Systematics of Xanthorrhoeaceae Sensu Lato, with an Emphasis on Bulbine

Dion S. Devey
Royal Botanic Gardens, Kew

Ilia Leitch
Royal Botanic Gardens, Kew

J. Chris Pires
University of Wisconsin-Madison; University of Missouri

Yohan Pillon
Royal Botanic Gardens, Kew

Mark W. Chase
Royal Botanic Gardens, Kew

Follow this and additional works at: https://scholarship.claremont.edu/aliso

Part of the Botany Commons

Recommended Citation
Available at: https://scholarship.claremont.edu/aliso/vol22/iss1/28
SYSTEMATICS OF XANTHORRHOEACEAE SENSU LATO, WITH AN EMPHASIS ON BULBINE

DION S. DEVEY,1,3 ILIA LEITCH,1 PAULA J. RUDALL,1 J. CHRIS PIRES,2,4 YOHAN PILLON,1 AND MARK W. CHASE1

1Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK;
2Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, Wisconsin 53706, USA
3Corresponding author (d.devey@kew.org.uk)

ABSTRACT

We provide here results of a combined analysis of plastid genes rbcL, matK, and ndhF for Xanthorrhoeaceae s.l., the Asphodelaceae/Xanthorrhoeaceae/Hemeroallidaceae clade, which are well supported by the DNA data. Xanthorrhoea (often treated as the sole member of Xanthorrhoeaceae) is sister to the hemerocallid clade (former Hemeroallidaceae); and the asphodelid clade (formerly Asphodelaceae) is sister to them both. For additional species of Bulbine and Jodrellia (both Asphodeloideae), we also collected rps16 intron and ITS nuclear ribosomal DNA sequences to better assess their relationships. Bulbine, with Jodrellia, embedded are sister to the collective genera of subfamily Alloideae in which all species are characterized by strongly bimodal and nearly identical karyotypes, whereas that of Bulbine is much more variable. Cytological studies have previously shown Bulbine to possess a range of karyotypes from graduated to clearly bimodal (although never exactly like the aloid genera) and point toward a lower level of bimodality in the Australian members, all of which are autotetraploid, than in the African members, all of which are diploid. Therefore, there have been two events of particular interest within Bulbine, a change in ploidy and a long-range dispersal event.

Key words: Asparagales, Asphodelaceae, bimodal karyotype, Bulbine, Hemeroallidaceae, Xanthorrhoeaceae.

INTRODUCTION

Based on morphological and micromorphological characters, Dahlgren et al. (1985), following the concepts of Huber (1969), considered Asparagales as the largest of the five orders of the superorder Lilianae (they used Liliiflorae). Chase et al. (1995a) undertook the first extensively sampled molecular-based analysis to examine their circumscription. This analysis led to the recircumscription of Asparagales to include Orchidaceae (including the former Apostasiaceae and Cyripediiaceae) and Iridaceae (including the former Gesiridaceae) and Dasyypogonaceae s.l., Hanguanaceae, Luzuriagaceae p.p., with Pilesiaceae being excluded. Since several morphological characters are shared with some Liliales and "lower" asparagoids (Rudall et al. 2000), the boundaries between Asparagales and Liliales can be difficult to define. Chase et al. (1995b) combined molecular and morphological data and found the same broad set of relationships, although the liloid monocots were monophyletic, whereas in all other analyses they have been paraphyletic (Chase et al. 2006). Within Asparagales there is a well-supported lower asparagoid grade, characterized predominately by simultaneous microsporogenesis, and a higher asparagoid clade in which all members exhibit successive microsporogenesis (Rudall et al. 1997). The Fay et al. (2000) analysis of a combined rbcL, atpB, trnL intron, and trnL–F intergenic spacer further resolved the phylogenetic patterns within Asparagales. Unless otherwise stated, all references to Xanthorrhoeaceae in this paper are to the larger unit circumscribed by the Angiosperm Phylogeny Group II (APG II 2003), which includes Asphodelaceae and Hemeroallidaceae, as well as Xanthorrhoeaceae s.s. Although there are no obvious morphological synapomorphies for Xanthorrhoeaceae s.l., some of them (Asphodelaceae) have been distinguished from Anthericaceae, with which they are often confused, by the lack of steroid saponins and the frequent possession of hirsute anthers and anthraquinones.

