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PHYSICAL REVIEW D, VOLUME 60, 064002

Black holes and five-brane thermodynamics

Emil Martine¢ and Vatche Sahakian
Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 S. Ellis Avenue, Chicago, lllinois 60637
(Received 24 February 1999; published 2 August 2999

The phase diagram forfBbranes in M theory compactified orf, TT%Z,, T°, and T is constructed. As for
the lower-dimensional tori considered in our previous widEk Martinec and V. Sahakian, Phys. Rev5B,
124005(1999], the black brane phase at high entropy connects onto matrix theory at low entropy; we thus
recover all known instances of matrix theory as consequences of the Maldacena conjecture. The difficulties that
arise for P are reviewed. We also analyze the D1-D5 system §nwie discuss its relation to matrix models
of M5-branes, and use spectral flow as a tool to investigate the dependence of the phase structure on angular
momentum]S0556-282(199)03316-(0

PACS numbds): 04.70.Dy

I. SUMMARY OF RESULTS AND DISCUSSION coupling, depend on the radial position in the associated low-
energy black supergravity solution. Since the horizon radius
] ) decreases with decreasing entropy, and only the horizon ge-
~ Black hole thermodynamics has played an important roleymetry is relevant to the thermodynamics, the entropy pa-
in elucidating the structure of M theorfsee[1-3] for re-  yametrizes a path through the moduli space of the low-energy
views). In the context of the Maldacena conjectire-6],  sypergravity. Along this path, it may be necessary to perform
black hole thermodynamics generates predictions for the ity transformations to achieve a valid low-energy de-
the_rmody_lrlﬁ_mlcs of q{auge thgor_)t/ in \;anguz ?trcr;:‘t%'ioﬂflm%cription of the horizon geometry. This is why, at high en-
regimes. This conjecture posiis its extended formthat a ; .

e b et vt sy s (9 0 i ey st e,
ary conditions is equivalerilual) to a theory without grav qwo lie on an orbit of theU-duality groupE,(Z). Further-

ity. Recently[7], the present authors constructed a phas " . . .
diagram for maximally supersymmetric Yang-Mil§YM)  More, phase transitions may occur in the geometrical region
theory on tori P, p=1,2,3, by systematically exploiting due to(de)localization of the horizon on cycles across which

these ideas. It was seen that a number of different geometdt IS initially (un)smeared15]. Such transitions are involved

cal phasedi.e. those with a valid low-energy supergravity in the passage from blackgbranes to matrix theory black

description as black objegtsrise as the entropy and cou- holes[16-19.

pling are varied. The boundaries of the region of geometri- ~ Thermodynamics is one of many probes of matrix-

cal phases are correspondence cufdswhere the curva- Maldacena duality. It is a particularly useful one in that it

ture of the geometry becomes string scale at the horizon ofanonically associates an energy scéleat of a typical

the object. Hawking quantum with a particular place in the geometry
Generically, the thermodynamics at high entropy containgthe horizon. The fact that the geometry appropriate to the

a phase of black p-branes, while at low entropy one finds description of this scale undergoes a sequence of duality

11-dimensional black holes in the light-cofeC) frame. transformations as we go from IRnatrix theory regimgto

The reason is quite simp[@]: The scaling limit specified by UV (Maldacena regimemeans that the interpretation of

Maldacena and the limit prescribed by Sen and Seiberg foprobes as scattering states in discrete LC quantization

compactifications of matrix theory [9,10] are one and the (DLCQ) M theory is only valid up to some scale, beyond

same” One and the same gauge theory describes both; forhich one should pass to a description in terms of scattering

example, on T, black Dp-branes characterize the density of off of black p-branes in a dual geometry. Using the relation

states in the regime of SYM entropi€=N?, whereas ma- between the energy and the radial scale prof, this

trix theory[13,14 describes the regimg<N. implies that matrix theory is only vali¢in the sense of ac-
The point is that the scales of various features of the gecurately describing flat-space supergrayityp to some dis-

ometry, for instance proper size of the torus and the stringance from the source.
The precise relation between the Maldacena or near-

horizon limit of N Dp-branes on T and matrix theory on ¥

A. Introductory remarks

*Email address: ejm@theory.uchicago.edu
TEmail address: isaak@theory.uchicago.edu

The entropy is most useful in parametrizing the behavior of the 3This conclusion was independently reached from a somewhat
theory since it is directly tied to the horizon area of the low-energygitferent perspective ifi21]. The analysis of supersymmetric quan-
supergravity solution. The energy can then be read from the equagm mechanic§SQM) in this latter work is equivalent to the large
tion of state of the relevant black hole. V limit of the phase diagrams here and[ifi. In Sec. 1l D of[7] it

7t was shown that these two limits are related 11,12. Dem-  was observed that the DO geometry breaks down at the correspon-
onstrating their complete equivalence requires further specifyinglence point, where the temperature of the system Tis
the dimensionless quantities to be held fixed, in particular the scale-NY*R 1/ 2,. Using the energy-distance relations[@0], the re-
of the energy. SUlt 1 e~ N4 follows.
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with N units of longitudinal momentum goes as folloyg: It is related to the DLCQ description of five-brane dynam-
The Maldacena limit ise’ =12,—0, with the gauge coupling ics [33-36.
92=0s!?73"2 and the coordinate size 3; of the torus The analysis will clarify the relation of the D-brane de-

cycles held fixed. This limit isolates the gauge theory dy-scription of the system to one in terms of NS five-branes and
namics on the P-brane while decoupling gravityfor p  fundamental string$31], as low-energy descriptions of dif-
<6). Natural energy scales in the gauge theory are measurdérent regions of the phase diagraior earlier work, see
with respect to the torus siZeOn the other hand, the [37]). Finally, we will explore the use of spectral flow in the
Seiberg-Sen prescription for matrix theory of [B,10] in-  superconformal theory to determine the spectral density of
volves type IIA string theory witiN DO-branes or, equiva- the theory as a function of angular momentum dén S

lently, M theory with N units of momentum on a circle of

radiusR;4; then one takes the limit,— 0, with Rllllf)I and

the (transversgtorus cycle size® /1, held fixed. The rela- B. Phase diagrams for T, T°, and T®

tion between the two sets of parameters is simfiy.
[11,12,7) the T duality on all cycles of T that maps
Dp-branes to DO-branes and vice versa:

As in [7], the phase diagrams forpEbranes on torip
=4,5,6, have a number of common features. The vertical
axis of the diagrams will be entropy; for the horizontal axis
ISI we take the sizeV of cycles on the torus Tin 11-

|2 dimensional Planck units, as measured in the LC M theory

T appearing in the lower right corndthe phase of boosted
3 11D black holes N is the charge carried by the system: the
s = Lo brane number in the high entropy regimes and longitudinal
" RR momentum in the low-energy, LC M-theory phase. Through-
out the various phases, the corresponding gravitational cou-
| | (P32 P I plings vanish in the Maldacena linexcept forp=6, where
gs“:(R_ll> 1 EI the limit keeps the Planck scale of the high-entropy phase

held fixed, implying the decoupling of gravity for the dual
b ooa dynamics. Solid lines in the diagrams denote thermodynamic
2 Lo P H L pi transitions separating distinct phases, while dotted lines rep-
“\Ry, R @ resent symmetry transformations which change the appropri-

ate low-energy description. We do not expect sharp phase
Thus, the two limits are clearly identical. transitions along these dotted curves since the scaling of the

In this work, we extend our analysis of such compactifi-equations of state is unchanged across them.
cations top=4,5, where the relevant theories involve the  The structure of the phase diagram Yor 1 is identical to
dynamics of five-branef22,23,9,10, and p=6, where the the cases encountered [if]] (see, for example, Fig.)1At
definition of matrix theory is problemati9,10,24—2§ In  high entropies and large M-theory’ Twe have a perturba-
the process of generating the phase diagram, we will redidive (p+1)D SYM gas phase. Its Yang-Mills coupling,
cover all the remaining prescriptions for generating matrixincreases toward the left, cf. E¢L). The effective dimen-
theory compactifications; we will also comment on the diffi- Sionless coupling is of order 1 on the double lines bounding
culties encountered fop:G (and a proposa| by Kachru this phase, which are Horowitz-Polchinski correspondence
et al. [27] for overcoming ther For p=5, we map out the curves. As the entropy decreases at lavgethere is a DO-
phase diagram of the six-dimensional “little string theories” brane phase arising on the right and middle of the diagrams.
compactified on a five-torus®T Its description as a thermodynamic state within SYM theory

In addition, we will analyze the phase diagram of thewould be highly interesting. It has a Horowitz-Polchinski
D1-D5 system, which arises in diverse contexts: correspondence point &-N?, where a zero specific heat

It has played a central role in our understanding of blackransition is to occuf38], and localizes into a LC 11D black
hole thermodynamicE28]. hole phase for entropie8<N. The lineS~N separates the

It is a prime example of the Maldacena conjecture, due td 1D phases that are localized on the M-theory cifelaose
the rich algebraic structure of (11)D superconformal coordinate size iRj;) from those that are delocalized, uni-
theories which are proposed duals to string theory orformly across the diagramil6-19. The 11D black hole
AdS;x X M, [4,29-31. phase at small entropy becomes smeared across’thundn

It describes the “little string” theory of five-branes the horizon size becomes smaller than the torus séalee
[23,32, where the little strings carry both winding and mo- denote generally such smeared phases by an ovéitirtiis
mentum charges. caselld). This(delocalization transition of the horizon on
the compact space extends above $heN transition, sepa-
rating the black [P-brane phase from the black DO-brane

4For p#3, the Yang-Mills coupling is dimensionful, and should
be referred to the torus scale as well. When we say that a dimen-
sionful quantity is held fixed in the decoupling limit, we mean the SThis does not in principle exclude the possibility of smoother
energy in the system relative to that scale. (i.e. higher ordertransitions.
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phasé. Susskind39] has argued that, on the SYM side, one Yy
should regard this localization transition as an analogue of ™. EZT_I”S””N
the Gross-Witten largéN transition[40]. The localization Mg

123abc 6 Point
123abc 8Point

transition line runs into the correspondence curve separating
the SYM gas phase from the geometrical phaseS~ah?.
Thus as we move to the leftlecreasing/, i.e. increasing the
bare SYM coupling at high entropyS>N?, the SYM gas
phase reaches a correspondence point; on the other side — 7 e Moo
the transition is the phase of blackpEranes. A further :

