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We study the dynamics of dissipation and blow-up in a critical-case unstable thin film

equation. The governing equation is a nonlinear fourth-order degenerate parabolic PDE

derived from a generalized model for lubrication flows of thin viscous fluid layers on solid

surfaces. There is a critical mass for blow-up and a rich set of dynamics including families

of similarity solutions for finite-time blow-up and infinite-time spreading. The structure and

stability of the steady-states and the compactly-supported similarity solutions is studied.

1 Introduction

This paper studies the dynamics of the fourth-order nonlinear parabolic partial differential

equation

∂h

∂t
= − ∂

∂x

(
h3 ∂h

∂x

)
− ∂

∂x

(
h

∂3h

∂x3

)
(1.1)

for non-negative finite-mass initial data on a periodic domain, −1 � x � 1. We show that

this problem has a rich structure including equilibrium solutions and continuous families

of similarity solutions for both finite-time blow-up and self-similar spreading. There is

a vast body of literature on similarity solutions and the formation of singularities in

partial differential equations – for example see the references in [2, 3, 13, 30, 63]. Classic

studies considered the dynamics of blow-up resulting from interactions between nonlinear

terms and second-order spatial operators, as in the nonlinear Schrodinger equation

[21, 28, 46, 48, 55, 60] and in semilinear heat equations [2, 20, 29, 30, 31, 32, 33, 34, 47, 57].

The blow-up dynamics in (1.1) are governed by the the interaction between nonlinear

second- and fourth-order terms, and as such it represents a higher-order analogue of these

second-order model problems. The dynamics of (1.1) share many common features with the

previous models, such as the existence of multi-bump similarity solutions [21, 22, 55, 56],

∗ Current address: Mathematics Department, UCLA, Box 951555, Los Angeles, CA 90095-1555,

USA. Email: bertozzi@math.ucla.edu
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but the solutions of this nonlinear degenerate problem are weak compactly-supported

‘droplet’ solutions.

Equation (1.1) is a special case of the longwave-unstable generalized thin film equation,

ht = −(hmhx)x − (hnhxxx)x, (1.2)

where h(x, t) gives the height of the evolving free-surface. The exponents m, n correspond

to the powers in the destabilizing second-order and the stabilizing fourth-order diffusive

terms, respectively. This class of model equation occurs in connection with many physical

systems involving fluid interfaces [50, 53]; when n = 1 and m = 1 it describes a thin jet

in a Hele–Shaw cell [1, 13, 23, 25, 36]. When n = 3 and m = −1 it describes van der

Waals driven rupture of thin films [62, 65, 66, 67], and for n = m = 3 it describes fluid

droplets hanging from a ceiling [26]. For n = 0 and m = 1, equation (1.2) is a modified

Kuramoto–Sivashinsky equation which describes solidification of a hyper-cooled melt

[8, 17]. Over the past 15 years, these models have also been the focus of rigorous and

extensive mathematical analysis [4, 5, 12, 15, 18, 42, 43, 44, 45, 54].

In this paper, we focus on equation (1.2) with n = 1 and m = 3 because of its special role

as a critical case between problems where solutions blow-up (see Figure 1) and problems

whose solutions are bounded for all times. Questions on blow-up in (1.2) were raised by

Hocherman & Rosenau [39]. They proposed the existence of critical exponents that would

separate those equations that have blow-up, h → ∞, from those that do not. That is, if the

strength of the destabilizing term is sufficient to overcome the regularizing influence of

the fourth-order term, then blow-up can take place. The rigorous analysis of the blow-up

problem was recently studied in two papers by Bertozzi & Pugh [16, 17]. They proved [16]

that blow-up is impossible for m < n + 2, disproving the original conjecture of [39] that

m = n is critical. In the second paper [17], the special case n = 1 is studied on the line for

compactly supported initial data. They prove the existence of a solution that blows up in fi-

nite time for m � 3 = n+ 2. Consequently, for n = 1, m = n+ 2 = 3 is the critical exponent

separating equations with possible finite-time blow-up from problems where the solutions

are always bounded. As a critical case equation, (1.1) has many interesting characteristics

that we will explore: a finite critical mass for blow-up, two classes of continuous families

of self-similar solutions with compact support, and delicate interactions that can occur

between pinch-off and blow-up. Our results build on a single framework that will serve to

unify the dynamics of (1.1) in three regimes: (i) near equilibrium, (ii) approaching finite-

time blow-up, and (iii) infinite-time diffusive spreading. We will explore the connections

between these different classes of solutions.

For much of our work, it is convenient to write (1.1) in a slightly different form, as

∂h

∂t
+

∂

∂x

(
h

∂p

∂x

)
= 0, p ≡ 1

3
h3 +

∂2h

∂x2
, (1.3)

where p defines a pressure function. This form stems from the interpretation of (1.1) as a

generalization of the Reynolds lubrication equation for thin films of viscous fluids [53].

In this context, the terms in the pressure describe a body force on a thin fluid layer due

to the cube of the thickness of the layer, and a surface tension contribution given by

the linearized curvature of the free-surface of the layer, respectively. The pressure is a
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Figure 1. Finite-time blow-up for a solution of PDE (1.1) in a periodic domain.

key part of the analysis of the similarity solutions. We study initial value problems for

(1.1) on the interval −1 � x � 1 with periodic boundary conditions, h(x + 1) = h(x − 1),

and non-negative initial data. Results from this problem can be related to the Neumann

boundary value problem and the short-time dynamics of the Cauchy initial problem with

compact initial data, under appropriate conditions [42, 43].

The total mass of the solution is given by

M =

∫ 1

−1

h dx; (1.4)

the mass is conserved for all times. We shall use the mass as a control parameter to

distinguish classes of initial data that will lead to different dynamics. Another fundamental

global property of solutions of (1.1) is the monotone dissipation of the energy functional,

E =

∫ 1

−1

1
2
h2
x − 1

12
h4 dx, (1.5)

at the rate

dE
dt

= −
∫ 1

−1

h (∂xp)
2 dx � 0. (1.6)

It is possible to make use of the energy to describe: (i) the stability and dynamics of the

solution [44]; and (ii) the evolution as a gradient flow in an appropriate weighted H−1

norm [9].

The remainder of this article is as follows. In § 2, we review results on blow-up of

solutions with negative energy (1.5). We identify a critical mass Mc ≡ 2π
√

2/3 below,

which the solutions to (1.1) remain bounded for all time for both the periodic and Cauchy

problems. In § 3, we use dimensional analysis to obtain the scalings for the first-type

similarity solutions of (1.1). The same set of similarity variables provide a framework

for studying both classes of self-similar solutions: finite-time blow-up and infinite-time

spreading. In § 4, we examine the structure of these two classes of similarity solutions

and the steady states of (1.1). These solutions all exist as equilibria of an equation we
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call the similarity PDE, which is a generalization of (1.3). The connections between these

states are explored within this framework, somewhat analogously to the study of blow-up

solutions and steady states [19]. In § 5, the linear stability of these equilibria is analyzed.

For the two classes of similarity solutions, the influence of the symmetries of the PDE

must be considered in studying the spectrum [9, 63, 66]. Finally, in § 6, further issues,

problems, and open questions for the nonlinear dynamics of (1.1) are addressed using

numerical simulations.

2 Conditions on finite-time blow-up

Perhaps the most dramatic behavior exhibited by solutions of (1.1) is that of finite-time

blow-up, see Figure 1. The occurrence of blow-up can be noted from an argument based

on the evolution of the second moment of the solution, as suggested by Bernoff [17],

d

dt

(∫
x2h dx

)
= − 1

2

∫
h4 dx + 3

∫
h2
x dx = 6E. (2.1)

Since the energy (1.5) is monotone decreasing, (1.6), we have a bound on the evolution of

the second moment in terms of the initial energy, E0,

d

dt

(∫
x2h dx

)
� 6E0. (2.2)

If the initial energy is negative, then the second moment will become negative at a finite

time. However, this is impossible since the solution is non-negative everywhere, h(x, t) � 0.

The resolution to this apparent conflict is that (2.2) only applies while the solution h(x, t)

exists; if h blows up at a finite time (before the second moment becomes negative) and

ceases to exist thereafter, then there is no conflict. In fact, (2.2) yields an a priori upper

bound on the critical time when blow-up will occur in terms of the initial data h0(x),

tc �
1

6|E0|

∫
x2h0 dx. (2.3)

This formal argument applies to the Cauchy initial value problem with smooth initial

data.

Rigorous results about blow-up for the Cauchy problem with compactly-supported

initial data were obtained by Bertozzi & Pugh [17] for (1.2) with n = 1 and m � 3. There

it was shown that blow-up can not occur for the periodic problem if the mass is sufficiently

small. Indeed, Bertozzi and Pugh used dissipation of energy to observe that in the critical

case, m = n+ 2 for all n > 0, solutions are bounded for all time if their initial mass is suffi-

ciently small [16, remark after Lemma 3.3]. Here we obtain a lower bound for the critical

mass necessary for blow-up, Mc, for both the periodic problem and the Cauchy problems.