We have a particular interest in Bulbine Wolf, one of the genera of Xanthorrhoeaceae within the asphodelid clade, because of its heterogeneity of karyotypes. Bulbine is a genus of mostly succulent species with an unusual African/Australian distribution. There are approximately 53 species distributed in southern and eastern continental Africa, with only three species in Australia. An inflorescence may bear up to 50 acropetally opening flowers in a pattern that is thought to reduce the likelihood of self-pollination. Flowers are fragrant, insect pollinated, and herbaceous. All African species are diploid (2n = 14) with no polyploidy (Baijnath 1977), whereas all Australian species are thought to be autopolyploid (Watson 1983). The most comprehensive study of the genus was carried out by Baijnath (1977); he delimited species using morphological characters, in particular, type of perennating organs, presence of auriculate or semi-auriculate bracts, number of tepal nerves, nature of stigmatic papillae, and relative lengths of leaves to inflorescences. Based upon these characteristics, Baijnath divided Bulbine into two subgenera, Bulbine and Tuberosa. Jodrellia was described by Baijnath (1978); of the three species in the genus, two were originally described as Bulbine. Baijnath proposed that Jodrellia should be separated from Bulbine for two reasons: firstly, all Bulbine species possess yellow or orange tepals, whereas Jodrellia possesses white ones. Secondly, the inner tepals of Jodrellia are one- nerved and the outer tepals possess three to five nerves, whereas both the

4 Present address: Division of Biological Sciences, 371 Life Sciences Center, University of Missouri, Columbia, Missouri 65211-7310, USA (piresjc@missouri.edu).
inner and outer tepals of all Bulbine species possess a single nerve. Bajnath named Jodrellia in honor of the Jodrell Laboratory at the Royal Botanic Gardens, Kew, and hence its phylogenetic position was of particular interest to us.

Before this investigation, no molecular data were available for assessing relationships within Bulbine. Bajnath (1977) focused on karyological, morphological, and micromorphological characters; Bajnath and Cutler (1993) focused on leaf surface architecture using scanning electron microscopy and light microscopy, and Watson (1983) based her study on cytotypes, karyotypes, and nuclear DNA content.

In this study some of the taxonomic ambiguities surrounding Asparagales were investigated using molecular techniques, in particular relationships within the Xanthorrhoeaceae clade and the systematics of Bulbine within Asphodelaceae. Although we are working toward a comprehensive phylogeny of Xanthorrhoeaceae (including Asphodelaceae), the analysis of Bulbine for cytological, karyological, and molecular markers should be treated as a separate study to that of Xanthorrhoeaceae s.l. We were particularly interested in Bulbine because of its disjunctive distribution, cytological variation, and potentially complicated relationship to Jodrellia. We include both studies here to provide preliminary summaries of progress to date.

MATERIALS AND METHODS

For the Xanthorrhoeaceae and Bulbine molecular work, genomic DNA was extracted from both fresh and silica-dried material. The extractions were carried out following the 2X CTAB protocol (Doyle and Doyle 1987), but using a CsCl2/ethidium bromide density gradient (1.55 g/μL) for purification.

Plant Material

Voucher information and GenBank accession numbers for taxa used in these analyses will be presented in a more detailed paper to follow these proceedings.

Amplification and Sequencing

Amplification of matK was carried out in 50 μL reactions, containing 45 μL ABgene green master mix (2.5 mM Mg), 1.5 μL bovine serum albumin (0.4%), 0.6 μL H2O, 0.7 μL of each matK primer, −19F (Molvray et al. 2000) and 2R (Johnson and Soltis 1994) and exactly 60 ng DNA template. The polymerase chain reaction (PCR) profile was as follows: preheat of 94°C for 3 min, followed by 28 cycles of 94°C for 1 min, 50°C for 1 min, 72°C for 2 min in the first cycle, but then increasing by 10 sec every cycle, followed by a final extension of 7 min at 72°C.

