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A Task Analysis of Algebra
Word Problems

Dale E. Berger
Jeffrey M. Wilde
The Claremont Graduate School

ABSTRACT

Algebra word problems have been a source of consternation to generations of
students. Recent cognitive analyses of problem solving have provided a new
perspective on the mental processes involved in solving problems. In the study
reported in this chapter, a set of algebra word problems was analyzed in terms of
the information integration tasks that are required to solve the problems. A
comparison of beginning and advanced high school students on their strategies
and skills with algebra word problems demonstrated the advantages experts have
in recognizing and using the overall structure of problems to guide them to a
solution. Instruction that focuses on the structure of the problems was successful
in improving performance of a group of novices, although generalization to a
related problem was limited. The current study and similar analyses of the
cognitive operations involved in problem solving point the way to instructional
strategies that can be applied by teachers and designers of instructional materials.

INTRODUCTION

If you have not repressed the memory, you may recall the sense of frustration and
feeling of incompetence that probably accompanied your first encounter with
algebra word problems. Although some students quickly overcome these feelings
as they gain a degree of mastery over word problems, many other students
continue to struggle with little success. Even students who are expert at solving
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algebraic equations are often baffled when the same problems are cloaked in a
verbal cover story (Mayer, Larkin, & Kadane, 1984).

In recent years there has been a tremendous surge of interest in problem
solving and instruction, providing a growing area of productive interaction be-
tween cognitive psychologists and educators (cf. Frederiksen, 1984; Lester,
1982; Lochhead & Clement, 1979; Segal, Chipman, & Glaser, 1985; Silver,
1985; Tuma & Reif, 1980). In this chapter we describe (a) a cognitive analysis of
the tasks involved in solving algebra word problems, (b) a comparison of
“novice’” and ‘‘expert’” high school problem solvers in terms of their strategies
and their competence with these tasks, and (c) the impact of a brief training
session focused on these tasks and strategies.

Stages in Problem Solving

Sixty years ago Wallas (1926) described four stages of problem solving: prepara-
tion, incubation, illumination, and verification. Over the years there have been
many analyses that divide the problem-solving process into stages (e.g., Dunck-
er, 1945; Greeno, 1973; Polya, 1957, 1968). A limitation of many such analyses
is that they do not necessarily provide much insight into the mental processes that
are involved in crucial stages, such as ‘‘illumination.”” One contribution of
cognitive psychologists has been to generate a better understanding of the basic
mental mechanisms that are used in the course of problem solving.

In a recent analysis of problem solving, Mayer (1982b) has identified two
main stages: (a) forming a representation or understanding of a problem, and (b)
searching the problem space in memory for a solution. Within the first stage,
problem solvers need to access linguistic, factual, and schematic knowledge so
that the problem is correctly encoded along with relationships of the problem to
other problems. Within the second stage, problem solvers draw on algorithmic
knowledge of how to perform well-defined procedures and strategic knowledge
of useful approaches to problems (p. 3).

Gaining Expertise with Algebra Word Problems

- Typical classroom instruction in algebra word problems focuses on algorithmic
skills, whereas strategies and schemata that can be used to organize principles are
not taught directly. Greeno (1980) has suggested that current methods for teach-
ing problem solving are akin to teaching swimming by tossing the student into
the water, a method that may be ‘‘successful for some students, but it has
obvious negative consequences for others” (p. 6). Unfortunately, even if algebra
teachers could be persuaded to devote significant instructional effort to teaching
organizing principles, we do not have much information on how students learn to
use schemata and strategies nor how organizing principles can best be taught.

One useful approach has been to compare the problem-solving performance of
experts to that of novices (e.g., Chi, Feltovich, & Glaser, 1981; Kintsch &
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Greeno, 1985; Larkin, McDermott, Simon, & Simon, 1980; Simon & Simon,
1978). A general finding 1s that persons skilled in a problem domain have a
sizable body of domain-specific knowledge, including patterns or schema for
types of problems. Recognition of a familiar pattern provides quick access to
relevant procedures. Larkin et al. (1980) found that persons expert with physics
problems were able to work problems from the botrom up, proceeding to com-
bine basic information in a sequence of steps that led to the goal. The experts
apparently had a mental model or schema of the structure of the entire problem,
which allowed them to take a direct path toward the solution. On the other hand,
novices were more likely to apply a means-ends strategy, working backwards
from the goal by defining subgoals successively farther from the goal and closer
to the basic information that was given in the problem. There is recent evidence
that when students use means-ends analysis, this strategy may actually interfere
with the acquisition of schema and awareness of the structure of the entire
problem (Owen & Sweller, 1985) and hence impede the progress from novice to
expert status.

