February 2014

The Sound of STEAM

Rodney Harshbarger
old Kings Elementary/University of Central Florida Doctoral Student

Denise Harshbarger
NEFEC (Northeast Florida Education Consortium

Follow this and additional works at: http://scholarship.claremont.edu/steam

Part of the Elementary Education and Teaching Commons, Junior High, Intermediate, Middle School Education and Teaching Commons, and the Secondary Education and Teaching Commons

Recommended Citation
Available at: http://scholarship.claremont.edu/steam/vol1/iss2/23

© February 2014 by the author(s). This open access article is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives License.
STEAM is a bi-annual journal published by the Claremont Colleges Library | ISSN 2327-2074 | http://scholarship.claremont.edu/steam
The Sound of STEAM

Abstract
This field note describes how teachers and students developed an integrated STEAM unit around sound. The project involved dynamic interactions between concepts in math, science, and music.

Author/Artist Bio
Rodney Harshbarger, or Mr “H” as the kids call him, was born and raised in Dayton, Ohio. After spending 4 years in the Navy based on a ship out of San Diego, California he attended the University of Louisiana Lafayette where he majored in music education. He then went directly to the University of Florida for his Masters degree in Trumpet Performance where he also played trumpet for the Christmas Brass at Walt Disney World part-time. Harshbarger is now in his 18th year of teaching music in Flagler Schools and currently is teaching K-6th grade music at Old Kings Elementary. He is National Board certified and a former Indian Trails Teacher of the Year as well as a former Flagler County Teacher of the Year. He was recently named a quarter-finalist for the 2014 Grammy Educator Award.

Rodney and wife Denise are currently working on their Doctoral Degrees at the University of Central Florida.

Keywords
Frequency, IPAD, STEAM

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
The Sound of STEAM

Rodney & Denise Harshbarger

I am in my 18th year of teaching music, but have also taught ETTA (Education Through the Arts), a program piloted by our county Curriculum Specialist; it was essentially STEAM before its time. Teachers of each grade level from 3rd through 6th grades identified students that excelled in arts. All selected students were put in one homeroom and targeted for ETTA services. Working with the classroom teacher, we were able to create integrated thematic units. The students painted murals, created tile mosaics, and sang songs about oceans, for example, when the 4th grade teacher was teaching the oceans unit. While I did not fully recognize it at the time, this was the beginning of my dabbling in the concept of STEAM.

Years later, my wife and I began talking about our lessons and discovering the tremendous amount of overlap that exists between the arts and science. Together, we have made a practice of creating STEAM lessons for teachers who are interested in STEAM. Recently, my wife conducted a workshop focused on developing content knowledge of science teachers. In addition to the science component, she addressed the concept of introducing a motivational factor by recruiting an Arts teacher to help supplement science understanding in a real-world scenario.

A colleague approached me about building an integrated STEAM unit around sound. In this unit, our students were able to develop an understanding of the scientific characteristics of sound, as a disturbance moving through a medium. In their science and music classrooms, students conducted experiments with sound moving through various media (solid, liquids, and gases), and were able to see how variables affect the sound waves. Mathematics concepts were employed with students working on calculations of wavelengths and frequency. The concept of frequency was then solidified in music class by teaching students that pitch and frequency are the same concept, but are called different names by different disciplines. This means that every unique note in a composition is unique because of its frequency. Students who mastered this concept easily were provided with extension activities calculating octave frequencies with a 2:1 ratio formula.

The learning was further enhanced through an engineering exercise, which required students to create their own instrument. Students could either create a string instrument or a pitched percussion instrument. Students who chose strings used a broom handle, scrap wood, and fishing line and wire of different strength and diameters. During the activity the students were able to experiment with their instrument, tweaking the instrument to hear what they wanted. The sound the students wanted to hear from their instruments had to be envisioned and then executed into a real goal. Through hearing the subtle or extreme changes that occurred when a single variable was eliminated, adjusted or added, the students could see and hear the outcome. Students who chose to create wind instruments filled different size glasses or bottles with varying amount of water and had to either recreate “Mary had a Little Lamb” or construct their own original melody.

Finally, in groups, students were given four bottles and a computer tablet. They had to figure out how to play along with a pre-selected programmed melody that was playing on the tablet by striking the sides of the bottle. The challenge in this task was to calculate the exact amount of water necessary to produce the correct frequency or pitch that went with the melody.
on the tablet. This was done by filling bottles with water up to various heights. They then analyzed the resulting sound that emerged when students played by striking the side of the bottle. Extensions were provided for students who mastered this task easily. These students engaged in small group discussions about rhythm, patterns, and pitch with specific focus on how these variables affect the musicality of a piece. Assessments were given in both music and science classes. Results were staggering. Ninety-six percent of students tested proficient in their grade level standards for both music and science. These results are a true testament to the power of STEAM in the classroom!