-.hs M D4

common feature of the diagrams is a “self-duality” point at LEGEND
V~1 and S~NE& P/7~P)where a number ofJ-duality oy 8

curves meet. v 11D BH phase
In contrast, the structure of the phase diagrams/ferl ' é boundary
depends very much on the specific case at hand. Compacti
fications on P, p=1,2,3, were analyzed if7]; we now de-
scribe the specifics of this region fpr=4,5,6. - —
Figure 1 is the phase diagram of* Tompactification. B InV  InN
There are six different phases, several of which—the 11D
and11d black hole, black DO- and@branes, and SYM gas _ o _
phases—were discussed above. In a slight shift of emphasis, F'C- 1. Phase diagram of the six-dimensiof@l0) theory on
we have relabeled the black D4-brane phase as the bladk *S" S is entropy,V=R/l, is the size of a cycle on the™of
M5-brane phase, since its description in terms of the lattepdnt-cone M theory, andN is longitudinal momentum guantum.
object extends to the region< 1 (in fact, even for a patch of The dotted lines denote symmetry transformations: M, M lift or
V>1 the D4-brane becomes strongl ! counled and must breeduction;T, T duality; S, S duality. The solid lines are phase tran-
lifted to M theory. The appropriateggual nF())n-gravitationaI Sition curves. Double solid lines denote correspondence curves. The

d T | he six-di ion@l0) field th dashed line is the extension of the a¥s=1, and is merely in-
escription involves the six-dimension@,0) field theory on cluded to help guide the eye. The labels are defined as follows: DO,

T*xS', where the last factor is the M-theory circle; the scaley;,c, po geometry; W11, black 11D wave geometry; 11DBH, 11D
of Kaluza-Klein excitations given by the size of this circle | ~ pack hole: DO black smeared DO geometry11, black
(times the number of brangsets the transition point be- smeared 11D wave geometrgIDBH, 11D smeared LC black

tween the(2,0) and SYM descriptions. This M5 phase con- hole; D4, black D4 geometry; M5, black M5 geometht, black

SIsts o.f SIx patchgs that we Cycle_ through via duality tralns_smeared fundamental string geometyB, black smeared type 11B
formations required to maintain a valid low-energy —

description. The energy per entropy increases toward the Ieﬁ(.ave geometry10DBH, type 1IB boosted black hole. The phase
L . Lt . iagram can also be considered that of (Bg) theory on T/Z,
and toward higher entropies; this is to be contrasted with th g by rei . = — .
; L y reinterpreting theF1, WB, 10D phases, and the matrix
cases analy_zed irv] Whe_re the IR Ilrr_ut appears toward the string phase as those of a Heterotic theory.
left of the diagrams. This behavior is a consequence of the
reversal of the direction of renormalization grolRG) flow  equivalently boosted type IIB holes
betweenp<3 andp>3. As we continue to the left and/or Figure 1 is trivially modified to give the phase diagram of
down on the figure at small volumé<1, the T is small  the(2,0) theory on T/Z,x S. The additional structure does
while the M-theory circle remains large; eventually one re-not affect the critical behavior of the diagram. The change
duces string theory along the cycles of tht @nd the M5-  appears in the chain of dualities we perform on the dotted
brane dualizes into a string. Somewhat further in this directines of the diagram. The orbifold quotient metamorphoses
tion, we encounter a Horowitz-Polchinski correspondencénto world-sheet parity, and the fundamental string patah
curve, and a transition to a phase consisting of a matripeledF1) becomes that of the heterotic string. The emerging
string [41-43 with the effective string tension set by the matrix string phase at the correspondence point is then that
adjacent geometries. Using Maldacena’s conjecture, we thusf a heterotic theory. We thus confirm the suggesfibh45)
validate earlier suggestions to describe matrix strings usings describe heterotic matrix strings via tk20) theory on
the (2,0 theory [22,23,9. This matrix string phase has a 74z,x S One can also propose to extend the dual theory
correspondence curve also for low entropies, now with repf an intermediate state obtained in the chain of dualities
spect to a phase of smeared LC M-theory black ho®s peween the M5 and thEL patches into the matrix string
regime; we then have heterotic matrix strings encoded in the
O(N) theory of type-I D-strings, as suggested[#6—48.
®Initially, the DO-brane phase becomes smeared@ as the Similar statements can be made about matrix theory orbi-
entropy increases, the effective geometry of the latter patch befolds or orientifolds in other dimensions.
comes substringy at the horizon, and one shduttlialize into the The thermodynamic phase diagram of five-bra(sesne-
black Dp-brane patch. Both thBO and Op patches have the same times called the theory of “little strings749,23,32) on T
equation of state, since they are related by a symmetry transformas shown in Fig. 2. We have a total of seven distinct phases.
tion of the theory; they are different patches of the same phase. We again shift the notation somewhat, relabeling the black

corresp.

=Z curve
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TlnS /inN ) &
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FIG. 3. Phase diagram of the D6 syste®.is entropy,V
=R/l is the size of a cycle on the®of the LC M theory, andN

H i t ” 5
l_FIG'_ 2. Pl_wase_ diagram Ofl l'tktle string theo_ry on .TTlhe Iia- is longitudinal momentum. The dotted lines are symmetry transfor-
beling is as in Fig. 1. DO, black DO geometry; W11, black 11D mations: M, M lift or reduction;T, T duality; S, S duality. The

wave geometry; 11DBH, 11D LC black hol®0, black smeared  gq|ig |ines are phase transition curves. Double solid lines denote
DO geometry, W11, black smeared 11D wave geomettiDBH,  .,nespondence curves. The labels are defined as followidy,M

11D smeared LC black hole; D5, black D5 geometry; NS5B, black ~ o .
five branes in type IIB theory; NS5A, black five-branes in type IIAlﬁVIT,\L',bIaCk Taub-NUT geometryﬁ, Déblack D6 geometry;
DO, DO, black DO geometry; W11, Wilblack 11D wave geom-

theory; M5, black M5-brane geometr)TMSJIack smeared M5- —_— piit i
T etry; 11DBH, 11BH, 11D LC black holeD0, DO, black smeared

brane geometry; M/11, black smeared wave geometry in M WL WIT biack 4 )
theory: MW11, black smeared wave geometry in Mieory; D0 980metry;Wil, Wil black smeared 11D wave geometry;
11DBH, smeared boosted black holes intheory. 11DBH, 11[BH, 11D smeared LC black hole.

~ ) smallerV to a phase whose equation of state is that of a (5
D5 phase as a black -Mﬁhgse, since the latter extends the ; 1)p gas. It is interesting that the Hagedorn transition is
validity of the description toV<1. The equation of state of geen here as a localization-delocalization transition in the

this high-entropy regime is black geometry. Yet further in this direction, the system lo-
12 calizes aN~ Sto a dual LC Mtheory on a TxS'x S here
S~EN1’2(Rp V52 (2)  the horizon is smeared along the squafg [Bcalized along
11

both S factors, and carrying momentum along the last S

characteristic of a string in its Hagedorn phase. The temperalhis M phase on the lower left i dual to the LC M theory
ture determines the tension of the effective string. We have &n the lower right.
patch of black NS5-branes in the middle of the diagram. The D6 phase diagram has two important featuises
They appear near thé~1 |ine’ at which point aT_dua"ty F|g 3) FiI’St~Of a”, the Maldacena limit keeps ﬁXed the
transformation exchanges five-branes in type IIA and IIBPlanck scalel F,|~(I§|/R11)V‘2 of the high-entropy black
theories. The type IIB Neveu-Schwarz five-braffdS5  Taub-Newman-Unti-Tamburino (Taub-NUT)  geometr{
patch connects to a D5-brane patch Sauality. The type [50]. Thus, gravity does not decouple, and the limit does not
IIA NS5 patch lifts to a patch of M5-branes orP S at  lead to a non-gravitational dual system that would serve as
strong coupling on the left. The extra circle is the M circle the definition of M theory in such a spacetime. A symptom
transverse to the wrapped M5-branes; the horizon undergoes this lack of decoupling of gravity is the negative specific
a localization transition on this circle at lower entropy and/orheatSexE®? of the high-entropy equation of state. This prop-
erty is related to the breakdown of the usual UV-IR corre-

"The tilde is meant to distinguish this 11-dimensional phase

(where the M circle is transverse to the five-branfesm the 11- 8In the Maldacena limit, the near horizon geometry is that of an
dimensional LC phase on the lower right, whose M circle has aasymptotically locally EuclideafALE) space withAy_, singular-
different origin. ity.
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spondence of Maldacena duality1,20. The energy-radius tropy increases at fixed but not large Calabi-Yau coordinate
relation of[20] determined by an analysis of the scalar wavesize V, one finds the horizon smears over the Calabi-Yau
equation in the relevant supergravity background is in facspace and eventually one reaches e patch of smeared
the relation between the horizon radius and the Hawkindlack DO-branes. The proper size of the Calabi-Yau space at
temperature of the associated black geometry; thuspfor the horizon in string units is decreasing along this path;
=6 decreasing energpf the Hawking quanta is correlated eventually one reaches the curve along which one should
to increasing radiusof the horizon, as a consequence of theperform the duality transformation, in this case mirror sym-
negative specific heat. This is to be contrasted with the situmetry. Naively, in the mirror, as the entropy increases fur-
ation for p<5, where the positive specific heat means in-ther, the P wrapped by the D3-branes is increasing in size,
creasing horizon radius correlates to increasing temperaturahile the base Scontinues to shrink; the high-entropy phase
andp=>5, where the Hawking temperature is independent ofvould seem to be described by D3-branes on the special
the horizon radius in the high-entropy regime. Now, the tem{agrangian cycle of the mirror Calabi-Yau space near a co-
perature in any dual description must be the same as in theifold singularity. However, the duality transformation will
supergravity description. Fqr<5, the dual is a field theory; not change the equation of state, since B@ patch and
high temperature means UV physics dominates the typicadverything above it are related by symmetries of the theory.
interactions, leading to the UV-IR correspondence. Bor The only thing that could change this conclusion is a further
=5, the dual is a "little string” theory; the temperature is phase transition, but there is no candidate. We conclude that
unrelated to the horizon radiand thus the total energgpn  the high-entropy phase is again one with negative specific
the gravity side, and unrelated to short-distance physics iheat, and thus cannot be that of a field thebry.