In particular we can rigorously derive an a priori pointwise upper bound for the solution

whenever the total mass is less than this Mc.

Theorem For solutions of the PDE (1.1) in either the periodic domain or �, the boundedness

of the energy functional (1.5) implies an a priori pointwise upper bound on the solution

whenever the total mass M =
∫
h dx is less than Mc ≡ 2π

√
2/3.
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Proof The a priori bound derived in Bertozzi & Pugh [17] relies on a classical Gagliardo–

Nirenberg estimate [27], which states that there exists C such that

∫
h4 dx � C

(∫
|h| dx

)2 ∫
h2
x dx (2.4)

for all h(x) in H1(�) ∩ L4(�) ∩ L1(�). Using this estimate for h(x, t) in (1.5) yields

E � 1
2

∫
h2
x dx − C

12

(∫
h dx

)2 ∫
h2
x dx =

6 − CM2

12

∫
h2
x dx (2.5)

where M is the mass of the solution, (1.4). Therefore, if CM2 < 6 then E(t) � 0, and the

H1 norm and thus the maximum of the solution is strictly bounded a priori. Note also

that using this estimate we can show that if the integral of h is less than Mc, then the

energy is positive.

For the problem on �, we can obtain a sharp value for Mc by applying the following

sharp inequality derived by Sz.-Nagy [49, 59].

Theorem (Sz.-Nagy [59]) Let f′ ∈ Lp(�), p > 1, and f ∈ L1(�). Then f is in Lq(�) for

all q > 1 and we have the estimate

(∫ ∞

−∞
|f(x)|q dx

)1/q

� K(q, r)

(∫ ∞

−∞
|f(x)| dx

)1−r (∫ ∞

−∞
|f′(x)|p dx

)r/p

(2.6)

where p = qr/(1 − q + 2qr) for p, q > 1. The sharp constant in (2.6) is given by

K(q, r) =

[
q − 1

2qr
Q

(
1

qr
,
q − qr − 1

qr

)]r

, Q(x, y) =
(x + y)−(x+y)Γ (x + y)

x−xy−yΓ (x)Γ (y)
. (2.7)

For (2.4), we take r = 1/2, p = 2, and q = 4 to obtain the optimal value of the constant

as C1/4 = K(4, 1/2) =
√

3/(2π) yielding the sharp inequality

∫
h4 dx �

9

4π2

(∫
h dx

)2 ∫
h2
x dx, (2.8)

and hence we obtain the value of the critical mass as

Mc = 2π
√

2/3 ≈ 5.1302. (2.9)

Now consider the solution h(x, t) of (1.1) on the interval −1 � x � 1 with periodic

boundary conditions. We make use of an indirect argument based on the monotone

decrease of energy (1.5) to show that blow-up is not possible below a certain mass.

Let the minimum of the solution at each time be achieved at the point x(t), that is

h(x) = hmin � 0, then define the compactly-supported function

h(x) =

{
h(x) − hmin x � x � x + 2

0 otherwise on �
(2.10)
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Also, define the integrals

Iq =

∫ ∞

−∞
hq dx, D2 =

∫ ∞

−∞
h2
x dx, (2.11)

and

M ≡ I1 =

∫ ∞

−∞
h dx. (2.12)

Note that D2 =
∫ 1

−1 h
2
x dx and M = M − 2hmin with M � M � 0.

Using the above notation, the statement of decrease of the energy, E0 � E(t) for t � 0,

can then be written as

12E0 � 6D2 −
∫ 1

−1

h4 dx. (2.13)

We expand the integral on the right as∫ 1

−1

h4 dx =

∫ x+2

x

(h + hmin)
4 dx (2.14)

= I4 + 4hminI3 + 6h2
minI2 + 4h3

minM + 2h4
min

Since h(x) has been appropriately defined on �, we can apply Sz.-Nagy’s result (2.6) to

yield

Iq � KqM
(q+2)/3D

(q−1)/3
2 , (2.15)

for q > 1 with Kq = K(q, 2(q − 1)/(3q)). Consequently (2.13) yields

12E0 � (6 − K4M
2)D2 − 4hminK3M

5/3D
2/3
2 − 6h2

minK2M
4/3D

1/3
2 − 4h3

minM − 2h4
min, (2.16)

and note that K4 = 6/M2
c . Suppose that blow-up were to occur at some (finite or infinite)

time t → tc with D2 → ∞. In this limit, the first term on the right side of (2.16) is the

dominant term, 6(1 − M2/M2
c )D2. If this term were positive then the decrease of energy

would be eventually contradicted for t sufficiently close to tc. Therefore blow-up can not

occur if M < Mc. Consequently, since hmin(t) � 0, this implies that on a periodic interval,

solutions below the critical mass Mc can not blow up. �

Gagliardo–Nirenberg inequalities with optimal constants have also been used in con-

nection with blow-up results for the nonlinear Schrodinger equation [28, 60] and for

estimating decay rates to self-similar solutions of nonlinear diffusion equations [24].

3 Dynamical framework: similarity variables

We now make use of similarity solutions to describe the dominant dynamics of (1.1).

As described by Barenblatt [3], self-similar solutions occur as intermediate asymptotic

states in systems where, under appropriate rescalings of the dependent and independent

variables, the structure of the solution remains unchanged as the system evolves towards

a singular limit. Our analysis of this behavior in this fourth-order nonlinear PDE follows

the techniques for studying similarity solutions in analogous second-order problems given

in the works of Giga & Kohn [29, 31, 32, 33, 34] and others [22, 30].
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To begin, we derive the forms of the first-type self-similar solutions using dimen-

sional analysis [3]. Consider rescaling the length-, height-, and time-scales of the solution

according to

x = Lx̂, t = Tt̂, h(x, t) = Hĥ(x̂, t̂ ). (3.1)

This change of variables applied to (1.1) yields

[
H

T

]
∂ĥ

∂t̂
= −

[
H4

L2

]
∂

∂x̂

(
ĥ3 ∂ĥ

∂x̂

)
−

[
H2

L4

]
∂

∂x̂

(
ĥ

∂3ĥ

∂x̂3

)
. (3.2)

If relations between L,T,H can be found that make (3.2) scale-invariant, then those

relations correspond to self-similar solutions. Balancing the coefficients of the second- and

fourth-order spatial operators determines that the scale of the film thickness is inversely

proportional to the horizontal lengthscale, H = 1/L. A consequence of this relation is that

similarity solutions will preserve their mass. Additionally balancing the time derivative

term to obtain the distinguished limit yields the relation between the lengthscale and the

timescale, L = T1/5, and hence H = T−1/5. These scalings yield two classes of similarity

solutions:

(i) infinite-time spreading solutions: H → 0 and L → ∞ as T → ∞,

(ii) finite-time blow-up solutions: H → ∞ and L → 0 as T → 0.

The scaling analysis suggests a change of variables to similarity coordinates,

h(x, t) =
1

τ
H(η, s), η =

x − xc

τ
, s = − 1

σ
ln τ, (3.3)

where τ = τ(t) and σ is a constant. Note that all solutions of the original PDE can be

represented in this form. Substituting this form into (1.3) yields a nonlinear separation of

variables, where H(η, s) satisfies the similarity PDE

∂H

∂s
= − ∂

∂η

(
H

∂

∂η

[
1
2
ση2 + 1

3
H3 + Hηη

])
, (3.4)

and τ is the solution of the ordinary differential equation,

dτ

dt
= −στ−4 → τ = (5σ[tc − t])1/5. (3.5)

Here σ is a constant with σ = ±1 corresponding to the cases:

(i) σ = −1 infinite-time spreading (h → 0 as t → ∞) for t > tc,

(ii) σ = +1 finite-time blow-up (h → ∞ as t → tc) for t < tc.
(3.6)

Note that xc and tc are constants corresponding to the spatial position and critical time

associated with the similarity solution (3.3). Both limits, t → ∞ in case (i), and t → tc in

case (ii), correspond to the limit s → ∞ in the similarity variables. The variable s gives the

measure of time in (3.4). This formulation is very convenient for studying stability and

rates of convergence to self-similar dynamics [20, 33, 34].
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Note that in addition to the cases given by (3.6), we can formally incorporate another

class of behavior into the dynamics covered by (3.4):

(iii) σ = 0 near-equilibrium dynamics for all t. (3.7)

That is, for σ = 0, the mapping {s → t, η → x, H → h} formally reduces (3.4) to (1.3).