Analysis of Algebra Word Problems

Our understanding of the domains within algebra word problems was greatly
advanced by Mayer (1981) when he compiled and categorized 1,097 word prob-
lems from 10 major algebra texts used in California public schools. On the basis
of underlying source formulas (e.g., rate X time = distance), he identified 25
families, such as time-rate and unit-cost problems. Families were divided into
categories that share variables, formulas, and methods of derivations. For exam-
ple, the time-rate family was divided into 13 categories, such as motion, current,
and work problems. Each category was further divided into templates, defined
by the propositional structure of the problems. Motion problems, for example,
have at least 12 templates, including vehicles converging, one overtaking an-
other, and one vehicle making a round trip. Problems within a template differ
only in the values that are used, and in details of the wording of the problem.

Mayer (1981) found that the relevant information in nearly all problems could
be described using four types of propositions:

1. assignments (e.g., A cup holds 8 ounces.)

2. relations (e.g., A bottle holds four times as much as a cup.)
3. relevant facts (e.g., John will sell cups of soda.)

4. questions (e.g., How much money will John earn?)

In a series of studies with college freshmen, Mayer (1982a) found that recall
was poorer for relational propositions than for assignment propositions, and
when students were asked to construct their own word problems they rarely made
use of relational propositions. Reed, Dempster, and Ettinger (1985) found that
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college students also had special difficulty expressing relationships correctly in
word problems.

These findings suggest that an analysis of the ways in which information is
collected and combined in solving algebra word problems might provide a useful
tool for characterizing problem structure and relationships between problems.
We conducted such an analysis and used a coding system based on this analysis
to examine the approach used by first-year algebra students (novices) compared
to the approach taken by more experienced problem solvers (experts). We also
examined the effects special training with problem tasks and structure had on

task performance.

Information Integration Tasks in Algebra Word
Problems

We analyzed the structure of 50 common word problems selected from Mayer’s
(1981) collection, and organized a list of the information integration tasks In-
volved in solving these problems. The tasks were sorted into three levels of
information integration: value assignment, value derivation, and equation con-
struction. Each level contained three types of tasks. An example of each of these
nine tasks is shown in Table 10.1.

The first level, Value Assignment, requires little more than direct translation
of text into an equation. Value Assignments are established by equivalence
assignment when a noun phrase from the problem is set equal to a numerical
value, by unknown assignment when a noun phrase is set equal to a symbol
representing an unknown value, or by relation assignment when a noun phrase is
set equal to a simple relationship with another noun phrase, as Rate 2 = 2x (see
Table 10.1).

The second level, Value Derivation, involves operating on assigned values to
produce new values. Values may be derived through transformation by operating
on a Level 1 value assignment, such as adding a constant to both sides of an
equation. A second mode of value derivation is by construction, where Level 1
value assignments are combined, as by addition or subtraction, to produce a
value for a noun phrase. Third, a value may be derived by using a source formula
such as ‘‘rate X time = distance,”’ where knowledge of any two values permits
derivation of the third.

The third level of information integration is Equation Construction, which
requires creation of a computational representation of the structural relationship
between the variables in the problem. One way this may be accomplished is by
applying a function rule provided in the statement of the problem (See Table
10.1). A second way is by applying a source formula not presented directly in the
problem, such as ‘‘area = length X width.”” A third type of equation is formed
by combining components, such as ‘‘area of garden = total area — area of
walkway.”’



10. ALGEBRA WORD PROBLEMS

TABLE 10.1

Taxonomy of Information Integration Tasks

127

Level of Information Integration

Sample Level 1: Level 2: Level 3:

Problems Value Assignment Value Derivation Equation Construction
A man is now 40 Equivalence Transformation Function Rule

years old and Assignment

his son is 14.
How many years
will it be until
the man is twice
as old as his

Man's age
today = 40

Son's age

Man's age x years (40+x) =
from now = 40 + x

Son's age x years

2(14+x)

son? today = 14 from now = 14

A framed mirror Unknown Construction Source Formula
is 45 by 55 cm. Assignment

1911 sguare cm

of the mirror Width of the L = 55 - 2x A = (L) (W)
shows. How frame = x W = 45 - 2x A = (55-2x) (45-2x)
wide is the

frame?