the dual “little string” theory (since high-energy collisions

of strings do not probe short distangeblence the UV-IR C. D1-D5 system

correspondence already breaks down at this point. g-or
=6, there is nothing to say—Ilarge radifiarge total energy . )
corresponds to low temperature of prolfeawking quants ~ the D1-D5 system on‘K S}, \which as we mentioned above
and any dual description could not have high energy or temS@n b€ considered as the “little string” theory 1@5 five-
perature related to short distance physics, since it is a theo&fanes’ withQ, units of string winding along the"SFigure

that contains gravityso high energy makes big black holes 4 Shows the thermodynamic phase diagram. In the Mal-
A second key feature is the duality symmetof. [52]) dacena limit, this theory is a representation of the algebra of

V—V~1 of the diagram relating th¥/<1 structure to that “V=(44) superconformal transformations in {1)D
discussed above fov>1. Note that this duality symmetry [4:55.56,29-31 We have definedk=Q,Qs and q
inverts the  volume as measured iRlanck units rather = Q1/Qs. We keepk fixed, butq may be viewed as a vari-
than string units. The duality interchanges momentum mode@P!€ in the range L q<k, thus moving some of the dotted
with five-brane wrapping modes, while leaving membraneCU"ves of duality transformation, but not altering phase tran-
wrapping modes fixed; in other words, the dual space is thaion curves. Fog~1, we can exchange the roles@f and
seen by the M5-brane. It is possible that this symmetry exQs via duality transformations across the d!agram; the struc-
tends to any Calabi-Yau compactification of M theory, sincelure i unchanged. The other limig=k, is the Qs=1
the volume of the Calabi-Yau sits in a universal hypermul-Pound. The vertical axis on the diagram is again the entropy,
tiplet whose moduli space appears to$e(2,1)/U(2) [53]; Whlle the horizontal axis is the six-dimensional string cou-
if the discrete identifications involve the appropriate elemen®!ing 96=0s/\v of the D1-D5 patch, wherg=V,/a’'? is
of SU(2,1:Z), there will be a dual Calabi-Yau compactifi- the volume of the Tin string units[equivalentlygg * is the
cation of roughly the inverse size seen by M-theory five-volume of the T in appropriate string units of the NS5 five-
branes wrapping the original Calabi-Yau compactification. brane(NS5FB phasé. The phase diagram has a symmetry
The thermodynamic perspective also sheds light on a prads— 1/ge (inversion of the torus in the NS5FB phassthis is
posal of Kachru, Lawrence, and Silverst¢Rv] for a defi-  the T-duality symmetry of the little string theory. From the
nition of matrix theory compactifications on Calabi-Yau perspective of the D1-D5 patch, we can consider the entire
spaces. Generically, string theory on a Calabi-Yau spacghase diagram as that of ther1D conformal theory that
does not have & duality that inverts its volume istring  arises in the IR of this gauge theory, which is conjectured to
units. Rather, these authors suggest that the appropriate de dual to the near-horizon geometry AGSEXT* of the
ality to consider, analogous to tieduality transformation D1-D5 system. In this patch, the D-strings are wrapped on a
used by Sen-Seiberg for torus compactifications, is the mircycle of sizeRs. This parameter is absent from the scaling
ror symmetry transformation. This transformation relategelations of all curves because of conformal symmetry.
DO-branes in type IIA theory on a given Calabi-Yau space to
D3-branes wrapping a special Lagrangian submanifold of the
type3 1B mirror [54]; locally, the Calabi-Yau space looks like  s\ote that one could also imagine performing the same duality
a T° fibered over an Sbase, and mirror symmetry i  sequence to describe matrix theory on K3 in terms of two-branes on
duality on the fiber. Thus, it is proposed that some sort Ofhe torus fiber of a near-degenerate mirror K3. In this case one
3+1 gauge dynamics might yield an appropriate underlyingnows that this description is related to the five-brane description
description. Consider the phase diagram that should arise. Ajiven above by duality, and hence indeed has & 15D equation
low entropy, one has the 11D black hole phase. As the erof state at high entropy, rather than at2)D equation of state.

As a further example of our methods, we have examined
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bhoost, thfush connecting Vf\]/ithl the p:)oposda[BB] ]1:0:] a m;ltrix
theory of this system. The lower boundary of this phase oc-
§\\\\ curs at entropies of orde$~ Jk, where a Bogomol'nyi-
Prasad-Sommerfiel(BPS matrix string phase emerges and
X the diagram is truncated at finite entropy. We find agreement
'''' ; with Vafa's argumen{57] that the BPS spectrum in the Ra-
‘‘‘‘‘ e mond(R) sector of the D1-D5 system is that of fundamental
DOD4 type IIB strings carrying winding and momentufasome-
. times called Dabholkar-Harvey stats8]). Similarly, chas-
ing through the sequence of dualities for the D1-D5 system
MSW M5W on K3xS!, one finds that the BPS spectrum consists of
Dabholkar-Harvey states of the heterotic string.
BiWB The character of the phase diagram is different at the ex-

12 & 1723 treme limitsg~1 (i.e. Q;~Qs5) and g~k (i.e. Q5<Qy).

InSlink
NS5FB D1D5

T1284
T128¢

-
ud
wn

3id4+1/4x TS

T M+
4 x

M4T1238

The location of the transition curves bounding the NS5WA
patch (type IIA NS five-branes with a wave as the low-

BPS . energy descriptiondepend on the ratik=Ing/Ink. For
Matrix String roughly equal chargeg~1,x~0, this patch disappears, as
do the related5W and M5W patches and the NS5FB patch
of fundamental strings and type IIB NS5-branes. The

“eelink A2 12 D-brane description predominates the phase diagram, except
& 0<(x=lnq/Ink) <1 at low energies where there is a large patch describing fun-
) damental strings with winding and momentum. The opposite
Strong-weak . . . .
duality regime, say fixe)s and largeQ, so thatx~1, is the regime

discussed bj31]; it is also relevant to the “DLCQ" descrip-
FIG. 4. Thermodynamic phase diagram of “little strings” tion of the five-brand33]. Indeed, the high-entropy region
wound on the §of T*xS', with Q; units of winding andQs 5~ js taken over by the NS5FB patch up to the correspon-
five-branesk=Q,Qs and 1<q=Q;/Qs<k. g is the six dimen- 4000 c\yrve, while in the low-entropy domaBxk, the

sional string coupling of the D1-D5 phase. The labels are defined
follows: D1D5, black D1-D5 geometry; NS5FB, black NS5 geom-aﬁﬂvA patch expands to squeeze out @4, MSW, and

etry with fundamental strings in type IIB theory; DOD4, black F1WB patches, a_nd _the localized Phase is Cov_ered by the
DO-D4 geometry;DOD4, black smeared D0-D4 geometry; M5w, MSW patch—longitudinal M-theory five-branes with a large
black boosted M5-brane geometyt5W, black smeared boosted POOSt just what one needs for an infinite momentum frame
M5-brane geometry; NSSWA, black boosted NS5 branes in typé" DLCQ description. We discuss the DLCQ limit in detail
IA theory; F1IWB, black boosted fundamental strings in type 11B in Sec. I1E belowt!

theory; FIWB, black smeared and boosted fundamental strings in For simplicity, we have restricted the set of parameters we
type 11B theory;L, localization transitions. haVe COI’ISIdered n the phase d|agram to the entropy and the

couplinggg. It is straightforward to see what will happen as

Analogous to the singly charged brane systems we have be@iher moduli of the near-horizon geometry are varied. Con-
discussing, at high entropies there is a %(1)D gas” phase sider for instance decreasing one of tHerddii, ke_epmg the
at smallgs (largeV,), which passes across a correspondencéota! volume fixed. At some point, the appropriate low en-
curve to the black brane phase as the coupling increase8rgy description will requird duality on this circle, shifting
Being determined by conformal symmetry and quantizatiorfrom D1-branes dissolved into D5-branes,_ to D2-_branes, end-
of the central charge, the equation of state does not chand@d on D4-branes. One can then chase this duality around the
across this “phase transition.” Starting in the “¢11)D diagram: The NS5FB phase becomes M2-branes ending on
gas” phase and decreasing the entroy.k corresponds to  M5-branes; the NSSWADOD4, and DOD4 phases become
the point where the thermal wavelength in the{1)D con-  D1-branes, ending on D3-branes; and MW and M5W
formal theory becomes of the order of the size of the Rgx ~ phases become those of fundamental strings ending on D3-
This is again a Horowitz-Polchinski correspondence curvébranes. The near-extremal F1IWB phase is unaffected. One
from the side of lower entropies, analogous to the SYM theocan also imagine replacing thé By K3. Moving around the
ries at® S~N2. There is a localization transition on tfie, ~ K3 moduli space, when a two-cycle becomes small, a D3-
cycle cutting obliquely across the diagram. The localizedorane wrapping the vanishing cycle becomes light; one
phase can be interpreted as that of M5-branes with a largghould consider making a duality transformation that turns
Q1 or Qs into the wrapping number on this cycle.