Amplification of rbcL was carried out in a Perkin-Elmer 9700 PCR machine (Perkin-Elmer Applied Biosystems, Wellesley, Massachusetts, USA) using 50 μL reactions, containing 45 μL ABgene green mastermix (2.5 mM Mg), 1.5 μL BSA (0.4%), and 1.3 μL H2O. Each sequence was assembled from half pieces using 0.6 μL each of 1F/724R and 636F/1460R primers (Muasya et al. 1998). Approximately 39 ng of template DNA were added to each reaction. The PCR conditions were: preheat of 94°C for 2 min, then 28 cycles of denaturation at 94°C for 1 min, annealing at 50°C for 1 min, extension at 72°C for 2 min, followed by a final extension of 7 min at 72°C.

Primers and ndhF PCR and sequencing protocols are described in Pires et al. (2006). Amplification of internal transcribed spacer (ITS) for Bulbine and outgroups was in 50 μL reactions, containing 45 μL ABgene red mastermix (1.5 mM Mg), 1 μL BSA (0.4%), 0.3 μL H2O, 0.6 μL of 17SE and 26SE of Sun et al. (1994), 2.5 μL dimethyl sulfoxide (DMSO) and approximately 39 ng DNA template. DMSO was added to reduce the effects of secondary structure, allowing the primers to bind efficiently and thereby making the PCR product reflect the number of copies in the genome, most of which are functional (Hung et al. 1990). The PCR protocol was preheat of 94°C for 2 min, followed by 28 cycles of denaturation at 94°C for 1 min, annealing at 52°C for 1 min, extension at 72°C for 3 min, followed by a final extension of 7 min at 72°C.

Amplification of trnL intron and the trnL–F spacer was carried out in 50 μL reactions, containing 45 μL ABgene green mastermix (2.5 mM Mg), 1.5 μL BSA (0.4%), and 1.3 μL H2O. Each sequence was constructed from half pieces using 0.6 μL each of trnL and trnF primers of Taberlet et al. (1991). Approximately 39 ng of template DNA were added to each reaction. PCR conditions were preheat of 94°C for 2 min, followed by 28 cycles of denaturation at 94°C for 1 min, annealing at 50°C for 1 min, extension at 72°C for 2 min, followed by a final extension of 7 min at 72°C.

Amplification of rps16 intron was carried out in 50 μL reactions, containing 45 μL ABgene green mastermix (2.5 mM Mg), 1.5 μL BSA (0.4%), and 1.3 μL H2O. Each sequence was constructed from half pieces using 0.6 μL of rps16 and rps16F primers of Taberlet et al. (1991). Approximately 35 ng of template DNA were added to each reaction. PCR conditions were preheat of 94°C for 2 min, followed by 28 cycles of denaturation at 94°C for 1 min, annealing at 50°C for 1 min, extension at 72°C for 2 min, followed by a final extension of 7 min at 72°C.

All PCR products were purified using QIAquick columns according to the manufacturer’s protocols (QIAGEN, Ltd., West Sussex, UK). Dideoxy cycle sequencing was then performed using the chain termination method and ABI Prism Big Dye vers. 3.1 reaction kit following the manufacturer’s protocols (Applied Biosystems, Inc. [ABI], Warrington, Cheshire, UK). The products were run on an ABI 3100 Genetic Analyzer, also according to the manufacturer’s protocols. Sequence editing and assembly of contigs was carried out using Sequence Navigator and AutoAssembler software programs (ABI). All sequences were aligned by eye following the guidelines of Kelchner (2000); all insertions/deletions (indels) in matK and ndhF were in triplets. Indels were not scored separately and thus were not included in the analyses.

SEARCH STRATEGY

All analyses were carried out using a combination of parsimony and bootstrapping. A Fitch parsimony method (equal weights, unordered characters; Fitch 1971) was employed using the software program PAUP* vers. 4.0b2A (Swofford 2001). Replicates of random taxon additions (1000) were
performed using the subtree pruning and regrafting (SPR) tree swapping method, with MulTrees on, but holding only five trees at each step to reduce the time spent in swapping on large numbers of trees. Support for clades was evaluated by bootstrapping (Felsenstein 1985) using 1000 replicates with simple sequence addition, SPR swapping, and holding five trees at each step.