We will show that in all three cases, under appropriate conditions, stable ‘generalized

equilibria’ are approached H(η, s) → H̄(η) as s → ∞. These are the stable steady-states for

σ = 0, and the stable self-similar solutions for σ = ±1. When necessary to avoid confusion,

we will label these generalized equilibria as H̄σ(η) (as in H̄+, H̄−, H̄0), otherwise we will

suppress the σ to avoid clutter. In fact there are many connections that we will explore

between these different classes of solutions. While equation (3.4) is formally equivalent to

the original equation (1.1) for any σ, different choices for σ imply dramatically different

dynamical behaviors of solutions. Studying the structure and stability of solutions of (3.4)

will yield a better understanding of the possible dynamics in (1.1).

3.1 Boundary conditions and general properties

Equation (3.4) is a conservation law for H , ∂sH + ∂ηQ = 0, where the flux Q = H∂ηP is

defined in terms of the generalized pressure,

P = 1
2
ση2 + 1

3
H3 + Hηη. (3.8)

Consequently, the mass, which is scale-invariant,

M ≡
∫

H(η, s) dη =

∫
h(x, t) dx, (3.9)

is conserved subject to appropriate no-flux boundary conditions. Two classes of such

boundary conditions are relevant for the solutions of (1.1) that we study: (a) periodic

boundary conditions on −1 � x � 1, and (b) no-flux conditions on the free-boundaries

of compactly-supported solutions, −L(s) � η � L(s).

Analysis of solutions of the general class of thin film equations (1.2) [16, 17] shows that

compactly-supported solutions of (3.4) must satisfy the conditions

H(L(s), s) = 0, Hη(L(s), s) = 0. (3.10)

That is, at the edge of the region of support (or interface) η = L, the solution must be

tangent to the exterior trivial state H ≡ 0 for |η| > L. Requiring no-flux of mass across

the interface yields a Rankine–Hugoniot type jump condition (see [52, 61] for example)

for the motion of the interface,

dL

ds
=

[Q]

[H]
= ∂ηP (L(s), s). (3.11)

Simplifying this general relation yields the evolution equation for the right interface

position L(s),

dL

ds
= σL + Hηηη(L(s), s), (3.12)
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with a similar equation for the leftmost point in the region of support of the solution. In

terms of the original spatial variable, the position of the interface is given by x − xc =

�(t) ≡ L(s)τ.

There is also an analogue of the energy (1.5) for the similarity PDE,

E =

∫
1
2
H2

η − 1
12
H4 − 1

2
ση2H dη. (3.13)

This energy functional is monotone decreasing with the rate of dissipation given by

dE

ds
= −

∫
H(∂ηP )2 dη � 0. (3.14)

Similar energy integrals for the porous medium equation were considered by Newman [51]

and Witelski & Bernoff [64]. We note that the similarity energy (3.13) is not the same as

the energy (1.5) written in similarity variables,

E =
1

τ3

∫
1
2
H2

η − 1
12
H4 dη. (3.15)

That is, E and τ3E differ by a term proportional to the second moment of the similarity

solution,
∫
η2H dη. Note that for self-similar solutions E and τ3E are constants. In order

that E(t) be monotone decreasing for self-similar solutions: (i) for σ = −1, since τ is

increasing with time, the integral in (3.15) must be positive for spreading solutions, and

(ii) for σ = 1, since τ decreases to zero as the blow-up time is approached, the integral

in (3.15) must be negative for blow-up solutions. The sign of the contribution from the

second moment term in (3.13) is consistent with these observations and hence the two

classes of similarity solutions (spreading and blow-up) have distinctly signed similarity

energies, E positive and negative respectively.

4 Generalized equilibria of (3.4): steady states and self-similar solutions

The steady states and self-similar solutions of (1.3) are given by extrema of the energy

(3.13); they satisfy the zero-dissipation equality in (3.14). That is, generalized equilibria

H = H̄(η) can either have a constant pressure P̄ over the whole domain and satisfy

H̄
′′
+ 1

3
H̄

3
+ 1

2
ση2 = P̄ , (4.1)

or they can be trivial, H̄ ≡ 0. There are also compactly-supported weak solutions, called

“droplets”, with constant pressures over their regions of support and H̄ ≡ 0 elsewhere,

with conditions (3.10) at the interfaces.

Both periodic and compactly-supported solutions of (4.1) must satisfy the compatibility

condition defining the average pressure,

P̄ =
1

2L̄

∫ L̄

−L̄

1
3
H̄

3
+ 1

2
ση2 dη, (4.2)

where L̄ is the half-length of the interval of support, with L̄ = 1 for the periodic steady-

states. The presence of the pressure in (4.1) with the compatibility condition (4.2), means
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that (4.1) is effectively a nonlocal problem [37]. For some of the follow analysis it is more

convenient to write (4.1) as the equivalent third-order local problem

H̄
′′′

+ H̄
2
H̄

′
+ ση = 0. (4.3)

We consider even solutions of equation (4.1), these can be obtained from the solution of

the associated Neumann problem for (4.1) or (4.3) on the half-interval 0 � η � L̄ with

the boundary conditions,

H̄ ′(0) = 0, H̄ ′(L̄) = 0, (4.4)

where for compactly-supported solutions, we also impose H̄(L̄) = 0 at the interface. We

address each of the three cases: σ = 0, σ = −1, and σ = 1 separately in the following

sections.

4.1 Classical steady states of the periodic problem, h̄(x)

We first consider the positive steady states h = h̄(x) of the periodic problem for (1.1) on

−1 � x � 1. These solutions satisfy (4.3) with σ = 0,

h̄′′′ + h̄2h̄′ = 0. (4.5)

This equation is translation invariant, and apart from spatial translations, without loss of

generality, imposing the Neumann conditions (4.4) on the half-interval 0 � x � 1 yields

all of the steady solutions. Having only two boundary conditions, this third-order problem

is underspecified and admits multiple solutions. Indeed, constant states, h̄ = 1
2
M for any

positive mass M > 0 constitutes a continuous one-parameter family of trivial solutions.

At critical values of the mass, branches of nontrivial solutions bifurcate from this family.

To obtain the form of these solutions, we can expand h̄ as a perturbation series in the

neighborhood of a bifurcation point, M = M∗,

h̄(x) = 1
2
M∗ + εh̄1(x) + ε2h̄2(x) + ε3h̄3(x) + · · · , (4.6)

where 0 � ε 
 1. To keep the mass fixed (1.4), all of the perturbations h̄k(x) must have zero

mean. The bifurcation analysis then follows in a straightforward manner from substituting

this expansion into (4.5) and solving the resulting regular perturbation problem [40, 41].

At O(ε) we get

h̄′′′
1 + 1

4
M2

∗ h̄
′
1 = 0. (4.7)

Nontrivial solutions of this problem occur at the bifurcation points,

M∗ = 2nπ, h̄1(x) = A cos(nπx), (4.8)

for n = 1, 2, 3, · · ·. We focus our attention on the primary bifurcation point, n = 1,

M1 = 2π, since as will be shown, all of the higher-order bifurcations involve only

unstable solutions; see Theorem 5 of Laugesen & Pugh [42]. The higher-order branches

of solutions correspond to rescaled periodic extensions of this fundamental branch. The

reflection symmetry present in this problem forces the quadratic terms in the expansion

to vanish and therefore it is necessary to expand h to higher order, O(ε3), to determine
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(a) (b)

Figure 2. (a) The first branch of positive steady-state solutions, h̄(x) and the limiting compactly-

supported solution hc(x), and (b) the bifurcation diagram for hmax, hmin in terms of the mass.

a relation between ε and the amplitude A. Following the method described in Bertozzi

et al. [14], at the first bifurcation point, the local structure for M � 2π is given by

h̄(x) ∼ 1
2
M + A cos(πx), A2 = 12

5
π(2π − M). (4.9)

Having obtained the steady states, their corresponding pressure and energy can be found

via quadrature,

p̄ =

∫ 1

−1

1
3
h̄3 dx > 0, E =

∫ 1

−1

1
2
h̄2
x − 1

12
h̄4 dx � 0. (4.10)

Much more thorough results on the steady states of the generalized thin film equation

(1.2) are given in the works of Laugesen & Pugh [42, 43, 44, 45].

We plot the bifurcation diagram for these steady state solutions in terms of the maximum

and minimum of the solution hmax, hmin, as a function of the mass (see Figure 2b). Note

that there is a critical value of the mass, M = Mc, where the minimum of h̄(x) crosses

through zero. At this point, the branch of positive solutions ends. Next, we turn to the

family of compactly-supported solutions that begins from that point on the bifurcation

diagram, M = Mc.