OThere is similarly a hidden phases of zero specific heat between
the gas phase and the lower, localized phase, as can be seen by théThe relation between the Maldacena conjecture and matrix mod-
discontinuity in temperatures that occurs betw&erk and S<k. els of M5-branes has also been considered recenflgdh

064002-6



BLACK HOLES AND FIVE-BRANE THERMODYNAMICS PHYSICAL REVIEW D60 064002

Thus the D1-D5 system appears to have a remarkablgssential in order to regularize the singularities in the effec-
varied life. On the one hand, it can describe low-energy sutive description. The (+1)D CFT on(symmetric products
pergravity on a 6D space, namely AgSS® the common  of) K3 is simply singular, and does not contain the objects
coordinate of the branes is the angle coordinate onzAdS Which are needed. These objects are carried, however, as
This space parametrizes physics of the Coulomb branch dfuxes on the five-brane one starts with; the energy cost of
the gauge theory. On the other hand, the same system gthese excitations simply becomes small at the relevant points
scribes the “decoupled” dynamics of the five-brane, anothefn moduli space, suggesting that the%)D string-theoretic
6D systerﬁz—except that the spatial coordinates are nowcharacter of_ the d_yn_amlcs does_not fully decouple in t_he
T4xSL, with the T* apparently related to the physics of the Maldqcena limit. Similarly, one might expect that lower di-
Higgs branch of the gauge theory, and tHett® dimension men3|_onal examples of the Maldacena conjectarg. those
common to the branes. In the Maldacena limit, the theory iénvolvmg AdS; or AdSy) are not fully captured by quantum

a representation of the (11)D superconformal group; in mechanics or more elaborate {1)D field theories. As
the DLCQ limit, it describes light-cone M5-branes, mentioned above, it is known that the background fields of

The careful reader will have noted that we have refraine he near-horizon limit of the D1-D5 system correspond in the

¢ h . h itational dual of th ymmetric orbifold CFT to turning off the CFT resolution of
rom characterizing the nongravitational dual of the Dl'DStheZZ singularities of Syf(T?). It may be that branes wrap-

geometry as a (+1)D field theory'® The standard candi- 5ing these vanishing cycles are again the needed ingredient
date for this dual is the (+1)D conformal field theory for ‘a well-defined description at these points of moduli
(CFT) on Synf(T% (or K3). This CFT is supposed to pro- space.
vide a description of nonperturbative string theory on
AdS;xS3XT# (or K3). Indeed, it captures the high-entropy
thermodynamics [28] as well as the BPS spectrum
[57,29,6Q. However, the near horizon geometry appears to The (1+1)D N=(4,4) superconformal algebra has two
put the CFT at a singular point in its moduli spgéd,62;  canonical realizations, depending on whether one chooses
also, there appears to be a mismatch in the level obitfie)* antlper|pd|c(NS) or periodic(R) bou_ndary condltlor)s on the
affine algebra of Noether charges acting on tHg[63]. A fermlomc_ generators. The spacetime geometry in the Mal-
basic problem also arises in the phase diagram of Fig. 4. Ifacena limit of the D1-DS system is AgSS’XM,. 2

the high-entropy phas& duality connects the D1-D5 patch 1D supergravity on asymptotically locally AdSpace-

to the NS5-F1B patch as one moves to stronger coupling. fimes carries a realization of this superconformal algebra
is straightforward to check that, crossing the boundggy [56.55; being a subgroup of thesupejdiffeomorphism

~q Y2 the energy scale of a D1-brane wrapping the torugroup, the symmetry extends to the fu!l string the@Bit].

T* becomes less than that of a fundamental string; the apprd*dSs itself is the vacuum state, and resides in the NS sector
priate effective description is tf@dual one. In fact there has Since the Killing spinors are antiperiodic; hence low-energy
to be an entire decuplet of strings transforming under théupergravity about this vacuum is described by NS sector
0(5,5:Z) U-duality group; the proper low-energy descrip- representation theory. The R. sgctor is what one naively dis-
tion favors one pair of these, electrically and magneticallycOVers as the near-horizon limit of D1-D5 bound states on
charged under one of the five six-dimensioBafields [the M 4X S, since the supercharges are periodic _6n S
subgroup ofU-duality fixing the description € O(5,4:)]. A similar situation occurs, for exam_ple, in D3-brz_:1ne
The problem is that the objects carrying these charges, whicBaug¢e theo5ry. The gauge theory ohd8scribes supergravity
are the lightest objects in the theory at intermediate coupling®" AdSX S’ in “global coordinates[65], where time trans-

are not apparent in the SYT%) symmetric orbifold any- lation is generated by the dilation é)perator in the conformal
where on its moduli space. Similarly, in the D1-D5 systemdroup. The gauge theorg/_cR? (or T°) describes supergrav-

on K3 there should be a fulD(5,21) 26-plet of strings; in 1ty On a slice of AdgXS” in ‘S‘Pomcarecqordlnates”(\_/vnh'

branes arise when a 2-cycle on the K3 degenerates, and #&nerated by a conformal boost operator. The Poinsiize
is obtained as the limiting near-horizon geometry of black

D3-branes in the full string theory. There is no map between
gauge theory on%and gauge theory on®T
€ A major difference in the D1-D5 system is that, since the
one-dimensional sphere and torus are the same, the NS and R
sectors can be related by a continuous twist of boundary
onditions known aspectral flow This operation shifts con-
ormal dimensionsi{, ,hg) andJ; charges | ,jr) by [66]

D. Spectral flow and angular momentum

2seven-dimensional, if we include the circle transverse to th
M5-brane.

3The following remarks reflect ongoing discussions of the first
author with D. Kutasov and F. Larsen. In particular, it was D.
Kutasov that raised the question of whether the dual object is a fiel

theory.
14 i i i 0 (0
A The_re are BPS charges corr_espondlng to these objects wrapping h(L7,7|)?: h(LJ)?_ 27] (L’I)?Jr 7]2k
T°, which are central charges in the 10D supersymmetry algebra.
Just as in the case of the transverse five-brane in matrix tfi6dfy j(m=j Ok — pk. 3

these charges decouple from the supersymmetry algebra in the Mal-
dacena limit; nevertheless the objects remain as finite energy excHere, J, are the SW2) chiral R-symmetry currents of the
tations carrying conserved charges. N=(4,4) algebra,E=3(h_+hg) is the energy, andP
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FIG. 5. Allowed region for
states belonging to unitary repre-
sentations of thgNS) supercon-
formal algebra. The dashed curve
represents the continuous spectral
flow h,=j2/k of the pointh=]
=0. Spectral flow slides the
boundary polygon along the pa-
rabola; a half unit of flow gives
Ramond sector the Ramond sectdinsed.

=1(h_—hg) is the momentum alongs. We will restrict our  horizon region;y= 3 maps the R sector of the wrapped brane
attention to theP=0 sector. The mode expansions of the system to the NS sector, with the R ground state of maximal
supercurrent$which havej = = 3) are shifted by 5. Thus  charge mapping to the NS vacuum.
spectral flow byp=n+ 3%, ne Z, relates NS sector states to  Unitarity implies that any allowed highest weight repre-
R sector states. Moreover, spectral flow by integral amountsentation of the superconformal group must hiawdj| [71].
neZ maps a given sector onto itself; the spectrum maps t&pectral flow then implies that allowed states must lie inside
itself, but individual states are not preserved. This, combinethe shaded region of théa(j) plane in Fig. 5:° In particular,
with the charge conjugation symmetjy»—j, means that spectral flow forces a cutoff on the spectrum of BPS super-
the full spectrum of states in the theaoifpr both NS and R gravity states(regardless of whether they are single- or
sector$ with j, =jg=]j is determined by, e.g., NS sector multi-particle configurationsat j =k; as is easily seen from
states with B<j<k/2. This relation implies a relation be- the figure, states on the life=j beyond this point lie out-
tween standard conventions in the literatung:,m=h(ns)  side the allowed regiofsince they would have to flow from
—k/4, andj gamy=0 corresponds tQys)=k/2. states that violate the BPS boundhis feature was termed
In fact, there is a simple operation on the full string theorythe “stringy exclusion principle” in[29]; we see that it de-
that reduces to spectral flow in the near-horizon limit of thepends only on some rather mild assumptions about the quan-
D1-D5 bound state: It is the orbifold described by Rohmtization of Chern-Simons supergravifiye. the global struc-
[67]. TheSU(2), X SU(2)g R symmetry of the near-horizon ture of the class of geometries under consideratiat such
supersymmetry of the D1-D5 system is inherited from therestrictions disappear in the classi&ab o limit.
Lorentz group of the asymptotically flat spacetime in which ~ Spectral flow determines the density of states—at high
it is embedded in the original string theory. Thus theentropy and far from the boundary of the allowed region—in
R-symmetry twist is nothing but the imposition of the terms of the Cardy formulf73,74 for zero charge,
twisted boundary condition

s=2m\k(h.~ J)—ji+2mk(he— %) ~ja
®(x5=Rs) =exfi4mn(3}+ IR (xs=0).  (4)

which is precisely the density of states for D1-D5 black holes
In the near-horizon region, the geometry is asymptoticallywith angular momentuniremembering the shift in conven-
AdS;xS*x M,, and the spectral flow operation can be un-tions). The expression must be invariant under spectral flow,
derstood[68] in the effective Chern-Simons supergravity when the thermal wavelength is much smaller than the size
theory that arise§69]. There, spectral flow is implemented of the system, because the fermion boundary conditions are
by coupling theU (1) X U(1) CartanR-symmetry currents to irrelevant. Near the boundary of the allowed region, the den-
a source; a shift in the energy arises due to the usual relatiosity of states will differ from this expression.
between regularizatiofframing of Wilson line sources and A gualitative sketch of the phase diagram as a function of
conformal spin in Chern-Simons thedfj0].° It is interest- energy and angular momentum is given in Fig. 6. The loca-
ing that, although this twist breaks supersymmetry in the full
theory, anti—de Sitter supersymmetry is restored in the near————

1%These curves are slightly different from the unitarity boundaries
of [71,72 since we are only asking that a state be the spectral flow
Thus, very little of the quantum structure of gravity is being of some state in an allowed representation, rather than that it be an
used here. allowed superconformdiighestweight.
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tions of the phase boundaries are not precisely deterniihed, Teitelboim-Zanelli(BTZ) black hole phase with equation of
since we only accurately know the phase structure in theatate(5) takes over, as the (51)D black hole delocalizes on
vicinity of the NS (=0) and R (=k/2) sectors. The R S°. As a function of angular momentum, there are then phase
sector structure is that of Sec. Il C, and outlined in the preboundaries where the NS and R structures abut one another.
vious section; the NS phase structure was discuss€tbin ~ More details may be found in Sec. Il F.

There is a “supergravity gas” phadge. the predominant

states are dressed Fock space states of low-energy supergrav- II. DETAILS FOR THE PHASE DIAGRAMS

ity) about the AdS vacuum; at somewhat higher energy the . . )
entropy is dominated by a long string phase; then the string The details of our results can be found in the coming
undergoes a correspondence transition to a+{pD  Sections. The D4, the D4 on an .orblfold, D5, D6 and D1-D5
Schwarzschild black holéi.e. localized on Ad$xS® and systems are analyzed in detail in Secs. IlA, 1IB, IIC, IID,

smeared onM,); and finally, at high energy the Banados- and Il E, respectively. The discussion about spectral flow and
angular momentum can be found in Sec. Il F.

