(σ1 + σ2)− B

|σ1 − σ2|2
R

ln C|σ1 − σ2|
)

dσ1 dσ2,

= 4RB
M
2π

2
+ 4B

M
2π

∫
Ω

µ(R + σ)σ dσ,

− B
2

∫
Ω

∫
Ω

µ(R + σ1)µ(R + σ2)

(
|σ1 − σ2|2

R
ln C|σ1 − σ2|

)
dσ1 dσ2.

Next we combine this with the energy for the kernel K1 given in Equa-
tion 5.1 where r = R + σ. All of the constants are combined into a single
constant W0, which yields

W = W0 +
∫

Ω
µ(R + σ)

[(
AM(R + σ)2 − 2R2 ln (R + σ)

)
+ 2

B
π

Mσ

]
dσ−

B
2R

∫
Ω

∫
Ω

µ(R + σ1)µ(R + σ2) (|σ1 − σ2| ln C|σ1 − σ2|) dσ1 dσ2.

When this is minimized subject to M(µ) = M̄ using the calculus of
variations, it yields[

AM(R + σ)2 − 2R2 ln (R + σ)
]
+ 2

B
π

Mσ+ λ̃ =
B
R

∫
Ω

µ(R+σ1)
(
|σ1 − σ|2 ln C|σ1 − σ|

)
dσ1.

This can be written in terms of r as[
AMr2 − 2R2 ln r

]
+ 2

B
π

M(r−R)+ λ̃ =
B
R

∫
Ω

µ(r)
(
|r1 − r|2 ln C|r1 − r|

)
dr1.

This leads to an integral equation in a similar form as Carleman’s equa-
tion which we solved earlier. However, the linear term 2 B

π Mσ causes a shift
in the center of the swarm. We define the left hand side as a function f (r),
and find the minimum of this to determine the center of the swarm,

f (r) = AM(r2 − 2R2 ln r) + 2
B
π

M(r− R). (5.3)

Differentiating to find where the derivative is 0 yields

f ′(r) = 2AM(r− R2 1
r
) + 2

B
π

M = 0.
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Simplifying the above result into a quadratic gives

r2 +
B

πA
r− R2 = 0.

Solving this using the quadratic formula gives

rε =
− B

πA +
√
( B

πA )
2 + 4R2

2
.

We define ε̃ = B
2πA which allows us to simplify the above result to

rε =
√

ε̃2 + R2 − ε̃.

Thus, we expect to have a solution symmetric about the point rε. We
will now let σ = r− rε which we use to solve Carleman’s equation. There-
fore, we can expect a solution of the form

µ̃(σ) =
k√

`2 − σ2

for some value of k, `.
We can compute what the length of the interval will be using this ap-

proximation. If we take two derivatives of the potential Q̃ = |σ1−σ′|2 ln C|σ1 − σ′|
we get

Q′′(z) = 2 ln C + 2 log |z|+ 3.

Now we solve Carleman’s equation as we did in the ribbon chapter.

B
R

d2

dσ2

∫ `

−`
µ̃(σ1)Q(σ− σ1)dσ1 =

d2

dσ2 f (rε),

B
R

∫ `

−`
µ̃(σ1)Q′′(σ− σ1)dσ1 = f ′′(rε).

Note that
d

dσ
=

d
dr

so we will compute d2

dr2 of the function f (r) given in
Equation 5.3. This gives

f ′′(r) = 2AM(1 + R2 1
r2 ).

This is evaluated at r = rε which gives

f ′′(rε) = 2AM[1 + (
R
rε
)2].
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Substituting this in above yields

2B
R

∫ `

−`
µ̃(σ1) log |σ− σ1|dσ1 +

B
R
(3 + 2 ln C)

∫ `

−`
µ̃(σ1)dσ1 = 2AM

[
1 +

(
R
rε

)2
]

,

2B
R

∫ `

−`
µ̃(σ1) log |σ− σ1|dσ1 +

B
R
(3 + 2 ln C)M

2π
= 2AM

[
1 +

(
R
rε

)2
]

,

∫ `

−`
µ̃(σ1) log |σ− σ1|dσ1 =

AMR
B

(
1 +

R
rε

2
)
− M(3 + 2 ln C)

4π
.