4.2 Compactly-supported steady state solutions, H̄
0
(x)

Above, we parametrized the solutions in terms of their mass, we now show that this is not

appropriate for the study of the compactly-supported steady states. Instead, we obtain

the solutions in terms of their pressures p̄ from the appropriate form of (4.1) with σ = 0,

h̄xx + 1
3
h̄3 = p̄. (4.11)

To calculate this branch of solutions, we consider the solution h̄ = hc(x) with support on

the half-interval 0 � x � 1 satisfying the boundary conditions

h′
c(0) = 0, hc(1) = 0, h′

c(1) = 0. (4.12)
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Integrating (4.11), this solution satisfies the first-order equation

(
dhc

dx

)2

= 1
6
hc

(
h3
c(0) − h3

c

)
, (4.13)

where the boundary conditions determine the pressure to be p̄ = h3
c(0)/12. Consequently,

straightforward calculations yield the maximum value of the solution,

hc(0) =

∫ 1

0

√
6 dy√

y(1 − y3)
=

2π
√

2π/3

Γ (5/6)Γ (2/3)
≈ 5.9490, (4.14)

and the mass of the solution,

Mc = 2

∫ 1

0

√
6y dy√

y(1 − y3)
= 2π

√
2/3. (4.15)

Significantly, this critical mass is identical to the critical mass in the criterion for blow-up,

(2.9). A further calculation using
∫ 1

0
y4/

√
y − y4 dy = π/6, shows that the energy of this

solution is E = 0. Indeed, this smooth, non-negative solution hc(x) is the limit of the set

of solutions h̄(x) as M → Mc (see Figure 2a).

Note that the problem specifying hc(x) on −1 � x � 1, (4.12, 4.13), is invariant under

changes of the lengthscale, and defines a compactly-supported solution for any L̄ > 0

given by

H̄
0
(x) =

1

L̄
hc(x/L̄), |x| � L̄. (4.16)

The mass of each member of this family of solutions is Mc, independent of L̄, while

the pressure scales as p̄ = h3
c(0)/(12L̄3) where hmax = hc(0)/L̄. For the boundary value

problem for (1.1) on −1 � x � 1, the range of L̄ is restricted to 0 � L̄ � 1. This branch

of solutions, with hmin = 0 and hmax = hc(0)/L̄ for L̄ � 1 is indicated in Figure 2b. We

note that these steady-state solutions trivially satisfy the no-flux interface condition (3.12)

for σ = 0 since from (4.5), h′′′
c (1) = 0, and hence the interface position is indeed fixed.

Within its interval of support, the steady droplet solution H̄
0
(x) is one period of a

cnoidal wave. There are also branches of compactly-supported equilibria that bifurcate

from the higher-order branches of positive solutions. These compactly-supported solutions

contain multiple copies of the fundamental compact solution hc(x). However, these solu-

tions do not necessarily have to be periodic extensions of hc(x). As long as the support of

all of the droplets remains disjoint, each droplet is independent of the others – hence the

droplets can be non-uniformly spaced and also have different values of h̄max (though the

mass of each drop is fixed to be Mc). There is an uncountable multiplicity of such weak

steady state solutions, also called ‘droplet configurations’ by Laugesen & Pugh [42, 45].

Later we will show that these states are very sensitive to small perturbations of the mass.

4.3 Infinite-time self-similar spreading solutions, H̄
−
(η)

While for σ = 0 branches of both positive solutions and compactly-support steady

states exist, for σ = ±1 only compactly-supported, non-negative, finite-mass, self-similar
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Figure 3. The classical solution of (4.1) with σ = −1 and L̄ = 2 is bounded within a fixed-width

strip about H̄∗(η) = (3[P̄ + 1
2
η2])1/3 for η � 0 with oscillations about H̄∗ of decreasing amplitude.

This construction demonstrates that no ‘multi-bump’ compact, non-negative spreading self-similar

solutions H̄
−
(η) are possible.

solutions exist, H̄
±
(η). We begin describing the structure of these solutions by demon-

strating that there is only a single branch of symmetric spreading similarity solutions,

parametrized by their mass, for σ = −1. We accomplish this by making use of a dissipated

quantity for solutions of (4.1).

Solutions of the steady-state problem, (4.1) with σ = 0, have the conserved quantity (a

Hamiltonian for the ODE),

K = 1
2
H̄

2
η + 1

12
H̄

4 − 1
3
H̄

3
∗H̄, (4.17)

where H̄∗ = (3P̄ )1/3 gives the position of an elliptic fixed point in the phase plane rep-

resentation of (4.1). That is, all solutions of (4.1) are oscillations about H̄∗. For self-

similar spreading solutions, satisfying (4.1) with σ = −1, we define H̄∗ = (3[P̄ + 1
2
η2])1/3

by analogy. With this definition, K , (4.17) is a monotone decreasing quantity for solutions

of (4.1) with σ = −1,

dK

dη
= −ηH̄ � 0. (4.18)

Interpreting (4.1) as a slowly-varying phase plane system for η2 
 P̄ , equation (4.18)

implies that the solutions are decreasing-amplitude oscillations about H̄∗, see Figure 3.

Since H̄∗(η) is an increasing function, if H̄(η) has a minimum at H̄(L̄) = 0, then other

minima for η > L̄ must have H̄ > 0 (and similarly, other minima for η < L̄ must

have H̄ < 0). Therefore, the only family of symmetric non-negative compactly-supported

spreading solutions possible is the one with monotone decreasing solutions on 0 � η � L̄.

A rigorous proof that the solutions must be monotone decreasing was given by Beretta

[5] (Lemma 2.5).

This family of similarity solutions can be described in terms of their mass (see Figure 5),

but it is more conveniently studied by considering the dependence of the solutions on

L̄ (see Figure 4). To describe this branch of similarity solutions, we consider asymptotic

limits of the solutions of (4.3) when the interval of support vanishes, L̄ → 0. Begin by
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Figure 4. The continuous family of infinite-time spreading similarity solutions, H̄
−
(η), shown

parametrized by maximum height versus length of the region of support.

Figure 5. The three classes of generalized equilibria (steady-state, spreading, and blow-up

solutions) shown parametrized by their mass vs. length of the region of support.

rescaling η = L̄z, so 0 � z � 1. Then one distinguished limit of (4.3) is the case of

solutions with vanishingly small masses, H̄(η) = L̄4H(z), satisfying the equation

H′′′ + σz = −L̄10H2H′. (4.19)

The solution can then be written as a regular perturbation series, H(z) = H0(z) +

L̄10H1(z) + · · ·. Solving to leading order yields,

H̄(η) =
1

24
(L̄2 − η2)

2

+ + O(L̄14), L̄ → 0, (4.20)

with the mass M ∼ 2L̄5/45. This is the source-type similarity solution of the thin film

equation ht = −(hhxxx)x [10]. In Figure 4, this limiting behavior of the set of solutions

is illustrated in terms of the value of the maximum of the solution plotted against L̄,

H̄(0) ∼ L̄4/24.
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Figure 6. The first three blow-up similarity solutions for L̄ = 2.

The other distinguished limit of (4.3) for L̄ → 0 describes finite mass solutions given by

the scalings η = L̄z and H̄(η) = H(z)/L̄,

H′′′ + H2H′ = L̄5z. (4.21)

The solution can then be written as a regular perturbation series of the form H(z) =

H0(z) + L5H1(z) + · · ·. Recalling that hc(x) is the compact solution of (4.5), we find that

the leading order solution of (4.21) is the compactly-supported steady state, H0 = hc(z).

Hence, in this limit, the spreading similarity solutions are given by

H̄(η) =
1

L̄
hc(η/L̄) + O(L̄4), L̄ → 0, (4.22)

with mass M → Mc as L̄ → 0. We will return to examine this limit further in the next

section. In Figure 4 this limiting behavior yields H̄(0) ∼ hc(0)/L̄. In Figure 5, this branch

of solutions is represented in terms of its mass plotted against its interval of support.

This problem for spreading self-similar solutions of (1.1) was considered by Beretta

[5]. Although her paper claims to prove existence of self-similar solutions for all positive

mass, this is not the case [6]. Our numerical calculations show that spreading self-similar

solutions exist only for the range of masses 0 � M � Mc, see Figure 5.

4.4 Finite-time blow-up self-similar solutions, H̄
+
(η)

In contrast to the spreading similarity solutions, for the blow-up solutions there is no

argument to eliminate the possibility of non-negative multi-bump blow-up solutions, and

such solutions do exist, see Figure 6. In fact, continuous branches of multi-bump solutions

H̄
+
n (η) exist, parametrized by their interval of support (see Figure 8). We shall now describe

the structure of these solution branches.

To see that for fixed L̄, as the number of bumps in the solutions increases, the solutions

are nearly periodic oscillations, consider the rescaling for an n-bump solution,

H̄(η) = nH(z), η =
z

n
, (4.23)
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(a) (b)

Figure 7. (a) A representation of the first twenty multi-bump blow-up solutions for L̄ = 2 in the

H̄ , H̄
′
phase plane. (b) The same solutions plotted in the rescaled phase plane suggested by (4.23).