) o . A. (2,0 theory on T*x St
1"Since we are now considering finike the boundaries between (2.0 y

phases are not sharp anyway; they are crossover transitions rather The M5 phase.Our starting point will be D4-branes
than singularities in derivatives of the free energy. wrapped on the 4 which is T-dual to the matrix theory
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description. This phase consists of six geometrical patchesases studied ifv]. We will therefore be brief in the descrip-
and is described by the equation of state tion of the right half of the phase diagram; a complete dis-
cussion can be found in the cited paper. We sketch quickly
the scaling of the various transition curves encountered along
this chain in the M5 phase. o

The smeared black DO geome(i90) localizes on the 4

R
E~ _211 \/8/558/5\ ~3/5 (6)
pl

obtained from the geometry &f D4-branes. The geometries for
are parametrized by the harmonic functions

S<V9/2N1/2, (14)
3 3
H=1+ 3 h=1- 3 7 into a phase of localized black DO-branes, and gets M lifted
to smeared Mtheory black wavegW11) at
with
, ] S~N#3y 43, (15)
s ST N 15
ro~WIp|V 4, q3~WR—§l. (8) At
We next describe the six patches of this phase. V~1, (16)
The black D4 brane geomettip4) is given by the metric
and dilaton it is seen to be necessary to reduce this latter geometry along
one of the cycles of the *Tto the geometry of type IIA
dsfo=H Y —hdt+dyg,)) +HY(h~tdr2+r2dQj), waves, then tal dualize on the remaining®Tto a type 11B
theory, and finally t&5 dualize to the geometry of black type
e?=H" (9 1B waves, to be discussed below. THél1l geometry fur-

. . _ Tfhermore collapses at
We are using the convention that the asymptotic values o

the dilaton are absorbed into the gravitational coupling. The
) ; S~N 17
parameters of this geometry are related to the moduli of the

light cone M theory introduced above as follows: into the phase described by the geometry of light cone M

[ \12 3 |2y 1 theory black holes smeared on thé T
gstr:(—p'> V4 oa= y=2 (10 The black M5 geometryM5) is obtained from the D4
Riy Ri Rix

geometry we started with by lifting it, at strong couplings, to

where in the last equation, we use the notatierto denote  an Mtheory. It is described by the metric
the compactification scale for the foyrcoordinates, all as- o 5 X 3t 12 22
sumed equal in size. This geometry is subject to the follow- ds5;=H ™" (dx§;+dy;—hdt?) +H#¥h~tdr?+r2dQ3),

ing restrictions: (18
The Horowitz-Polchinski correspondence principle re- 5
quires and the Mtheory is parametrized:
S>VIN-2, (1) 12,12 12 2
=1 (—") V4 Ry=—o-V4 oy~ vl
Otherwise, we connect to a phase described by perturba-  » "\ Ry "Ry "Ry
tive (4+1)D SYM. (19
Requiring that they’s be bigger than the string scale _ _ _ o
yields This geometry is subject to the following restrictions:
Requiring that the curvature at the horizon be greater than
S>VANS, (120 the Planck scalé, yields
Otherwise, weT dualize into the geometry df smeared N>1: (20)

black DO-branes.

Requiring that small coupling at the horizon yield i.e., there is no dual geometrical description ffor- 1. What-

S< VI3 (13)  ever the string theoretical description of a few M5-branes is
to be, it will take over the phase description beyond this
Beyond this point, we describe the vacuum via the geompoint.
etry of black M5-branes. Requiring that the 4, as measured at the horizon, be big-
The T-duality transformation yielding the geometry of ger than the Planck scale yields the condition
smeared DO-branes beyond Et2) leads us fov>1 onto a
phase structure identical to the ones encountered in the three S>VENYB (21)

064002-10



BLACK HOLES AND FIVE-BRANE THERMODYNAMICS PHYSICAL REVIEW D60 064002

We must otherwise reduce to the geometry ofiD4ome S>V2NY3, (26)
type 1A theory residing on xSt (where we have isolated
an arbitrary one of the four circles to be that of M reduction
to type lIA).

We otherwiseT dualize onx,;, along the string, and
obtain the geometry of smeared type 1I1B black waves.

, ~ N ) Localization onxy; is of no concern, since the symmetry
Reducing to Ddranes wrapped on°KS’, we find that  gycture of the metric does not allow the Gregory-
the size of the Tas measured at the horizon is smaller than_aFjamme localizatior25) (i.e. the brane is stretched along
the string scale set by’ for entrop,iEs satisfying ,twhe reverse this cycle.

of Eq. (21). We thenT dualize the D4oranes to Dibranes h lack WE) is th
wrapped on & We find than the type IIB string coupling "€ tyPe 1B smeared black wave geomdyB) is the T

measured at the horizon is bigger than one for the reverse &ual onxy; of F1[Eq. (22)],

L VeS0T IS g1y
dsZy=H(dx,— hdt) + dy2+ h~Tdr?+r2d0? +dygehidriertdog
eb— 12 (22 e?=1, (27)
The type IIB theory is parametrized by and the type IIB theory is parametrized by
R\ I I 9=V%, @'=15vV"*% Ru~Ry, ys=IgV2 (28)
Go=p—, @ =13V yemlgVs Ry~ iVl

* Ry’ The relevant restrictions are:

Localization onxy; occurs at
This geometry is the correct dual in this phase provided that:
S~N. (29
The curvature at the horizon is smaller than the string
scalea’: The system collapses into a new phase described by the
geometry of a boosted type 1B black hole smeared én T
The string coupling at the horizon becomes bigger than 1

Beyond this point, the stringy description is that of aat

highly excited matrix string, as we will see shortly. V~1. (30)
The T as measured at the horizon is smaller than the

transverse size of the objeet by the angular part of the We then are instructed to perform the chain of dualities

metric); this yields again Eq(24). As the box size becomes S,T(3),M, bringing us back to the geometry of light cone M

bigger than the size of the object, the system localizes on thgeory black wavesvil.

T3, Taking into account the changes to the geometry and

S>V3NY2 (24)

thermodynamics as if], We thus conclude the analysis of the M5 phase. The dual
theory can be inferred from the M5 patch; it is the six-
dzg,) + - dr2+r2dQi—f~tdr2+r2dQj, dimensional(2,0) theory wrapped on “xS!. Extending the
validity of this theory throughout the phase diagram, we con-
r8—>r8~IS|S\F15’2N*3’4 clude that we can interpret it as the phase diagram of the
(2,0 theory. We now move onto the other phases of(th6)
|8 theory; we will be brief in the discussion of the right half of
q°—qf~ —plevflo, (25  the diagram, since it overlaps in content with the lower di-
11 mensional SYM cas€¥].

The smeared type 11B black ho{@ODBH). This phase is

we find that the localized fundamental string has 'tsdescribed by the equation of state

Horowitz-Polchinski point again at ER4). Furthermore, as

needed for consistency with this statement, we find that the R.. 1
change in the equation of state for this localized phase does E~| -t~ |\/8/5g8/5 (31)
not affect the analysis regarding the matrix string phase we N IgI

will perform later. Other restrictions on the localized F1 ge-

ometry are all seen to be satisfied in the region of the parannd consists of the type IIB hole obtained from the type IIB

eter space of interest. wave geometryWB at S~N, and the smeared 11D LC hole
The T as measured at the horizon must not be substringyobtained from the 11D wave geomeWyl11. Its correspon-

We find than the size of the torus as measured at the horizaence point can be found by minimizing the Gibbs energies

is at the self-dual point. between the equation of stat81) and that of the matrix
The size ofx,; as measured at the horizon is greater tharstring, which we perform below. The smeared hole geometry
the string scal&': localizes on the Tat
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SV, (32) B. (2,0) theory on T,/Z,x St

) Inspired by the previous discussion of the phase structure
where the localized 11D LC black hole emerges. of the (2,0) on T*x S, we further consider the phase struc-
The black DO phas€D0). This phase consists of the ge- yre of this theory on ¥Z,x S!. This corresponds to a cor-
ometries oflocalized black DO brane¢D0) and its M lift  ner in the moduli space of K3S; particularly, in addition
light cone M theory wave6/N11); the two patches meet at {4 considering a square*Twe will be ignoring phase dy-

namics associated with the %@ moduli that blow up the

S~N. (33 fixed points[77]. Our parameter space is again two dimen-
) ) sional, entropyS, and the volume of the “T There are only
The equation of state is two novelties that arise, both leaving the global structure of
the phase diagram unchanged, modifying only the interpre-
(Rul 1IN0 34 tation of the various patches of geometry.
N |2 ' (34) The first change arises from the effect of the orbifold on

ol the duality transformations; we will obviously be driven into

obtained from the DO geometry. The W11 patch collapseéhe other branch of the web of dualities that converge onto M
into a light cone M theory black hole phase at Etj7). The  theory (cf. [78]). We proceed from tha 1D phase of the
black DO-brane patch has its Horowitz-Polchinski corresponPrevious discussion, upward and counterclockwise on the
dence point aS~N2. This is an interesting transition dis- Phase diagram. We have M theory on a light-cone circle
cussed in greater detail [ii]; on theS-V phase diagram, the tIMes T/Z,. We reduce orRy; to DO-branes in type IIA
(4+1)D perturbative SYM phase emerges beyond thigesiding on the 17z, at Eq. (15). Under this orbifold, the

point. massless spectrum has positive parity eigenvalue TWle-
The 11D black hole phasél1D BH). The equation of &lize on T at Eq.(12), getting to the patch of D4-branes in
state is given by type IIA wrapped on 1Z,. We remind the reader of the
transformation
E~ R—zll NS (35) TaBwT =B, (39)
" where we have used the properties of the reflection operator
More details about this phase can be found7v6,19. on the spinors
The matrix string phaseThe F1 geometry encountered ﬁi:nﬂi’ B?:(—l)FL, (8,8} =0, (40)

above breaks down via the Horowitz-Polchinski principle of

correspondence at E(R4). The emerging phase is that of a with the T-duality operation reflecting the left moving
matrix string. This can be verified as follows: using the stringspinors only. Here, € 1)Ft is the left moving fermion op-
scale given in this geometr{23), we can write down the  graor, We then M lift to M5-branes in Nheory on T/Z,
equation of state of the matrix string phase X St at Eq.(13). Next, we have to apply the chain of duali-

tiesM,T(s),S near(21). From the M reduction we obtain D4
ENR_MN7182V4_ (36) branes on ¥(—1)FtQ. This is because the M reduction
|§| along an orbifold direction yields the twist eigenvalues, for
the massless spectrum,
Matching this energy with that of the M5 pha&® (or that ) 3)
of the localized F1 geometryields Eq.(24). Similarly, we 9uwt. ¢+, By—, CH-, CP4, (4D
can match the equation of stal@) and that of the type IIB \ypije the world-sheet parity operatf acts on this spectrum
hole (31), yielding the matrix string-boosted type IIB hole ;4
transition curve at
G+, ¢+, B,—, CO@.O.04  CO.E).@).M @)