Two hikers start Relation Source Formula Combination

at the same time Assignment

from towns 36

miles apart, and

meet in 3 hours. [Rate 1 = x]1 (R) (T} =D D = Dl + D2
One hiker walks

twice as fast as Rate 2 = 2x (x) (3) = Dl 36 = 3x + 6x
the other. What

is the rate of (2x) (3) = D2

each hiker?

There is a hierarchical relationship among the three levels of information
integration. The value assignments from the first level are often operated upon in
the second level to derive new values, which are then used in the third level for
the construction of the equations. However, problem solving can begin at any of
the three levels. Activities at each level place constraints on activities to be
completed at each of the other levels. For example, if one can determine the form
of the final equation, the range of possibly appropriate value assignments and
derivations may be reduced.

THE CURRENT RESEARCH

The present research was designed to compare novice and expert problem solvers
in terms of their facility with information integration tasks at each level, and in
terms of their awareness and use of the structure of the problem. We expected the
novice problem solvers to have relatively more difficulty with aspects of problem
solving that require an appreciation for the structure of the problem. This would
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be reflected in greater difficulty with the information integration tasks at the
second and third levels than for tasks at the first level, which require only
assignment of values and unknowns. We also examined the effects of instruction
on problem structure for novice problem solvers. We were hopeful that the
training would improve the performance of novices on the higher levels of

information integration.

Method

Three groups of high school students were recruited for this study. Volunteers
from first-semester algebra classes were assigned to one of two groups of novice
problem soivers: an instruction group and a control group. A third group of
experienced problem solvers was composed of volunteers from analytic geome-
try classes. Each student was paid $2.00 for participating. A detailed description
of the study is available as an unpublished dissertation (Wilde, 1984).

The initial task for all groups was a set of six word problems, followed by a
vocabulary test. About a month later half of the novices were given special
instruction on word problems (described in a later section) while the other half
served as a control group. A posttest followed for both groups. A test of ability to
identify the structure of word problems was given to the control group of novices
at the end of the second session and to the experts at the end of their first and only
session.

The six word problems in the initial test were two problems each from May-
er’s (1981) motion, age, and rectangle families. All students had been exposed to
these three categories of problems in their classrooms. Students were tested
individually. The problems were presented in a booklet, with each problem
written on the top of a separate page, leaving space for calculations below.
Students were asked to write down each step, and to report their thoughts as they
worked. The experimenter recorded all comments. Students who were unable to
get started on a problem were prompted with the hint that they should first
determine what the problem’s unknown was. If this failed, they were told to go
on to the next problem. No problem could be returned to once the page was

turned.

Results and Discussion

On the six problems, the combined novice groups solved only 9% of the prob-
lems compared to 85% for the experts. The problem protocols were analyzed for
each group to determine the proportion of tasks completed at each level of
information integration. The results of this analysis are shown in Table 10.2.

Here, and in other analyses where the dependent variable was a proportion,
we used an arc sine transformation to reduce potential effects of skew in the data
prior to conducting an analysis of variance. The two main effects and the interac-
tion were all highly significant in this table, all in the expected direction. Experts
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TABLE 10.2
Mean Proportion of Information Integration Tasks Completed

Level of Information Integration

Group n 1 2 3
Novice 35 .73 .27 .09
Expert 13 1.00 .92 .85

outperformed the novices, and pertormance for both groups was progressively
poorer as the integration tasks required more structure-specific integrations. Val-
ue assignments (Level 1) were easiest whereas formula constructions (Level 3)
were the most difficult. The interaction indicated that the effect of integration
level was greater for novices than for experts. Novices were reasonably compe-
fent at setting up givens but very poor at applying procedures that depended on

the problem structure. Details of the results, including statistical tests of signifi-
cance, are available in Wilde (1984).

Problem Solving and Verbal Abilities. One might expect verbal comprehen-
sion to be a good predictor of algebra word problem solving success, since
translation of problems depends on verbal comprehension. To evaluate this no-
tion, we gave all students the first part of Vocabulary Test 1l from the ETS Kit of
Factor Referenced Cognitive Tests (Ekstrom, French, Harman, & Derman,
1976). The correlation between the proportion of information integration tasks
completed and verbal comprehension for the entire sample was a highly signifi-
cant .75, This high correlation was the result of large differences between the
groups on both measures. The average score on the 18-item vocabulary test was
14.3 for the experts, and only 8.2 for the novices. The correlation between
problem solving and vocabulary for the experts alone was .17 and for the
notives .01, both nonsignificant. A high level of verbal ability may be required
to become established in the high-math-performance group, but verbal ability
does not account for the variability of math performance found within a group.
These data also indicate that the experts were a select group. It seems unlikely

that all of the novices could be expected eventually to make the transition to
expert status.