(a) (b)

Figure 8. (a) The first branch of self-similar blow-up solutions. Non-negative solutions (solid curve)

exist with masses in the range Mc < M � Mu. The dashed curve for L̄ > Lu shows a continuation

of the family where the solutions become negative over some interval. (b) The first four branches

of finite-time blow-up solutions.

then (4.3) with σ = 1 becomes

H′′′ + H2H′ = − 1

n3
z. (4.24)

For 0 � η � L̄, z � O(n) and hence this is a regular perturbation as n → ∞. Consequently,

in this limit the blow-up solutions are given by the periodic steady states with slowly

growing perturbations,

H̄
+
n (η) = nh̄(nη) + O(n−2). (4.25)

In contrast to the results for the H̄
−
(η), the amplitude of the oscillations in these solutions

increases as η increases allowing for multi-bump non-negative solutions. A validation of

this asymptotic representation of the solutions for n = 3, 4, · · · is shown by the collapse

of orbits corresponding to the first twenty multi-bump blow-up solutions in a scaled

phase-plane plot (see Figure 7b).
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Figure 9. A schematic diagram representing: (i) the relations between the generalized equilibria

studied in § 4, and (ii) the stability and dynamics studied in § 5, for different values of σ.

4.4.1 Asymptotics for L̄ → 0

To examine the solution branch for L̄ → 0, we return to the scalings η = L̄z, H̄(η) =

H(z)/L̄, used for (4.21). This choice of variables transforms (4.3) to

H′′′ + H2H′ = −σL̄5z (4.26)

with boundary conditions H(0) = H(1) = H′(1) = 0. Note that as L̄ → 0, (4.26) is a

regular perturbation of the steady problem (4.5), which suggests the expansion

H(z) = hc(z) + σL̄5H1(z) + O(L̄10). (4.27)

In terms of this rescaled solution, the mass is given by

M = 2

∫ 1

0

H(z) dz = Mc + σL̄5M1 + O(L̄10). (4.28)

We obtain M1 from the solution of the order O(L̄5) problem for (4.26),

H′′′
1 +

(
h2
c(z)H1

)′
= −σz. (4.29)

Integrating this equation once, then taking the inner product with [zhc(z)]
′ (the null-mode

associated with rescaling, see § 5) yields a solvability condition to determine M1,

M1 =
8

h3
c(0)

∫ 1

0

z2hc(z) dz ≈ 1.083 × 10−2. (4.30)

Equation (4.28) describes the local structure of Figure 5 near M = Mc for L̄ → 0. It applies

to both spreading and blow-up solutions (σ = ±1) and also trivially to the compactly

supported steady state (σ = 0). Consequently, this equation describes one aspect of the

connection between the three families of generalized equilibria for L̄ → 0 (see Figure 9).

Working similarly and using the nearly periodic structure of the higher-order blow-up

solutions (4.25), we find that the mass on the nth branch takes the form

M ∼ nMc + MnL̄
5, L̄ → 0, (4.31)
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(see Figure 8b), where for n = 1, 2, · · ·,

Mn =
8

n2h3
c(0)

∫ 1

0

z2h̄c(nz + (n + 1)mod 2) dz, (4.32)

with h̄c(z) being the periodic extension of hc(z).

4.4.2 The maximum mass point on the branch of blow-up solutions

A striking feature of the branch of blow-up solutions represented in Figure 5 is the

existence of a maximum value for the masses of the similarity solutions,

Mu ≈ 5.5258. (4.33)

This is also shown in Figure 8a, where we clearly see that the mass increases monotonically

with the length of support, up to the maximum mass Mu at L̄ = Lu. The branch of solutions

of (4.3) with σ = 1 continues past this point, but for L̄ > Lu the solutions have decreasing

mass and do not satisfy the requirement of being non-negative (hence this part of the

branch is shown with a dashed curve). In fact, all of the branches of blow-up solutions

exhibit this structure – see Figure 8b (where Mu is denoted by Mu1 for the first branch for

solutions). From the boundary conditions at the interface, the solutions must be locally

quadratic there,

H̄(η) ∼ 1
2
H̄

′′
(L̄)(L̄ − η)2, η → L̄−. (4.34)

Locally, the sign of the solution is given by the sign of H̄
′′
(L̄). Consequently, the change

of sign of the solutions at the maximum mass point implies that H̄
′′
(Lu) = 0. We can

achieve some understanding of why this occurs by examining how the solutions change

with L̄.

Consider the solutions near the one at the maximum mass point, H̄u(η) with L̄ = Lu,

with ε ≡ L̄ − Lu → 0,

H̄(η) = H̄u(η) + εH1(η) + · · · , L̄ = Lu + ε, (4.35)

where H̄u satisfies (4.3), (4.4) and H̄u(Lu) = 0. Correspondingly, the mass is given by

M = Mu + εM1 + O(ε2). Linearizing (4.3) about H̄u for ε → 0 yields the problem for H1,

H ′′′
1 +

(
H̄

2
uH1

)′
= 0 0 � η � Lu, (4.36)

with the linearized boundary conditions,

H1(0) = 0, H1(Lu) = 0, H ′
1(Lu) = −H̄

′′
u(Lu). (4.37)

If H̄
′′
u(Lu) = 0 then this problem has the trivial solution and M1 = 0 corresponding to

a local extrema of the mass. The local analysis for Mu,n on the higher-order branches

follows identically.
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5 Stability analysis

Having catalogued all of the steady states and similarity solutions of (1.1) in the previous

section, we must now determine which of these solutions are preferred by the dynamics

of the PDE. That is, starting from generic initial data, are the solutions stable? The

linearized analysis of the asymptotic stability of the generalized equilibria of (3.4) as

s → ∞ generally proceeds the same way in the three cases; σ = −1, 0, 1. However there

are also notable differences in these cases since the results describe three qualitatively

different behaviors; infinite-time spreading, infinite-time convergence to a steady state,

and finite-time singularity formation.

There are several classes of perturbations that must be considered and distinguished to

evaluate stability of the solutions of (1.1),

Perturbations of:

(a) the time of the singularity, tc → tc + ε,

(b) the position of the singularity, xc → xc + ε,

(c) the choice of discrete branches of self-similar solutions, H̄σ
n (η) → H̄σ

m(η),

(d) the mass of the self-similar solution, M → M + ε,

(e) the regime of dynamics selected, σ1 → σ2.

(5.1)

We discuss these possible instabilities in the framework of linear stability analysis of the

self-similar solutions. Though, for the last two items, we will find that linear analysis is

insufficient to fully describe the behavior and we shall employ numerics to illustrate the

problems in the final section of this article.

While the study of the stability of self-similar processes is a complicated problem

with respect to the original PDE (1.1), the use of similarity variables (3.3) considerably

simplifies the difficulties. With respect to the similarity PDE (3.4), the self-similar solutions

H̄
σ
(η) are steady state solutions, hence classical linear stability theory can be applied to

the problem in similarity coordinates [22, 32]. Consider an infinitesimal perturbation to a

generalized equilibrium solution of the form

H(η, s) = H̄(η) + εĤ(η)eλs, (5.2)

as s → ∞ with ε → 0. Substituting (5.2) into (3.4), and linearizing for ε → 0 yields

λĤ = L(H̄)Ĥ, (5.3)

where the linear operator L is defined by

L(H̄)Ĥ ≡ −∂η[H̄∂η(H̄
2
+ ∂ηη)]Ĥ. (5.4)

Before considering the problem of obtaining the spectrum of (5.4), we address the eigen-

modes that can be determined from symmetry considerations for (1.1).

In § 3 we used the scale-invariance of (1.1) to determine the form of similarity solutions;

now we use the equation’s translation invariance in space and time to find eigenmodes

associated with the actions of these symmetries. These symmetries generate continuous

families of solutions, parametrized by their spatial position and time-shifts. In writing
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the variables to describe similarity solutions (3.3, 3.5), it is assumed that the position xc
and time-shift tc of the solution are known exactly. In general, this is not the case, and

perturbations in the values assumed for (xc, tc) lead to instabilities associated with (5.1ab).