S~V (37 (42)

Perturbative (4+1)D SYM phaseThe scaling of the @and the action of £ 1)t yields
equation of state is fixed by dimensional analysis and yields NSNS+, RR—. 43)

B The T duality on T brings us to D1-branes in type IIB
VNTEST (38 theory on $xT3Q, which is type | theory on 5<T°. This
is because

Ry 1

N |S|

This phase borders that of the D4-branes and DO-branes. T LT =(—1)FLO. 44
The final phase diagram is that of tf&0) on T*xS! or, @Fa(~1) @~ (-1 (49

as we see from the LC black hole phase, that of LC M theoryFinally, the S duality culminates in the geometry df black

on T heterotic strings smeared on the® TThe Horowitz-
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Polchinski correspondence cunf@4) patches this phase with
onto that of the heterotic matrix string phase, whose equation
of state obeys the scali@6). We thus verify the following I4, N S

: - : 2. B rd~—ldvS (49)
previous suggestionf44-46,79 from the perspective of RZ \y5 0 NPT
Maldacena’s conjecture: 1

Heterotic matrix string theory emerges in the UV of the The phase is described by the equation of State

(2,0 theory. 1R
Heterotic matrix strings can be described via DEN) E= 1lSN‘1/2v5/2 (50)
SYM of type-I D-strings 2m 12

The structure of the phase diagram has not changed, but ti§garacteristic of a string in a Hagedorn phase. Our starting

labelling of some of the phases has. The additional symmetroint is theblack D5 geometryD5) given by

structure of the orbifold background entered our discussion

trivially; the critical behaviors %re unaffected. d§0= H™H( - hdt2+dy(5))+ HY%(h ldr2+r2dQ§)
To complete the discussion, we need to address a second ~_, 5,

change to the 4 compactification. The localization transi- ef=H""~

tions, say the one occurring at Ed.4), are of a somewhat

different nature than the ones encountered earlier. Locallzed

black geometries on orbifold backgrounds are unstable to- |p| o L

ward collapse toward the nearest fixed point; by virtue of Usr=5 "V >, a'=p— Y=g Vo (52

being above extremality, there are static forces, and by virtue R 1 1

of the symmetry structure of the orbifold, there is no balancerhe relevant restrictions are:

of forces as in the toroidal case. It is then most probable that

the localized DO-branes sit at the orbifold points, with their ~ The Horowitz-Polchinski correspondence principle be sat-

black horizons surrounding the singularity. The most naturaisfied for

geometry is the one corresponding to 16 black DO geom- 15/~ 1/2

etries distributed among the singularities, yielding a non- S=V :

singular geometry outside the horizons.

(51)

The patch is parametrized by

(53

Beyond this point, we sew onto the perturbative (5
+1)D SYM phase whose equation of state is given by Eq.
C. Little strings and five-branes on T° (47).

In this section, we study the thermodynamics of five- Requiring that the coupling at the horizon be small yields

branes wrapped on a square The notation is as before; we S<\/15/2\3/2 (54)
express all equations in terms of the parameters of a LC M '

theory on P. The structure of the phase diagram Yor 1 is We thenS dualize to the geometry of black NS5 branes in
similar to the one already encountered. We will therefore nothe type 11B theory.

discuss the DOPO, W11,W11, 11DBH,11DBH, and per- The condition of large Tcycles at the horizon requires
turbative (5+1)D phases except for noting that the only s 302

changes to our previous discussion are to Ebfs), (31) and S>VINT- (55)

(38), which become, respectively, ) . .
Otherwise, weT dualize on the T and obtain the geom-

S~V 52NS2 (450  etry of smeared DO-braneB.
R.. 1 The black NS5 geometfiNS5B) is the S dual of Eq.(51),
E~ T V5/283/2 (46)
N 12 ds?= —hdt?+dy2+H(h~*dr2+r2dQ2
pl 10 ys+H( re+r 3)
Ry 1 e?=H? (56)
E~ ( l\:ll'l | )VN3/586/5. (47)

and the new asymptotic moduli are

We start from the D5 geometry and move counterclockwise R |4 |2
on the phase diagram. Ostr= —11V5, a'= —pZ'V‘S, Y5~ R—"'V‘l. (57)
The M5 phas€M5). This phase consists of seven geo- o Ri1 1n

metrical patches. For two of these, 18 andW11, we refer

. . The relevant restrictions are:
the reader tg7]. The relevant harmonic functions are

2
r
H=1+ q_, h=1-— _0, (48 8Note that we have kept track of the exact numerical coefficient
2 r2 for this equation of state for later use.
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Requiring that the cycle size of the fiyés be greater than
the string scale yields the condition

V>1.

PHYSICAL REVIEW D 60 064002

Otherwise, we localize in the manner of Gregory-
LaFlamme orX,, to the geometry of localized M5-branes.
The correspondence condition yields

(58

S>V- 15/2N - 3/2' (67)
Beyond this point, we need fb dualize on the Tand we
obtain the geometry of black NS5-branes in a type IIA which is rendered irrelevant by the previous condition.
theory. Requiring that the cycle size of thes at the horizon be
The correspondence point is at bigger than the Planck scale yields

N~1. (59 S>VIN32, (69)
We note that the dual theory is the non-lo¢a/1) theory Beyond this point, we reduce on one of the cycles dfoT

of type IIB NS5-branes. At low energy, it is described by a type lIA theory. We find that we need to furthBrdualize
(5+1)D perturbative SYM. on the remaining T The resulting geometry of black DO-
branes is found strongly coupled at the horizon; we therefore

¥ift to another Mtheory, and we have the geometry of black
M waves smeared on thé'.T

The geometry of the black NS5 branes in type IIA theor
(NS5A) is the T dual of NS5B[Eq. (56)]:

— hdf24 dv2 ~1424 2402 A .
dsio=—hdt+dy(s) +H(h~"dr*+r*d03) The geometry of smeared waves in theldory(MW11) is

ed=H2 60 9ivenby
ds?,=(H—1)(d%;—dt)2+d%é,—dt?+H Y(1—h)dt?
The parameters of the type IIA theory are 1 11 11
. 5 +dyfy + A%, +htdr?+r2d03. (69)
:R_llV—SIZ a,_i - ~£V_4 (62)
ST ’ RZ, YOT R, The parameters of the Mheory are
The new restrictions are: Ri=Ri1, Tp=1pV72 yay~lavV 2 ~R11*|p|V7(5- )
70
The correspondence point occurs for o
The relevant restrictions are:
N~1. (62

Requiring that the cycle size &f; at the horizon be big-

The dual theory is the non-locé2,0) theory of type IIA  ger than the Planck scaig yields
NS5-branes, related to tli#,1) theory we encountered above
via aT duality on the F.

Requiring small coupling at the horizon yields

S>V- 15/2N 3/2_

v<1. (70)

Otherwise, we reduce alorky; to a type lIA theory,T
dualize on the T, and M lift back to the original LC M
theory with Planck scalk, and five torus modulV1;.

The system would localize dxy; unless

S>V- 15/2N 1/2.

(63

Otherwise, we lift to an” Mtheory and obtain smeared

M5-branes. (72)

The smeared black M5 geome(rﬁé) is described by the
metric

We then have localized waves in tfleory which are still
smeared on the remaining'.T
We find that the cycle sizes of the foyis as measured at

— 23 2 —14,2 2 2 —-1/3 2 2 oy
dsyy=H?3(dq, +h ™ dr?+1%d03) +H (dys)—hdt). the horizon are of order the Planck scje

64) The system would localize on thé Tinless
The parameters of the heory are S>3\ L2 (73
3 g, 10 2, 4 This condition is never realized because of the other re-
Ru=lpgV™> 1=V Y= _1V (65) strictions.

The system can localize diy; unless

The new restrictions are:

S>N. (74)

Requiring that the size 6t;; as measured at the horizon
be smaller than the size of the object gives

S>V- 15/2N 1/2_

Otherwise, we collapse to the geometry of an 11D black
hole in LC M theory; this black hole is still smeared on the

(66) T*and on¥y;.
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We thus conclude the discussion of this phase comprised of S~Vv~ 15 (83
seven patches. We have two non-local theories sitting on top
of the phase, thé2,0) theory and the1,1) theory, related by Localization on the 1 occurs atS~1, and therefore is not
a T duality, and bounded by three curves due to finite sizeseen on our phase diagrams. This can be seen by matching
effects, and one curve due to the correspondence principleEd. (82) with

The black M5 phas€M5). This phase consists of two

?g;)ches.'rhe M5 patch(M5) is the localized version of Eq. £ R—ZHN*1V4816’9, 84)

pl

423 =142 12402 “U3 4\ 2 42 .
dsiy=H?H(hdr*+r%d03) +H (dy(z)~hdt), (79 i.e. the equation of state of the totally localized hole in the M

with the changes theory. _ _
This completes the phase diagram obtained from the D5
|5 system. The structure can be verified by using the various
q~ —’;'NV* 10 rg~|glN*152v*10_ (76)  equations of state. We conclude by noting that there are sev-
R eral different interpretation of this diagram. It is that of the

(2,0 theory; it is that of the(1,1) related to the latter by
duality, but it also encompasses the phase structure of LC M
theory on P. Various previous observations regarding ma-

The equation of state becomes

E~ R_2“56/5V4N—3/5_ (77)  trix theory on P are thus confirmed23,22 via the Mal-
i dacena conjecture.

In other words,S~NY4(y)E)>® in the parameter$65) of
this patch; this equation of state is characteristic of a (5
+1)D gas, as one expects for the theory on the M5-brane at The Taub-NUT(Newman-Unti-Tamburinp phase. This
large volume and sufficiently low energy. The new restric-phase consists of 8 patches. The harmonic functions are
tions are:

The correspondence point is now at H=1+ g h=1— rr_O’ (85)

D. D6 system

N~1. (78
with
Reduction on thg'’s along the discussion for the smeared

~ r ~82/3N—1/3v—2|
M5 branes encountered above occurs at 0 pl

S~N*3, 79 N
79 q~ R—’;INV’G. (86)
We then emerge into the phase ofW11 black waves.