Comparison of Novices and Experts on Information Integration Tasks. We
next examined performance of the experts and novices on specific tasks. Table
10.3 shows the mean proportion of success for each type of task at each of the
three levels. Split-plot analyses of variance were computed on the proportion of
tasks successfully completed at each level by the two groups. ANOVAs were
followed by a posteriori Tukey’s HSD tests for individual comparisons.

Following Mayer (1982a), we expected performance on Value Assignments
{Level 1) to be poorer for relation assignments than for equivalence and unknown
assignments. The ANOV A showed both of the main effects and the interaction to
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be highly significant. The experts performed better than the novices on each task.
For the novices, performance on unknown assignments and relation assignments
did not differ significantly, but both were easier than equivalence assignments.
This was surprising since equivalence assignments seem so straightforward. A
closer look at equivalence assignments uncovered an important distinction: Some
assignments describe individual objects or actors (e.g., in the Hikers probiem in
Table 10.1, Rate 1 = x) and some assignments are used to connect parts of the
problem (e.g., in the Hikers problem, the distance between two towns = 36
miles). The mean proportion of correct Equivalence Assignments was .77 for the
individual objects, but only .45 for the connections.

At Level 2 were the Value Derivation tasks using transformations, construc-
tion, and source formulas. Transformations were completely specified by the
problem in that the initial value, the transforming value, and the transforming
operation were all stated explicitly. Constructions and source formulas, howev-
er, involve combining information based on ideas about the problem structure
that were not stated explicitly in the problem. This led to the prediction that for
novices transformations would be easier than constructions and source formulas.

The analyses showed that novices found the construction tasks significantly
more difficult than either the source formula or the transformation tasks, which
did not differ significantly from each other. No differences between tasks were
reliable for the experts.

One might suspect that the poor performance of the novices in using source
formulas might be because they do not know the formulas. However, when they
were asked to recall the formulas at the end of the experiment, 83% of the
novices correctly recalled the area formula and 71% recalled the rate formula. It
is the application of the formulas that is not well understood.

Performance of the novices on value derivation by construction was abysmal.
An inability to construct variables by combining components of the problem is
consistent with the hypothesis that novices do not have a good understanding of
the structure of the word problems.

The Level 3 integration tasks of Equation Construction involved the use of a
function rule, source formula, or combination of variables to produce a summary
equation reflecting the structure of the problem. We expected the performance of
novices to be especially poor at Level 3 because these tasks are most dependent
on a good understanding of the structure of the problem. (In the six problems
used here, no source formulas were needed at Level 3.)

Expectations were confirmed in that novices had little success with the Level
3 tasks (see Table 10.3). Both groups were more likely to obtain the final
equation when a function rule was required than when a combination of variables
was needed.

It is important to note that although novices were usually successful at trans-
lating the problem text into equations, this skill did not guarantee that they would
be able to solve the problem. The inability of novices to combine information at
the higher levels resulted in very low solution rates.
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TABLE 10.3
Mean Proportion of Information Integration Tasks Completed

Novices Experts

Level of Information Integration {n=35) {(n=13)

1. value Assignment Tasks:

Unknown Assignment .81 1.60

Relation Assignment .75 1.00

Equivalence Assignment .64 .99
2. Value Derivation Tasks:

Transformation .45 .98

Source Formula .20 .89

Construction .03 .83

3. Formula Construction:

Function .19 .92
Combination .04 .81

These results should be interpreted with some caution since there were only

six problems in the test set. Generalization to a wider range of problems has not
been established.

Perceptions of Problem Structure. To assess more directly the students’
ability to detect and compare the structure of algebra word problems, we devel-
oped a simple test for this purpose. The test consisted of five triads of problems,
where each triad was constructed of three problems from the same category, with
two from one template and the third from a different template. Students were
asked to determine, for each triad, which two problems were most alike. An
example of a problem triad is shown in Fig. 10.1. The first two problems here are
isomorphs that differ only in values of the variables. The third problem presents
the second proposition in a form different from the first two problems.

STRUCTURE TASK
Which two of the following three problems are most alike?

(a) Problem 1 and Problem 2. { )
(b) Problem 1 and Problem 3. ()
(c) Problem 2 and Problem 3. ( )

1. Dana is five times as old as his dog, Texas. In 9 vyears
Dana wil) be twice as old as Texas. What are their ages
now?

2. Roger is four times as old as his sister. |In 6 years he

will be twice as old as she. How old are they now?