This result can be demonstrated using the invariance of the PDE (1.1) with respect to

spatial translations and time-shifts of the similarity solutions. Consider (5.1a), that is,

suppose that there is a perturbation in the value of the time-shift, tc → tc + ε. This

corresponds to a transformation from one solution of (1.1), to a time-shifted version,

h(x, t) → h(x, t − ε), which is also a solution of the PDE. Translating this shift into

similarity variables, τ → τ(1 + 5εσe5σs)1/5, and applying it to the generalized equilibrium

H̄(η) yields

H̄(η) → H(η, s) = (1 + 5εσe5σs)−1/5H̄
(
η[1 + 5εσe5σs]−1/5

)
. (5.5)

Linearizing the action of this symmetry transformation for ε → 0, we can identify the

eigenmode connected with time-shifts of the self-similar solution H̄(η),

H(η, s) ∼ H̄(η) + εĤT (η)eλT s, ĤT (η) = −σ
d

dη
(ηH̄), λT = 5σ. (5.6)

A similar description applies to perturbations in the assumed position of the singularity,

xc → xc + ε, (5.1b). This case corresponds to spatial shifts of solutions of (1.1), h(x, t) →
h(x − ε, t), and in terms of similarity variables,

H̄(η) → H(η, s) = H̄(η + εeσs). (5.7)

Linearizing the action of this symmetry for infinitesimal spatial translations of the simil-

arity solution H̄(η) yields the eigenmode,

H(η, s) ∼ H̄(η) + εĤX(η)eλXs, ĤX(η) = H̄ ′(η), λX = σ. (5.8)

Since there are continuous families of similarity solutions, parametrized by their mass, it

is also important to consider the influence of perturbations which could yield infinitesimal

changes to the mass, M → M+ε, (5.1d). Apart from such perturbations, mass is conserved,

so it can be argued that such perturbations must be neutrally stable,

H(η, s) ∼ H̄(η) + εĤM(η)eλMs, ĤM(η) =
∂H̄

∂M
, λM = 0. (5.9)

Having accounted for possible instabilities due to the definitions of the similarity

variables and continuous symmetries of the PDE, we turn to the question of stability of

H̄(η) with respect to perturbations that change the profile of the solutions, (5.1c), for the

cases σ = 0,−1, 1.

5.1 Periodic steady state solutions, h̄(x)

The problem for the linear stability of the periodic steady state solutions is obtained by

formally replacing (H, η, s) → (h, x, t) in (5.2, 5.4) on the periodic domain −1 � x � 1.

The linear stability of the constant solutions, h̄(x) = M/2, can be found explicitly by
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Figure 10. Eigenvalues for the linear stability of the first branch of periodic steady-state

solutions. Solid dots for M = 2π are given by (5.10).

substituting h(x, t) = M/2 + εeikπxeλ̄t into (1.1) and linearizing,

λ̄k = 1
8
Mπ2k2(M2 − 4π2k2), k = 0, 1, 2, 3, · · · . (5.10)

In particular, the constant solutions are stable for M < 2π and unstable for M > 2π.

Consequently, the bifurcation point shown in Figure 2b is a supercritical bifurcation.

Indeed, numerical calculation of the linear stability of the first branch of non-uniform

steady states, h̄(x), shows that they are all unstable with a single positive eigenvalue.

Additionally, solutions have a zero eigenvalue, λM = 0, corresponding to infinitesimal

perturbations of the mass for all M, as with k = 0 in (5.10). There is also another zero

eigenvalue, λX = 0 for all M, corresponding to the translation invariance of the solutions

on the periodic domain (this is a trivial mode for the branch of constant solutions).

Figure 10 shows that the eigenvalues of this branch of solutions varies continuously

with M starting from the bifurcation point M = 2π down to the end of the branch at

M → Mc. More thorough results on the linear stability of solutions of (1.2) can be found

in Laugesen & Pugh [42].

5.2 The interface conditions for compactly-supported solutions

To study the stability of compactly-supported solutions, we must allow for the possibility

that both the profile and the region of support can evolve,

H(η, s) = H̄(η) + εĤ(η)eλs, L(s) = L̄ + εL̂eλs, (5.11)

and both symmetric and anti-symmetric perturbation modes are possible. As described

above, Ĥ(η) satisfies (5.3) on −L̄ � η � L̄. At the interface, we impose the linearized

version of the interface conditions (3.10), i.e.

Ĥ(L̄) = 0, Ĥ
′
(L̄) + L̂H̄

′′
(L̄) = 0. (5.12)

Linearizing the evolution equation for the interface (3.12) yields λL̂ = σL̂ + H̄
′′′′

(L̄)L̂ +

Ĥ
′′′
(L̄). We can simplify this equation by differentiating (4.3) and evaluating it at η = L̄
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(a) (b)

Figure 11. (a) Eigenvalues for the branch of spreading similarity solutions with solid dots for

M = 0 given by (5.15); (b) eigenvalues for the first branch of blow-up similarity solutions.

to note that H̄
′′′′

(L̄) = −σ and therefore the linearized interface condition is given by

λL̂ = Ĥ
′′′
(L̄). (5.13)

It is convenient to eliminate L̂ between (5.12) and (5.13) to yield the final form of the

boundary conditions on Ĥ(η), [10]

Ĥ(L̄) = 0, λĤ
′
(L̄) + H̄

′′
(L̄)Ĥ

′′′
(L̄) = 0, (5.14)

and similarly at the other interface, η = −L̄. Therefore the linear stability problems for

the three cases of droplet solutions (steady-state, spreading, and blow-up) are given by

(5.3, 5.4) subject to (5.14).

5.3 Self-similar spreading droplet solutions, H̄
−
(η)

First, we consider the stability of the spreading similarity solutions, σ = −1. In this

case, the symmetry eigenvalues connected with spatial and temporal translations of the

solution (5.6, 5.8) are negative, λT = −5 and λX = −1. The presence of these modes in

the spectrum is an artefact of the use of similarity variables. As mentioned earlier, the

definitions of the similarity variables, (3.3) and (3.5), depend on the parameters xc and tc
describing the position and the critical (starting or ending) time of the similarity solution.

The apparent stabilizing influence of the symmetry modes in this case is a consequence

of the ‘defocusing’ nature of the spreading similarity solution. As t → ∞, the solution

becomes less sensitive to the values of xc and tc as it spreads out. This is analogous to

the influence of the initial data on the long-time asymptotics for a solution of a diffusive

problem. If appropriate values for xc and tc are obtained, then improved results can be

found for the rate of convergence of h(x, t) to the similarity solution h → H̄
−
(η)/τ; this

is called the optimal similarity solution [64]. Otherwise, the rate of convergence to the

similarity solution will be limited by λT and λX .

Apart from the two symmetry eigenvalues, and the zero-mode λM = 0 associated with

existence of a continuous family of solutions, the rest of spectrum must be calculated

numerically (see Figure 11a). Numerical calculation of the other eigenmodes follows
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from the discretization of (5.3) with appropriate boundary conditions, yielding a matrix

eigenvalue problem that can be solved using the methods of numerical linear algebra

[63, 65]. For the limit M → 0 we can make use of the fact that, to leading order, the

spreading solution is given by the source-type similarity solution of the thin film equation,

(4.20). To leading order, the linear stability problem for H̄
−
(η) is also the same, and hence

from [10], as M → 0 the eigenvalues are given by

λ− ∼ −k(k + 1)(k + 2)(k + 3)

24
k = 0, 1, 2, 3, · · · , (5.15)

and the spectrum shows a continuous dependence on M with λ = O((Mc − M)−1) as

M → Mc (except for the constants λT = −5, λM = 0, and λX = −1 associated with the

symmetry modes) – see Figure 11a. Since there are no positive eigenvalues, the entire

branch of spreading similarity solutions (for all masses M < Mc) is linearly stable.

5.4 Self-similar blow-up droplet solutions, H̄
+
(η)

In contrast, for the blow-up solutions, σ = 1, the symmetry eigenvalues are λT = 5

and λX = 1. These unstable modes are a consequence of the “focusing” nature of the

blow-up solutions. If the appropriate values of xc and tc for the position and critical time

for the self-similar blow-up singularity occurring in the solution are given, the solution

will approach the optimal self-similar solution h → H̄
+
(η)/τ as t → tc. However, if

the solution h(x, t) is blowing up, but either the position or the critical time has been

incorrectly predicted, then the norm of the error ‖h(x, t) − H̄
+
(η)/τ‖∞ will diverge, hence

the presence of instabilities might be concluded. Yet, by selecting the optimal similarity

solution for the problem, this divergence can be suppressed. The optimal solution is the

one specified by appropriate values of xc and tc such that there are no contributions

from the symmetry modes [64] (i.e. ε = 0 in (5.6) and (5.8)). Consequently the presence

of these positive eigenvalues due to symmetries of the PDE does not imply instability of

the similarity solutions.

Again, apart from λX, λT , λM , the rest of the spectrum of (5.3, 5.14) must be calculated

numerically. Again we observe that the spectrum is real and discrete for each H̄
+
(η)

solution, parametrized by its mass (see Figure 11b). For the first branch of blow-up

solutions, H̄
+
1 (η;M), we note that apart from the symmetry modes, all of the other

eigenvalues are negative, and hence we conclude that these solutions are stable. For the

higher-order branches of multi-bump blow-up solutions, H̄
+
n (η) with n = 2, 3, · · · (see

Figure 6), other positive eigenvalues are present, hence these multi-bump solutions are all

unstable (see Figure 12). Therefore we conclude that the only stable self-similar route to

finite-time blow-up is via one of the single-bump similarity solutions from the first branch

(see Figure 8a). We briefly consider issues connected to the convergence to these solutions

from more general initial data with M > Mc in numerical simulations given in § 6.3, 6.5.