A ) ) ) The equation of state is
The geometry of 11D black wavésIW11) is obtained via

localization on%,, of the smeared geometry W11. The
resulting phase is still smeared on th& Tt can however
further localize at

R
E~ 7 SNV, 87
pl

Our starting point ighe black D6 geometr{D6), given

S~N (80) by
along X4, into a smeared 11D LC black hole 1BB. The dsfo=H Y —hdf+dy,) +HY4Ah tdr?+r2dQ3j)
condition of localization on the “Tis, however,
eb=H 3
S<N2 (81
Friy, y,=0H ™™ (88)

and therefore never arises due to Egp).

The smeared 11D LC black hole pha(s:El\DBH). This  The parameters of this type IlA theory are

phase is described by the equation of state 5
/ Ipl |pl ¥
a Os=

|2
V6 oy~ R—"'v*l. (89)

E~ TTHN‘1V488/5. (82) R’ Rt 1
ol The various restrictions are:
It iS Smeal’ed on the4Tbut |Oca|ized Or’ﬁll. M|n|m|2|ng |tS Weak Coup”ng at the horizon requires
Gibbs energy as given by E(2) with respect to that of the
hole smeared o4, Eq. (46) yields the transition curve S<N2V8. (90)
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Otherwise, we lift to a Taub-NUT geometry in 11 dimen- pling at the horizon is bigger than one, so ®elualize, and
sions. find that the P is substringy. WeT dualize again and find

The correspondence point is at that the resulting type IIA wave geometry is strongly coupled
at the horizon. We therefore, and finally, lift to a black wave

6 ~
S=V2 6D geometry in an Mtheory. The chain of dualities is then
Perturbative & 1D SYM emerges beyond this point. M,Ts,S,Ts,M. The new Mwave geometry (W11) is pa-
T duality on they(sy must be applied unless rametrized by
S> N2. (92) Z(G)% | p|V_5, Tp|: | p|V_4, X117~ Rll' (100)

Otherwise, we have the geometry of smeaDéBbranes.  The M circle is one of thezs), and the wave is along, ;.

— — o This geometry localizes on the® Tor
The black Taub-NUT patch in Nheory(MTN) is given by

the geometry S<V-IN2 (102

dsf;=H(h~'dr?+r2dQ%) +H™ X(dx;— Adg)? The T at the horizon is bigger thahy for V<1, andx,; at
—hdi2+ dY(Ze)- (93) the horizon is bigger tha~hp| for

S<VENZ, (102

We have introduced a gauge potenta+ (1—cosd)N/2 lo-

cally (6+0) for the magnetically charged 2-form dual to Eq. ) —~
(89). In the Maldacena limit, this is an 11-dimensional ALE Otheérwise, we reduce to a type litheory alongx,, to the

space withAy_4 singularity. The parameters of this M geometry of smeared DO-branes, .Dbhe curvature at the

theory are horizon is small with respect to the Planck scale for
N 18 12 S>>V 3NY2 (103
Ru=—5Vv% To=—3 Vs y(e)“R—pV_l- (94) . . o
R11 Ri1 11 which is rendered irrelevant by the other considerations.
The relevant restrictions are: The smeared DO geometBO0 is parametrized by
The correspondence point Ry %2 13
P P Ustr = (l—“> ° a'= R—"'v*”, 2=V 5 (104
S>N"1ve, (95) P 1
This is seen to be irrelevant. A T duality on the F takes us to the Dgeometry for
The T® must be bigger than the Planck scale: S>N2, (105
V>1, (96)

and localization on the Toccurs for Eq(101).

Otherwise, we have to reduce along one of the cycles to a The D6geometryis parametrized by
type llA theory, andT dualize along the other five cycles to
a type 1IB Taub-NUT geometry. We then needSalualize, Jerr= (i
and T dualize again on the five torus; finally, we lift to a ~°" |Rq;
Taub-NUT geometry in an Minstead of following this path,
we will map theV<1 region from theDO geometry.

2

13 |
r_ _Ply,-12 ~ _PLy\-7
.« RllV . Z(6) R11V . (106

3/2

This has a correspondence point at

- __\/—6
As mentioned above, we now pick up the trail from it the S~V (107

patch. This patch localizes on thé&  the DO geometry for and lifts to a Taub-NUT geometry in some tMeory for

S>VIN' ©7) S>V 7 ON2 (108
and lifts toan M theory wavenN11 for . ) ~
The Taub-NUT geometiy TN obtained from the Déatch
S<V 6NZ, (98)  is parametrized by
The latter localizes on the®Tat Eq.(97). For R 'SI . - |S| ] |§| .
le_: _2V7 , |p|:R_V7 v Z6)™ R_V7 . (109)
V<1 (99 R11 11 11

we need to reduce th&11 geometry along one of the cycles It patches onto the WIN geometry atvV~1 via a chain of
of the T8, andT dualize on the other five. We find the cou- five dualitiesM,Ts,S,T5,M discussed above.
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We note the symmetry of the diagram ab&Ut1. The  This type IIB theory is parametrized o, , «’, and resides
remaining phases were encountered in the previous SYMn T*xS!; the T*is square with volum&/,, and we define
examples; there is a phase of localized black DO-branes, [@29]

LC black hole, a smeared LC black hole, and a+@®)D

perturbative SYM phase. In the D6 system, each of these VY Os

phases has a mirror phase aboutV¥hel. The structure can V=
be further verified by matching the energies, at fixed entropy,

of the various phases. This completes the phase diagram fqhe S is compact with radiu®s. The Maldacena limit cor-
the D6 system, shown in Fig. 3. We note that: responds to

The gravitational coupling does not vanish in thert

—_—, = (119
o'? 9 vz

A i r R
and MTN patches, whereas it does for all the other patches of ~ , o | ih o gs and v held fixed.
the diagram. o a2
For p=5,6 diagrams involvingg+ 1)D SYM, the energy (115
decreases for higher entropies, unlike €5 cases; i.e., _
the specific heat is negative. This reduces the geometry above to ABS*XT The (1

+1)D boundary theory is conformal with central charge

E. Little strings with winding charge =6k. The gravitational coupling in our conventions is

We will map here the thermodynamic phase diagram of Gio=(2m)"g%,a'". (116
Qs five-branes andQ; strings. Our starting point is the
D1-D5 geometry. From the area law, we have
Black five-branes and string3his phase consists of 12 o4
patches. We start witthe D1D5 geometryD1D5) given by S= (GL)rlrSrORSVA (117
10

dsio=(HiHg) Y —hdf+dx§) + HiHg Ydx,) o
+(H Hg) YA h~dr2+r2dQ3)
ro~Saa' kY YR T, (118
1 5 . . .
The Arnowitt-Deser-MisnefADM) mass is

2\ —1
P1
1+ —
r2

2m)3 RgV
y F0102¢:2p§(83)0102¢. M:u 574

2 Gy
(110

Frixg= [3r3+2(r2+r2)], (119

yielding the equation of state
The harmonic functions are given by

SZ

r2 re (120
_2,

: E=
Hi=1+— i=15 h=1- (111) 87m°kRs
r r

characteristic of a (+1)D conformal field theory28].
the charge radii of the brangs,i=1,5, are related to the The various restrictions on the D1-D5 geometry are:

parameters; by The Horowitz-Polchinski correspondence principle dic-

(kq)l/Z tates
P%Z(zw)4gstra’,3 v, pézgstrkllzqillza"a

ge>k 12, (121

p?=2r\ra+r2, (112 Beyond this point, the (+1)D conformal theory takes

over. Its equation of state is fixed by conformal symmetry;

Here we make a distinction between the antisymmetric tenusing Cardy’s formulg73,74 and the central chargekg we

sor field strength’s harmonic functions and those of the metfind precisely Eq(120), as expected.

ric, since we will be interested below in the numerical coef- Requiring that the coupling at the horizon be small yields

ficients of some of the equations of state; the extremal limit _12

corresponds ta,—0 with the p; held fixed. For scaling 9<q (122

purposes, we can writg;=r; in the Maldacena limit. We

also have traded the two intege@y and Qg for the new

variablesk andq:

Otherwise, weS dualize to the geometry of NS5-branes
and fundamental strings.

Requiring the T as measured at the horizon be big with
respect to the string scale gives

k
Q= ia Q= 13 a1 123
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Otherwise, we apply @ duality on the T, and exchange Ri1=0sya'Rs |g|:gsna'2R5—1,
the roles ofQ; and Q5. Without loss of generality, we re-
strict our attention t@>1 only. We also note thaj<k; the X(4)~a'll2\,1/4, XS%Q'Rgl_ (132

upper bound corresponds @;=1. We therefore have
The restrictions are:

1<qg<k. (1249 o )
The correspondence principle requires
Requiring that the size of; as measured at the horizon be 1ap
bigger than the string scale gives S>06 a7 (133

S>gg Va3, (125 This condition is rendered irrelevant by the others dor
<Kk. At g~Kk, it coincides with the localization condition on
Otherwise, weT dualize to the geometry of smeared Xs we will find shortly.
DO0-D4 branes. Requiring that the size of; as measured at the horizon be
bigger than the Planck scale yields
The smeared DOD4 geometfpOD4) is given by
S<gg lk3/4q*l/4. (134)
dsiy=— (HiHs) " Y2 dt2+ H2H g Yadxe,,
Otherwise, we reduce along to a type IlA theory and to

+(H Hg) YA dxé+ - 1dr?+r2dQj) the geometry of boosted NS5-branes.
a1 Requiring that the size of the*s measured at the hori-
e’=H7"Hs " (1260 zon be bigger than the Planck length gives
The parameters of this type IIA theory become S>gAsg =4, (135
Gs=0sva' ™Ry ', @'=a’, Otherwise, we reduce to a type IIA theory along one of
the cycles of the ¥ We find as always that the other three
Xy~ a' "M xs~a'Rg’. (127 cycles are substringy anfl dualize along them. Finally, the
o resulting boosted D1 geometry is seen to be strongly coupled
The restrictions are: at the horizon, and w8 dualize to the geometry of boosted

type 1IB fundamental strings smeared »s
The localization condition ors is as for theD0-D4 phase
ge>k 12, (129  (130.