The mass constraint is used to compute the value of the constant k,

M
2π

=
∫ `

−`
µ(σ)dσ,

=
∫ `

−`

k√
`2 − σ2

dσ,

= kπ,

k =
M

2π2 .

Now we use the result for the integral I/k =
∫ `
−`µ̃(σ1) log |σ1 − σ|dσ from

Section 3.4 to compute the length scale,

I
k
= π log `− π log 2,

2π2

M

(
AMR

B

[
1 +

R
rε

2
]
− M(3 + 2 ln C)

4π

)
= π log `− π log 2.

This gives the length scale for the interval,

log ` =
2πAR

B

(
1 +

R
rε

2
)
− 3 + 2 ln C

2
+ log 2,

` = 2Exp

[
2πAR

B

(
1 +

R
rε

2
)
− 3 + 2 ln C

2

]
, (5.4)

where A =
L2 − L + ε

2L2 , B =
−ε

L
, and C =

√
e

8R
.
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Figure 5.6 The width of the solution as a function of ε as we move in from the
boundary C = L. The numerical solution using the Morse potential is in red and
the analytical solution using an asymptotic approximation is in blue. This is for
the parameters C = L = 2, M = 100, and v0 = 0.5.

Hence, our solution to this integral equation is given by

µ(r) =
M

2π2
√
`2 − (r− rε)2

,

where ` is given above in Equation 5.4. The width of the interval is given
by w = 2`. We compare how good an approximation this is for the solution
in Figure 5.6.





Chapter 6

Conclusion

In this thesis, we investigated the different steady state behaviors that can
exist in our swarming model. Our model for the swarms behavior used a
nonlocal PDE to model the social interactions that occur between individ-
uals. We studied the Morse potential since it has been used for a long pe-
riod of time to model social interactions between individuals (Levine et al.,
2000).

The three steady states we investigated were an infinite ribbon, a mi-
grating circular swarm, and a milling swarm. Both the migrating circular
swarm and milling swarm are behaviors exhibited by animals in nature.
The infinite ribbon provided a way to determine an analytic solution for
the singularity. Using an asymptotic expansion of the potential we were
able to convert our integral equation into Carleman’s equation, which can
be solve analytically. Locally, the milling swarm as well as the boundary of
the migrating circular swarm can be thought of as an infinite ribbon. This
leads to the same square root singularity that was observed in the infinite
ribbon.

Our results indicate that the use of the Morse potential for social inter-
actions leads to a singularity in the swarm density. However, the Morse
potential is being used to model a biological process where an infinite den-
sity of animals is unrealistic. This calls into question the validity of the
Morse potential for swarming models and suggests that a different poten-
tial should be used instead to model the social interactions that occur be-
tween individuals.





Chapter 7

Future Direction

In the ribbon and milling steady states, we found an analytic solution for
the asymptotic expansion of the potential. This matched with the numeri-
cal solution to the integral equation for a specific range of parameters. The
range of parameters over which the analytic solution is accurate could be
extended by using more terms in the asymptotic expansion of the potential.

In our investigation, we used an energy minimization technique to ob-
tain the solution for the density. However, we do not know whether this
results is a local or global minimum for the different solutions we observe.
Therefore, we would like to perform stability analysis on the steady states.
This can be done by investigating the effects of small perturbations on the
solution to determine their stability.

Our analysis focused on swarm behavior in two dimensions. We found
both a mill and a migrating steady state which are both biological behav-
iors. Future work could extend this by investigating the steady states that
exist in three dimensions. This might provide insight into the types of be-
haviors observed in birds. Also, three dimensions allows for the addition
of new steady states such as helixes.
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