5.5 Steady state droplet solutions, H̄
0
(x)

We conclude with the stability analysis of the steady-state droplet solutions, (4.16). As in

the case of the other compactly-supported solutions, the spatial translation symmetry of
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Figure 12. Instability of the second branch of blow-up similarity solutions, H̄
+

2 (η), indicated by

the presence of two positive eigenvalues not associated with symmetries.

the PDE yields an eigenmode; for σ = 0, (5.8) yields a zero eigenvalue, λX = 0. While the

time-invariance of (3.4) for σ = 0 is trivial (5.6) and does not contribute to the spectrum,

another symmetry of the H̄
0
(x) solutions takes its place. As described in Section 4.2,

the H̄
0
(x) are invariant under changes in the length of the interval of support (4.16).

Hence letting L̄ → L̄ + ε yields another steady-state droplet, and produces another zero

eigenmode,

H̄
0
(x) ∼ H̄

0
(x) + εĤL(x)eλLt, ĤL(x) = − 1

L̄

d

dx
(xH̄

0
(x)), λL = 0. (5.16)

Note that for the case L̄ = 1, where H̄
0
(x) reduces to hc(x), this result matches the form

of (5.6).

The influence of a perturbation of the mass (5.9) for these solutions also requires special

attention. While steady-state droplets exist only for the critical mass, M = Mc, it is also

true that for L̄ → 0, these solutions are the continuous limits of self-similar spreading

(blow-up) solutions with masses slightly less (more) than Mc, see (4.22), (4.25). Therefore,

infinitesimal perturbations of the mass map steady-state droplets onto self-similar ones –

these solutions evolve, hence the influence of the perturbation grows with time. However,

since the similarity solutions conserve mass, the eigenvalue must be λM = 0. We conclude

that perturbations of the mass of steady-state droplets must be described by a generalized

eigenmode; analysis of this problem will involve a study of the center manifold of H̄
0
(x)

[38].

Numerically we find the spectrum for H̄
0
(x) with L̄ = 1 is

λ0 ≈ {0, 0, 0,−785,−2045,−8592,−14803, · · ·}, (5.17)

with λ0
k = O(k4) as k → ∞. It is important to note that as mass approaches the critical

mass, the limit of the eigenvalues of the steady states h̄(x) is not the set of eigenvalues of

the compactly-support equilibrium, H̄
0
(x), that is {λ̄} �→ {λ0} as M → Mc. While it is true

that in this limit, h̄(x) → H̄
0
(x), the boundary conditions in the two cases are different,

and this has a dramatic effect on stability; h̄(x) is unstable while H̄
0
(x) is marginally

stable.
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Figure 13. The continuity of the eigenvalues across the spreading, steady-state and blow-up droplet

solutions. The inset detail shows the symmetry eigenvalues λX, λT , λM near the critical mass Mc. The

solid dots correspond to λ0 (5.17).

For H̄
0
(x) with L̄ � 1, the spectrum can be obtained from (5.17) by noting that

the rescaling symmetry (x, h, t) → (x/L̄, h/L̄, t/L̄5) implies that λ0 → λ0/L̄5. A direct

consequence is that the product L̄5λ is scale-invariant for the steady-state droplets. For

M � Mc the similarity solutions are not invariant under changes in L̄, but as M → Mc

they do continuously approach H̄
0
(x). We illustrate these facts in Figure 13, where it is

shown that the product L̄5λσ is continuous across the three classes of droplet solutions.

6 Dynamics

We conclude by presenting a series of numerical simulations of the PDE (1.1) with

different forms of initial data. The simulations illustrate some of the predictions of the

earlier sections, as well as exploring other issues that lie beyond the scope of the analysis.

The simulations were carried out using implicit finite-difference methods specialized for

thin film problems with singularities [11, 13, 25, 63].

6.1 Dynamics starting from positive initial data

While the family of nontrivial steady state solutions found in § 4.1 were shown to be

unstable in § 5.1, they still play an important role in the dynamics of the PDE. These

unstable equilibria are saddle points in the solution space for the problem; their stable

and unstable manifolds partition the solutions of the PDE into basins of attraction for

qualitatively different dynamics. This is illustrated in Figure 14. For initial data starting

close to unstable steady states, infinitesimal perturbations can determine if the solution

will: (a) blow-up in finite time with hmax → ∞ and hmin → 0 or (b) converge to the uniform

steady state with hmax, hmin → M/2. The branch of uniform solutions is only stable for

M < 2π, hence for larger masses, blow-up will be the generic dynamics for almost every

initial condition. However, in § 6.4 we show that even in these cases, the dynamics leading

up to the eventual blow-up may not be trivial.

A more delicate problem is the analysis of dynamics of solutions with mass M = nMc for

n = 1, 2, 3, · · ·. In these cases, stable configurations of n steady-state droplets H̄
0
(x) exist.
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Figure 14. A schematic diagram for the basins of attraction for the steady-state solutions versus

finite-time blow-up. The unstable steady-state solutions separate sets of solutions that lead to

blow-up from those that converge to the uniform steady state h̄ = M/2.

Numerical simulations of these problems remains an open question since the solutions are

extremely sensitive to the mass, any perturbation of the mass will lead to blow-up as the

end-product of a merging (coarsening [14, 35]) instability, see § 6.4. Issues related to the

numerical solution of the PDE with compact initial data and the interaction of droplet

solutions are discussed further below.

6.2 Computing the dynamics of non-negative weak solutions

As discussed above, different classes of compactly-supported solutions are central to the

dynamics of (1.1). These are weak solutions since they have discontinuities in higher-order

derivatives at their interfaces; the occurrence of such singular behavior makes computing

such solutions very delicate. Extensive research has been done on the analysis of these

solutions and the development of numerical schemes that can cope with their limited

regularity [16, 17].

For our simulations, we make use of a regularization of the degeneracy in mobility

coefficient, generalizing the analytical approach of Bernis & Friedman [7] for the thin

film equation, ht = −(f(h)hxxx)x. Specifically, we numerically solve the modified PDE for

ε > 0,

∂h

∂t
= − ∂

∂x

(
fε(h)

∂

∂x

[
1
3
h3 +

∂2h

∂x2

])
(6.1)

where fε(h) is a regularized form of the mobility coefficient,

fε(h) =
h4

ε3 + h3
. (6.2)

We have modified the notation from Bernis & Friedman [7] so that ε represents a thickness-

scale for the thin film. For h � ε, fε(h) ∼ h and hence (1.3) is recovered from (6.1) for large

initial data. This choice of regularization guarantees that positive initial data evolves to a



Dynamics of a critical-case thin film equation 249

(a) (b)

Figure 15. (a) Numerical simulation of blow-up for a regularized weak solution of (6.1). (b) Time-

profiles from the same evolution shown on a log-scale to focus on the structure of the regularized

interface for ε = 10−n with n = 1, 2, 3, 4.

positive solution. Bertozzi & Pugh [16, 17] show that as ε → 0 the regularized solutions,

when they exist, converge to a weak solution, of the original PDE, with zero contact angle

(for almost every time). Thus we can use (6.1, 6.2) to approximate a weak solution; the

fact that positivity holds for any fixed epsilon guarantees a numerical approximation that

is well-behaved. In practice we find that the minimum follows hmin = O(ε).

To illustrate the influence of this regularization on the dynamics, we solved the periodic

problem for (6.1) starting from positive initial data of the form h0(x) = 1
2
M + A cos(πx)

with M > Mc and A < M/2. As is expected, the solution approaches blows-up in finite

time (see Figure 15a). However, before this solution blows-up, it appears to pinch-off

to create a compactly supported mass involved in the blow-up. This is more evident in

Figure 15b, where time-profiles of the solution computed with ε = 10−1, 10−2, 10−3, 10−4

are plotted on a log-scale graph. For times while the solution remains numerically well-

resolved, the minimum is bounded from below by hmin = O(ε). We also note that as ε → 0,

everywhere that the solution is finite, h = O(1), it appears to converge, presumably to

the weak solution of (1.1). Indeed, plotted normally, Figure 15a, there is no noticeable

influence of the regularization on the dominant blow-up dynamics.