3. Pam is twice as old as her brother. In 5 years their ages
will total 22 years. How old are they now?

FIG. 10.1. Sample Problem from the Structure Task.
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Chance performance on the structure task was 33% correct. The novices
performed right at chance, 33% correct, whereas the experts were correct on
88% of the triads. This is convincing evidence that the novices had little appre-
ciation for the structure of the problems, in contrast to the experts who were able
to identify the structure quite consistently.

Analysis of Problem Protocols. A third source of data was the problem
protocols. All students were asked to write down each step of their solution
attempt, and to ‘‘think out loud’” as they proceeded. These protocols showed
striking differences between the novices and the experts in terms of their use of
the problem structure.

Strategies that led to solution are listed first in Table 10.4. Just over half of the
problems solved by experts showed a ‘‘working-down’” strategy that started with
the Level 3 integration, demonstrating an understanding of the structure of the
problem, which in turn provided the solver with a relatively clear indication of a
path to the goal. The novices never started with the Level 3 integration. On the
18 problems solved by novices, 17 showed a working-up strategy where the
protocols gave all Level 1 integrations first, then the Level 2 integrations, and

TABLE 10.4
Strategies Used by Novice and Expert Problem Solvers

Number of Prcblems

Strategy Type Novices Experts
1. Successful Strategies 18  (9%) 66 (85%)
(a) work up 17 25
{b) work from the middle 0 4
{c) work down ] 31
(d) diagram a familiar procedure 0 5
(e) ideosyncratic arithmetic model 1 1
2. List variables 108 (51%) 4 (5%)
3. Memory for a Similar Problem 20 (10%) 6  (8%)
(a}) generate a formula table 20 1
{b) diagram a familiar procedure 0 5
4. Oversimplify Structure 36 (17%) 2 (3%)
{a) simplify formula 4 0
(b)) simplify diagram 32 2
3. Structure Insensitive 28 (13%) 0 {0%)
{a) incorrect direct translation 10 0
{b) incorrect arithmetic relations 14 0
{c) no apparent strategy 4 0
Total number of problems 210 78

Note. This table is based on six problems given to 35 novices and 13
€Xperts, The numbers indicate a count of instances where each strategy
Or type of strategy was used.
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finally the Level 3 equation. These data are consistent with the conclusions of
Larkin et al. (1980) that experts make greater use of knowledge of the problem
structure in their approach to problems. .

The most common strategy for the novices, shown on 51% of the problems,
was a simple listing of some or all of the Level 1 value assignments, with little
else.

Another common strategy was to draw on memory for similar problems. This
strategy was reflected in errors where a familiar formula or procedure was
applied inappropriately. Novices were likely to show formulas, whereas experts
tended to show diagrams. The novices also were likely to oversimplify the
structure of the problems, usually resulting in simple diagrams that did not reflect
the structure of the problem. Finally, a small proportion of the protocols from
novices showed inappropriate direct translation of variables (e.g., for the Hikers
problem in Table 10.1, the student might simply write: Hiker = 3) or inappropri-
ate combinations of the values presented in the problem, such as simply adding
values together.

Consistent with other information, the protocol data show that the novices
generally made little use of the structure of the problems in determining their
approach to the problems. The experts, on the other hand, made extensive use of
their knowledge of the problem structure to find their path to the solution.

These data suggest that if we wish to train novices to approach problems more
like experts, it may help to teach students how to make value assignments and
derivations, but it is likely to be more effective to concentrate on helping students
learn how to generate a representation of the structure of the problems. Specifi-
cally, we would expect training on the three levels of information integration and
diagram construction to facilitate problem solving. We designed a short training
program to test this notion.

Effects of Instruction. 'The novice problem solvers were paired on the basis
of their performance on the six word problems, and then were randomly split into
two groups, instruction (n = 16) and control (n = 17). Four weeks after the
initial testing, the instruction group received about 30 minutes of individual
training,

Students were first given the Hikers problem (third example in Table 10.1)
and were asked to list the variables, defined as things named in the problem that
have a numerical value. Examples were given, and the students were helped to
produce a list of the rates and times for the two hikers and the initial distance
between them. Students were next asked to determine the values for each vari-
able on the list. Particular note was made of the facts that x can represent an
unknown value and that the value of one variable may be defined in terms of
another. Next, the students were asked to find the equality and find the values
that must be derived to complete the equality. Figure 10.2 was provided to aid
students.
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Trip made by
Hiker 1

Trip made by
FHiker 2

Distance Distance Total distance
covered by HI covered by H2 Covered

Relation
Between
Trips

FIG. 10.2. Diagram used to demonstrate the structure of the rate problems used
for instruction.