Analyses were conducted using a successive weighting (SW) strategy (Farris 1969). Weights were assigned to characters using the "reweight characters" option based on a rescaled consistency (RC) index with a base weight of 1. When the tree length remained unchanged in successive rounds, these trees were accepted as the SW trees. The bootstrap procedure was carried out with the unitary weights, not the SW weights.

We combined all plastid data into one data set for the Bulbine analysis as it is a uniparentally inherited, nonrecombining genome; however, numbers of variable and informative characters for each region are also presented separately here (Table 1). The Bulbine data set was small enough to be analyzed using a combination of "branch and bound" and bootstrapping (1000 replicates).

RESULTS

Xanthorrhoeaceae Analysis

Relative to the two outgroups, Xanthorrhoeaceae s.l. are well supported (bootstrap percentage, BP 99; Fig. 1). Xanthorrhoea Sm. is sister (BP 70) to the former hemerocallid clade with weak support, but the hemerocallid clade itself is well supported (BP 91). Within the hemerocallid clade, there are two weakly supported subclades (BP 60, 62); the first has Pasithea D. Don sister to a moderately supported clade (BP 86) of Phormium J. R. Forst. & G. Forst., Agrostocrinum F. Muell./Geitonoplesium R. Br. ex Hook. (BP 98), and (Dianella Lam. ex Juss. (Herpolitirion Hook. f./Thelionema R. J. F. Hend., R. Br. ex Hook. (BP 80) (Rhuacophila Blume/Stypandra R. Br., BP 88) (BP 87)). In the second subclade Hemerocallis L./Simethis Kunth (BP 99) is weakly supported as sister to a well-supported clade in the form of a ladder with the following as successive sisters to the rest: Tricoryne R. Br. (BP 93), Corynotheca F. Muell. ex Benth. (BP 86), Caesia R. Br. (BP 82), Arnocrinum Endl. & Lehman (BP 100), and Hensmannia W. Fitzg. (BP 100) sister to Johnsonia R. Br./Stawellia F. Muell. (BP 70).

The asphodelid section is also strongly supported (BP 100). Within it there are two strongly supported subclades (BP100): Asphodeline Rchb./Asphodelus L. are sister to the rest (BP 93). Within this second subclade are two other moderately supported clades (BP 87 and BP 77). One clade has the moderately supported Bulbine/Jodrellia (BP 85) as sister to the very strongly supported Aloe L./Haworthia Duval clade (BP 100), which corresponds to subfamily Aloioideae. The other contains the poorly supported Eremurus M. Bieb./Trachyandra Kunth section (BP 75) as sister to the Bulbine/Jodrellia Kunth/Kniphofia Moench clade (BP 81).

Bulbine Analysis

Relative to the two Aloe outgroups, Bulbine is not monophyletic (Fig. 2); however, there is strong support (BP 100)
for a *Bulbinel/Jodrellia* clade. Within *Bulbinel/Jodrellia* there are two strongly supported subclades (BP 94 and BP 100) that correspond to subgen. *Bulbine* and *Tuberosa*, respectively. The subgen. *Tuberosa* clade has *Jodrellia* as sister to a strongly supported clade (BP 99) that contains two poorly supported subclades (BP 60 and 59). The first section contains a poorly supported clade (BP 71) that has *B. longifolia* Schinz as sister to the well-supported *B. praemorsa* (Jacq.) Roem. & Schult./*B. species* clade (BP 100). The second moderately supported section (BP 88) contains *B. bachmaniana* Schinz as sister to the strongly supported *B. alooides* (L.) Willd./*B. fallax* Poelln. clade. The clade corresponding to subgen. *Bulbine* has a moderately supported group (BP 85) containing the Australian taxa *B. glauca* (Raf.) E. M. Watson/*B. semibarbata* (R. Br.) Haw. as sister to the very strongly supported clade (BP 100) containing *B. abyssinica*.
A. Rich. as sister to the strongly supported B. frutescens (L.) Wild./B. species group.

The strict consensus ITS tree (Fig. 3) shows two subclades within Bulbine that correspond to Baijnath's subgen. Bulbine and Tuberose. Jodrellia macrocarpa Baijnath is embedded within Bulbine with 100% bootstrap support.