6.3 Instability of the higher-order blow-up solutions

One of the notable features of the set of generalized equilibria is the existence of the higher-

order blow-up similarity solutions. In Figure 16a we show a simulation starting from initial

data given by a two-bump blow-up similarity with L̄ = 2, i.e. h(x, 0) = H̄+
2 (x/2)/2. It

quickly destabilizes, as is expected from the presence of large positive eigenvalues for

this solution (see Figure 12). By viewing the simulation in rescaled coordinates suggested

by the similarity variables (3.3), we observe that the solution converges to a stable

blow-up solution from the first branch (n = 1) as the the singularity is approached (see

Figure 16b). It is interesting to note that while each of the two ‘bumps’ in the initial data

have a structure that is closely related to the stable blow-up solution H̄
+
1 (η), only one

singularity, rather than two, ultimately occurs. An argument addressing this point and

involving the form of the pressure function p(x, t), (1.3), will be given in connection with

the next simulation.
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(a) (b)

Figure 16. Instability of a multi-bump similarity solution: (a) time profiles for a solution approach-

ing blow-up, (b) the same data in rescaled coordinates showing convergence to the stable similarity

solution for blow-up.

(a) (b)

Figure 17. Evolution starting from two subcritical-mass droplets: (a) short-time self-similar

spreading, (b) subsequent merging and eventual finite-time blow-up.

6.4 Merging of subcritical solutions leading to blow-up

An important property of degenerate diffusion equations like (1.1) is the nonlinear

superposition principle for disjointly-supported weak solutions. That is, as long as their

respective regions of support do not overlap, any combination non-negative weak solutions

of (1.1) can be ‘pasted together’ in the domain to yield another solution, or droplet

configuration [42, 45]. For times when there is no overlap of domains, each droplet

solution evolves independently of the others. An example of this is shown in Figure 17a,

where two disjointly supported droplets, each with subcritical masses M < Mc, evolve

according to the appropriate spreading-type similarity solutions, H̄
−
(η). However, the

initial data in this simulation was selected so that the total mass in the domain was

supercritical, M > Mc, so finite-time blow-up can be expected to occur. How do we

reconcile that such dissipative dynamics can lead to finite-time blow-up?

The resolution between these very different modes of dynamics lies in the transition

(5.1e) that occurs when the two compactly-supported drops merge to become a ‘single

mass’. The dynamics of this simulation for longer times, after the drops have begun to

merge, are shown in Figure 17b. If the total mass is supercritical, why should subcritical

spreading behavior be expected for the initial regime of the dynamics? What is it that
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(a) (b)

Figure 18. The pressure function p = 1
3
h3 + hxx corresponding to Figure 17: (a) decaying parabolic

profiles with pxx > 0 for spreading solutions, (b) the formation of a growing pressure maximum at

the position of the blow-up similarity solution.

determines the dynamics the solution follows? How is σ in (3.4) selected? Some partial

insights into the early stages of the merging process can be gained from a stability

analysis of the spreading solutions with respect to non-compactly supported initial data

[64]. However full descriptions of the transition in the dynamics from σ = −1 to σ = 1

requires a more global view of the solution.

As a first step toward answering these questions, consider the form of the pressure

function, p = 1
3
h3 + hxx. The pressure for a spreading similarity solution h = H̄

−
(η)/τ, is

p(x, t) =
1
3
H̄

3
+ H̄

′′

τ3
=

1

τ3

(
P̄ + 1

2
η2

)
, |η| � L̄, τ → ∞ (6.3)

where the second equality is a consequence of equation (4.1). The pressure for a spreading

similarity solution has a parabolic profile with pxx > 0 with decreasing amplitude and

growing spatial support as time increases. The pressure is not continuous everywhere;

there is a finite jump between the pressure at the interface |η| → L̄− and the pressure

outside the support, p ≡ 0 where h ≡ 0. When regularization is present, as in (6.1), jumps

in the pressure will be somewhat smoothed (see Figure 18a). In contrast, the pressure for

a blow-up similarity solution h = H̄
+
(η)/τ, is given by

p(x, t) =
1
3
H̄

3
+ H̄

′′

τ3
=

1

τ3

(
P̄ − 1

2
η2

)
, |η| � L̄, τ → 0. (6.4)

That is, the pressure has a local maximum, pxx < 0, at the blow-up position, xc (where

η = 0). Numerically, we observe that when the two pressure waves from the spreading

solutions collide in the simulation (see the last time-profile in Figure 18a) they form a

local maximum that evolves to produce blow-up (see Figure 18b). Note that the position

of the maximum may shift during the evolution.

Returning to the simulation of the unstable multi-bump similarity solution in § 6.3, we

make use of the pressure to argue that while h(x, t) initially had two maxima only one

rather than two independent blow-up singularities should be expected. This is suggested

by the fact that the corresponding p(x, t) (still given by (6.4)) has only one local maximum

that might determine the position of a blow-up singularity.
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6.5 Weak vs. classical blow-up

All of our simulations of blow-up share the same common dynamics: as the formation of

the blow-up singularity is approached, the solution converges to a stable (single-bump)

blow-up similarity solution, H̄
+
(η). What is not the same in all of the simulations is that

depending on the initial data, the nature of the convergence to H̄
+

can be different. We

distinguish two cases:

(a) Weak Blow-up: at some time, pinch-off of the solution occurs somewhere in the

domain, h → 0, yielding a weak solution. This weak solution then evolves toward

blow-up, h(xc, t) → ∞ as t → tc. For example, see Figure 15.

(b) Classical Blow-up: pinch-off does not occur; the minimum of the solution h(x, t)

is bounded away from zero by a finite value (independent of the regularization).

Convergence to the interface conditions for the compactly-supported similarity

solutions (3.10) occurs by virtue of the limit τ → 0 as blow-up is approached. For

example, see Figures 16ab and 17b.

In particular, to clarify case (b), suppose that hmin is constant, then in terms of the

similarity variables, as blow-up is approached the minimum of the similarity solution is

given by minη H(η, s) ∼ τhmin → 0. Hence compact-support can be approached for the

similarity solution even though h(x, t) remains positive (see Figure 16). Which of these

two cases occurs as blow-up is approached appears to be sensitive to the details of the

form of the initial data.

Finally, we consider a simple way to study the convergence of the solution h(x, t) to a

self-similar solution as blow-up is approached. As described in Section 4, each blow-up

similarity solution has a well-defined mass. However, in practice it is not clear how to

accurately calculate the mass associated with the blow-up in the numerical solution. In

both cases (a) and (b), it is difficult to clearly identify the interface position (in case (a) this

is due to the need for regularization). However, we can determine the mass by relating it

to a local property of the similarity solution – at the blow-up position xc we can calculate

a local Bond number,

B ≡ − h3
max

∂xxhmax
, (6.5)

where the Bond number is classically defined as the ratio of the influence of body

forces over the surface tension contributions to the pressure, see (1.3). This physically

motivated quantity is scale-invariant (τ-independent) for the similarity solutions (3.3),

B = −H̄
3
(0)/H̄

′′
(0). A plot of the Bond number for the first branch of similarity solutions

shows that it is a monotone increasing function of the mass (see Figure 19a). At the

critical mass, Mc, the critical Bond number for the compact steady-states, H̄
0
(x), is Bc = 4.

Spreading similarity solutions with M < Mc have B < 4, and the first branch of blow-up

solutions cover the interval 4 � B � Bu where the upper value of the Bond number

is Bu ≈ 4.27 corresponding to the maximum-mass similarity solution, with M = Mu.

Figure 19b shows plots of B(t) vs. hmax(t) for two simulations, one representing each of

the two cases given above. For weak blow-up, case (b), we observe that after pinch-off

occurs, B rapidly converges to a constant value corresponding to some intermediate mass

blow-up solution. For classical blow-up, case (a), convergence to a limiting value for B
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(a) (b)

Figure 19. (a) The local Bond number (6.5) versus the mass for self-similar solutions, and (b) the

evolution of the Bond number for examples of (a) weak blow-up, and (b) classical blow-up.

occurs much more slowly as mass flux out of the neighborhood of xc continues. Further

work on the analysis of these cases is currently in progress.

7 Conclusions

This paper concerns equation (1.1) which is a critical case for the family of longwave

unstable lubrication equations (1.2). We have identified a critical mass separating blow-up

solutions from those that decay, and we have described the structure and stability of these

solutions. Since we are considering a critical exponent, we find a richer set of solutions

than might be expected for non-critical exponents (m � n + 2). That is, where other

equations typically have locally unique similarity solutions, (1.1) has continuous families.

Indeed the evolution within these continuous families leaves some open questions which

are discussed in Sections 5 and 6.5. Our study benefited from the fact that the special

case n = 1 has some properties which make it more tractable for both rigorous and

asymptotic analysis. Very recently, Slepčev & Pugh [58] have examined the critical case

(m = n + 2) of equation (1.2) for 0 < n < 3/2. They have rigorously shown the existence

of compactly supported self-similar solutions with single and multiple maxima, extending

some of the results obtained here. This suggests that the dynamics of the critical case for

0 < n < 3/2 may be analogous to the case n = 1. This is a fertile area for future research.

Moreover, the critical exponents for blow-up in higher dimensional problems for (1.2) is

a challenging open question.
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