The same procedure was repeated for a second motion problem, two cyclists
riding toward each other. The final step was to have the students compare the two
problems using the figure. The similarity of variables, value derivation, and
equation construction was pointed out.

The control group of novices were given the same two motion problems and
asked to set them up, but no special instruction was provided. A posttest for both
groups consisted of four problems, three of which were isomorphs of the training
problems sharing category and template features. The fourth was a generalization
problem which was a motion problem from a different category. The isomorphs
involved combining two subdistances to equal a known total, whereas the gener-
alization problem involved comparing two subdistances to find an unknown
total.

We expected performance of the Instruction group to be improved for the
problems isomorphic to the training problems. Expectations for the generaliza-
tion problem were not as clear, since others have found little improvement on
generalization problems following training (e.g., Gick & Holyoak, 1980; Reed
et al., 1985).

The Instruction group outperformed the Control group on both the isomorphs
and on the generalization problem. The Instruction group solved .87 of the
isomorphic problems, and the Control group solved .47. For the generalization
problem the corresponding proportions were .79 and .40, respectively.

An examination of performance at each of the three levels of information
integration showed that the Instruction group did better than the Control group at
all three levels on the isomorphic problems, and also at the first level (Value
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Assignment) on the generalization problem. Differences between the groups on
the second and third levels of information integration were in the direction of an
advantage for the training group, although they did not attain statistical signifi-
cance.

These results are encouraging in that they demonstrate an apparently effective
approach to teaching students how to solve algebra word problems. Obviously
our special instruction involved training on numerous skills, including the as-
signment of variables, the use of diagrams, and comparisons of the structure of
similar problems. Although it may be interesting to attempt to separate the
contribution of factors such as these, we believe it will be more productive to
study how these components interact. For example, value assignment skills are
crucial, and students must be able to translate equivalencies expressed in words
into equations; yet training on value assignment skills alone will produce no
more than marginal effects for many students, since the relationships among the
variables must also be understood if the problem is to be solved. On the other
hand, it may be futile to teach students about the structure of problems if they
have not mastered the skill of translating basic equivalencies into algebraic
EXpressions.

CONCLUSIONS

Overall, the clearest lesson to be drawn from our study is that an appreciation of
problem structure is a crucial part of expertise in problem solving. Experts are
quickly able to identify the form of the equation to be solved and they use this
information to guide them on the path to solution. Novices are much more likely
to stop after they have generated a list of value assignments, unable to sce
relationships inherent in the structure of the problem. A key advantage that
experts hold is that they are familiar with a large number of problem forms. If the
structure of a problem is recognized, the problem becomes a mere exercise in
applying familiar algorithms. A likely reason that algebra word problems are so
difficult for many people is because there are so many different patterns of word
problems to be learned.

We still do not know much about how expertise with word problems is
developed. Cross-sectional studies that compare good and poor solvers provide a
somewhat distorted view of the development of expertise, because novices and
experts may not be from comparable populations. Most novices will never reach
expert status, and we have no way of knowing which novices will.

There is little information on how some novices do acquire expertise, and how
instruction can facilitate the process. A common educational strategy is simply to
present students with a large number of problems to solve, presumably in the
hopes that expertise with a domain of problems will develop through an inductive
process. There is ample evidence that solvers do not necessarily see the connec-
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tion between problems unless these relationships are made explicit (e.g., Gick &
Holyoak, 1980; Mawer & Sweller, 1982; Reed, Ernst, & Banerji, 1974).

An implication of the current study is that instruction on word problems
should give explicit attention to helping students build schemata for the general
structure of word problems and the specific structures found within problem
categories. Our data on the use of diagrams by novices and experts indicate that
diagrams can play an important role in helping students to organize information
about a problem and to generate a structural representation of the problem. Our
small training study suggests that detailed side-by-side comparisons of the struc-
ture of problems from the same category may be a useful technique for teaching
students how to draw figures and create schematic representations of problems.

We are encouraged by the potential for cognitive analyses to provide new
insights into the mental processes that are involved in problem solving, and we
are hopeful that teachers and designers of instructional materials will be able to
put the new information to good use.
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