DISCUSSION

Within Asphodelaceae, all members of the monophyletic subfamily Aloeideae are characterized by possession of aloe caps at their phloem poles (Beaumont et al. 1985), but this character has been little studied in the other genera of Xanthorrhoeaceae s.l. Aloe caps have also been reported in Di-anella (Rudall et al. 2002). In this study, only two genera were used to represent Aloeideae, Aloe and Haworthia. Aloeideae are nested within Asphodeloideae, which also sporadically have aloe caps at phloem poles. They share some morphological characteristics with some members of Anthericaceae, such as six similarly shaped and arranged free stamens and tepals, but all exhibit simultaneous rather than successive microsporogenesis (Rudall et al. 1997). Within this subfamily there is a wide Old World distribution: western Asia, Europe, and southern and tropical Africa. Bulbine is one exception with its unusual African/Australian distribution, which is paralleled by the African/New Zealand distribution of Bulbinella and African/Australian distribution of Caesia (of the hemerocalld clade).

For information regarding the overall placement of Xanthorrhoeaceae see Pires et al. (2006). For Xanthorrhoeaceae, successive microsporogenesis (msg) is the norm with a reversal to simultaneous msg in Xanthorrhoea (Rudall et al. 1997). We now find that Xanthorrhoea, which had been placed by Fay (2000) as the weakly supported sister to Asphodelaceae, is positioned more closely to the hemerocalld clade (BP 70). With additional outgroup data, Pires et al. (2006) found Xanthorrhoea as sister to the hemerocallds with BP 86. The placement of Xanthorrhoea with the hemerocalld and asphodelid clades in molecular analysis conflicts with its placement in a clade with Iridaceae in a morphological cladistic analysis (Rudall 2002), although the same analysis placed Asphodelaceae and Hemerocallidaceae together in an unresolved polytomy.

In the hemerocalld clade, the position of Pasithea is peculiar due to its distribution. Pasithea is a Chilean genus whereas other members of the clade have either a Eurasian (Hemerocallis, Simethis) or Australasian distribution (all the rest, except for Caesia, which is found in South Africa as well). Missing from this analysis is Ecremis Willd. ex Baker, which is also South American (it is similar in habit to Phormium). Hemerocallis/Simethis (BP 99) are weakly supported as sister to tribe Johnsoniaceae (of Anthericaceae sensu Dahlgren et al. 1985; all Australian, except for Caesia), whereas Pasithea is sister to the other largely Australasian clade (Phormium occurs in New Zealand, and Dianella is principally Australasian, but gets into tropical Asia at higher elevations). The pattern of relationships for Pasithea and unsampled Ecremis could be due to old Gondwanaland connections, but that of Hemerocallis/Simethis requires an explanation of an old long-distance dispersal or a much wider distribution for the group, with that of Hemerocallis/Simethis being relictual. The African/Eurasian primary distribution of the asphodelid clade (with an overlay of more recent long-
distance dispersal of *Bulbine* and *Bulbinella* to Australasia) only further complicates the biogeographical picture. A detailed molecular clock exercise is needed to provide dates on these critical nodes so that we have a better idea of when these events took place. Wikström et al. (2001), using the limited sampling of Asparagales in the combined analysis of Soltis et al. (2000), placed dates of 48–55 million years (depending on the method of optimizing branch lengths) for the node of *Xanthorrhoea* and *Bulbine*, which would correspond to the basal node within Xanthorrhoeaceae s.l. Older dates were obtained for this node in the Bremer and Janssen dating exercise (2006) for all monocots.

In the broader analysis, *Bulbine* (including *Jodrellia*) is sister to Alooideae. Both share characters such as succulent habit and CAM physiology (Watson and Dallwitz 1992 onwards), which could be seen as adaptations enabling them to live in similar arid environments. Within *Bulbine*, the results obtained generally validate the split into the tuberosum and rhizomatous subgenera proposed by Baijnath. The only discrepancy is that of *B. lagopus* (Thunb.) N. E. Br., which in Baijnath's treatment was placed in subgen. *Bulbine*, but in the molecular study comes out in a strongly supported clade (BP 99) with the members of subgen. *Tuberosa*. The geographical evidence available indicates that subgen. *Bulbine* is a group of predominantly grassland species, whereas those in subgen. *Tuberosa* are inhabitants of drier areas, which fits with the rhizomatous and geophytic habits of these plants.

The pattern of evolution postulated by Baijnath (1977), in which *B. aloeoides* is proposed as a progenitor of the rest of the genus, is likely to be erroneous for two reasons. Firstly, *B. aloeoides* is an extinct species and therefore by definition cannot be a progenitor of any other extinct species in the genus. We think that most likely what Baijnath meant by this statement was that more than any other species *B. aloeoides* has the characteristics that he would have expected in the common ancestor of all extinct species. This could be the case, although the deeply embedded and well-supported position of this species (Fig. 2) would seem to argue against even this interpretation, but without a formal cladistic analysis of morphology we cannot robustly address this hypothesis. On the basis of the tree, it is not particularly parsimonious to expect *B. aloeoides* to have retained many plesiomorphic characters. Secondly, he proposed that Australian members (*B. glauca* and *B. semibarbata*) arrived on the continent via two long-range dispersal events and so are distinct and temporally separated lineages. The low level of sequence divergence in these species does not support this hypothesis, but instead indicates that they are monophyletic and recently arrived in Australia.

A Gondwanic origin had been suggested for the split between the African and Australian *Bulbine* species (Baijnath 1977); however, for a split that took place 100 million years ago (Hallam 1973), the level of sequence divergence is too low. At some point there was a change in ploidy in *Bulbine* and a long-range dispersal event. At this stage it is still not possible to say in which order these happened, but since there are no tetraploid species in Africa they either left no relatives there or the change in ploidy occurred after the ancestral species arrived in Australia.

Whereas all African members investigated have 2n = 14, chromosome numbers of 2n = 24, 26, 48 and 72 have been reported for the Australian members (Watson 1987). Africa is clearly the most likely origin of *Bulbine*, with the basic chromosome number of x = 7 as ancestral. As there are only examples of 2n = 14 from Africa, it is possible that *B. semibarbata* was formed as a result of "dysploid" in which there was a doubling of the African chromosome number to 2n = 28, followed by a subsequent fusion of chromosomes in Australia.

Support for *Bulbine* and *Jodrellia* being in the same clade is high, which is backed up by both nuclear and plastid data sets (Fig. 2, 3). *Jodrellia* should be considered a synonym for *Bulbine*; only one combination in *Jodrellia* has never been made in *Bulbine*. The bimodal karyotype in *Bulbine* has evolved independently of that in the *Aloe* clade. All members of the latter group have exactly the same karyotype, which is not shared by any *Bulbine* species, whereas the species of *Bulbine* display a wide range of karyotypes, including some species that are more or less uniform in shape and size or exhibit a continuum of small to large chromosomes (Chase et al. 2000). The latter appears to be ancestral for the genus, as the more bimodal ones are not attached to the basal node of the tree. However, additional species need to be included before such conclusions can be made robustly. The type of bimodality found in *Gasteria Duval/Haworthia* also matches that found in *Aloe* with four large and three small chromosomes (Pires et al. 2006), indicating that this is the basic karyotype found in Auloideae, although the limited sampling in the asphodeloid clade and the lack of a morphological matrix means that we can only talk in general terms about the patterns observed. The strict consensus ITS tree (Fig. 3) is provided to back up the findings from the plastid investigation. As can be seen, the same broad sets of relationships were indicated including the same clades (corresponding to Baijnath's subgen. *Bulbine* and *Tuberosa*) and most notably the position of *Jodrellia*, as with the combined plastid data set tree, was embedded within *Bulbine* with 100% bootstrap support. The data sets were not combined due to the incomplete sampling of the ITS tree.

ACKNOWLEDGMENTS

The authors would like to thank Martyn Powell, Jim Clarkson, Mike Fay, Robyn Cowan, and Vincent Savolainen (Jodrell Laboratory, RBG Kew) and Paul Wilkin (Herbarium, RBG Kew) for voucher verification.

LITERATURE CITED

Beaumont, J., D. F. Cutler, T. Reynolds, and J. G. Vaughan.