Small curvature at the horizon yields the condition

This will be rendered irrelevant by the subsequent condi' "€ 9eometry of NS5 branes and fundamental strings

tions. (NS5FB ) is obtained from the D1-D5 geometry véaduality:
Small coupling at the horizon requires d5§o= H[l(—fdt2+H1dx(24))+ H{ldxé
1/2,,3/4,1/2
S>gs K (129 +Hs(f~dr2+r2d03)

Otherwise, we lift to the geometry of smeared boosted
M5-branes.

Requiring that the size of; as measured at the horizon be e parameters of the type IIB theory are
smaller than the transverse size of the object yields

e?=H; YH12, (136)

= -1 ~r__ ’ ’
S>gg1k1’2. (130 Us=0str» @ =0sy, Xy~ a 1/2\/1/41 Xs~Rs. (137)
The restrictions are:

Beyond this point, the system localizes in the manner of ] .
Gregory and LaFlamme along, and we have the geometry ~ Small curvature at the horizon requires
of localized DO-D4-branes.

Finally, a large T is associated with the conditidi23). k>q, (138

The smeared boosted M5 geomeii§s5W) is the M lift of \I'_V:ricg)is gtivtiﬁgyhiﬁtziifri]e?é Uires
the DO-D4 geometn[Eq. (126)] at Eq. (129): 9€Xs q

S> k3414, 139
dsiy=Hj "Hg "~ fdt?+ Hydx,) d (139
Otherwise, weT dualize alongxs and emerge into the
geometry of boosted NS5-branes in type IIA theory; the lat-

+ H1H§1/3[dX11—(HIl— 1)dt]?. (131 ter was encountered from tiM5W phase via an M reduction
alongxs.
The parameters of this M theory are Large T at the horizon requires

+HEHdxE+f1dr2+r2d03)

064002-18



BLACK HOLES AND FIVE-BRANE THERMODYNAMICS PHYSICAL REVIEW D60 064002

theory, which isT duality of the little string. As we scan
through 1<g<k, at the lower bound the phase structure is
such that, via dualities exchangiri@, and Qs, a mirrored
phase diagram fog<<1 emerges; for the upper bound, the

) —_— geometrical vacua across the diagram break down via the
The boosted black type IIB string geome{lLWB) is ob- ¢ respondence principle. These comments carry over to the
tained from theM5W patch by a chain of three dualities as gther phases, which we describe next.
described after Eq139); this gives the metric The black localized boosted M5 pha#45W). The local-
ization transition alongs yields the change in the harmonic

gs<1. (140

Otherwise, weT dualize along the 4 yielding to a simi-
lar system with altered asymptotic moduli.

dsfo= — (HiHs) " Hdt?+ HyHg 'dd, + dxGs,

functions
—14,2 2 2 2
+f 7 dre+redQs+dxs e 3
ed=Hy 12 (141) fol-—=, H-l-—, (146
r r
The parameters of the type IIB theory are
with
gstr= gs_trla, 71/2V3/4R5! a'= ggtra,2V71R5_2 12
! - - !’ - < ! - a
X@3)~0swr@'V ¥Rs ', Xs~a'Rg', Xy~gsya’Rs . rl~ﬂkl’2q1’2
(142 VRs
The restrictions are: a'?
(3~ LI ang-1e (147
Small curvature at the horizon requires Rs
S>Kki2, (143 The expressior{118) for the entropy is unaffected by this

transition, unlike all other cases encountered here apd]in
The equation of state of the localized phase becomes

S3
=1

There are three patcheBhe localized boosted fundamen-

This will be rendered irrelevant by other restrictions.
Largexs as measured at the horizon requires

Js

<1. ~ 20
Je Re

(144 (148

Otherwise, weT dualize alongxs, and obtain a similar
geometry.

Localization onxs occurs unless conditiofl30) is satis-
fied.

Localization onx sy occurs unless conditiol43) is sat-
isfied. This is irrelevant in view of Eq130).

tal string (FIWB) is obtained from thé=1WB patch by lo-
calization onxs. The relevant restrictions are:

Small curvature at the horizon requires

Requiring thatX,; as measured at the horizon be bigger
than the string scale yields E(L23).
Small coupling at the horizon requires the reverse of Eq. . . . ) ) .
(135). At this point, we emerge in a matrix string phase carrying
And, finally, we note that the geometry is at the self-dual®Wo charges. More on this later. , o
point for the three cyclegs,. .Lo.call'za'tlon 0NX(3) OCcurs urjless Eq.149 is satisfied.
This is similar to what we saw in the (41)D SYM case.
The geometry of boosted NS5 branes of the type IIA theory Largex,; at the horizon requires Eq123).
(NS5WA) is obtained from the NS5FB patch viaduality or Small coupling at the horizon necessitates
the M5W via M reduction. The only relevant restriction is
that of large T at the horizon. This occurs for

S>k12, (149

S< k2/3q*l/6. (150)

g6<1. (149 Beyond this point, we apply the chaB)T 3),M to patch
) ] ) _onto the localized boosted M5 geometry. The reverse of this
Otherwise, we have the dual, and identical, geometry with -n3in was described in the smeared case above.
different asymptotic moduli. Finally, the geometry is at the self-dual point for the,

We have completed the boosted M5 phase up to the Conkycles.
dition (145. We note that all duality transformations along
gs~1 leave the geometries unchanged, and change thEhe localized boosted black M5 brane geoméMpW) has
asymptotic moduli. It is easy then to check that venturingthe same parameters as Ef32). It is subject to one addi-
into domains withge>1 yields a mirrored picture of the tional non-trivial condition, that of M reduction alorgy,
phase diagram abougfs~ 1. Our six patches have six other unless
mirror geometries across tlig~1 line. We therefore see a
signature of a strong-weak symmetgy— 1/g¢ in the dual

S<k?3q, (151
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We then emerge into the geometry of localized DO-D4-which is indeed the equation of state of a Hagedorn string
branes. with tension proportional td./Qs, as has been seen previ-
The localized DO-D4 brane geomet{®0-D4) is subject ously from several related points of viel@0,81. It is a
to the following additional condition; its curvature at the nontrivial check that this equation of state agrees precisely
horizon is small when with Sg] (500 when we use the parametgi®5) of the M5
phase:
S<k. (152 The same exercise can be repeated for the localized
(M5W) phase. The equation of stat#48) in DLCQ param-
Otherwise, the dual geometrical description breaks downeters, again assuming light-cone kinematiggs~M?/2P,
Comparing the equations of stat®48 and (120), we find  takes the form
that we do not have a match &t-k. This is identical to the
situation encountered in all the SYM casesSatN?. There . S~Q2Q¥s( ,,‘11/4|le)2/3. (156)
is a non-trivial transition at this point through a phase with
zero specific heat. On the (11)D gas sideS~k is where . . . .
the thermal wavelength becomes the size of the Bgx,the In terms of .scalmg, this equation of gtatg Is the energy-
entropy relation of a (2 1)D gas(extensive in the box size

dynamics is then frozen into a quantum mechanics. 1/ L e s 4
The BPS matrix stringAt S~kY2, the emerging phase is ¥4 ), although itis difficult to explain the dependence@p

that of the Ramond ground states of the conformal theory@"d Qs. A natural candidate for the object being observed
which are those of a BPS matrix string. The situation can b&1€ré is an excited M2-brane embedded in the M5-brane
compared to the matrix string transition of the M5-brane on(Which is indeed one of the bound states of M theofthe

T4x St discussed in Sec. Il A. There, we found a correspon-Ql dependence appears to violate Lorentz invariance; it
dence curve aS~V‘3Q§’2 beyond which a perturbative would be interesting to understand why light-cone kinemat-
string description should be valid. At the transition, the ratio'®S does not work in the Iow-engrgy, low-entropy regime,

of the cycle sizes at the horizon of thé @nd the 3 was and why the low-entropy phase is not a boosted version of
(y4/R1)?~V8~Qs/S?% in particular, sinceV<1, the dy-

the (5+1)D gas found for the M5-brane in E((7).
namics is effectively one dimensional. In the localized

(M5W) phase of the D1-D5 system, we hav94(R11)2 F. Spectral flow and rotating black holes

~H; Y(a'v"REIgZa’'®)~Q; " at the transition S~k We now turn to a discussion of angular momentum in the
which is again of ordeQs/S?. We conclude that the two D1-D5 system. As pointed out in Sec. | D, spectral flow is an
transitions are the same. In the present case, the emergi@iabatic twisting of boundary conditions in the full string
phase is BPS; a perturbative string carrying both windlag  theory before the Maldacena limit; the near-horizon limit
and momentun@Q; quanta obeys the Virasoro constraints maps the twist onto the spectral flow operation in the super-
conformal algebra. On the geometry side, a point on the

E?=(Qulstr/R)*+(QsR/25)*+ 2N +2Ng unitarity diagram(Fig. 5 in the NS sector, far from the
boundary and at high conformal weight, is described by the
k=Q1Qs5=N_ —Ng; (153 BTZ black hole geometry(independent of the fermion

boundary conditions[82,29,30,83 in a space which is
when e.g. the left oscillator levél, <Ng, there are of order asymptotically locally Ad3xS*x M,; in the R sector, such
k'? states, and the system becomes BPS saturatddgat a point represents the near horizon geometry of a rotating
=0. D1-D5 systen{84] (due to the shift in conventions between

Comments on DLCQ of the M5-bran&s mentioned in  canonical definitions of NS and R sector quantum numbers

the introductory summary, the limi®s fixed, Q;>Qs, is  The isometrySO(4)=SU(2), X SU(2)r of the transverse
relevant to the DLCQ description of the M5-braf83—-36. S® combines with the(4,4) supersymmetry generators and
In terms of the D1-D5 parameters, the DLCQ parameters arthe SL(2,R) X SL(2,R) symmetry of AdS to yield two cop-

ies of theA/'=4 superconformal algebra; a gauge transforma-

|§| Ry |3 tion in SU(2) can be used to shift the boundary conditions
R—ll:|sn m) on the supercharges, yielding an isomorphism between the
NS and R sector§66]. The charges under the Cartan sub-
« R |13 groups of each of the tw8U(2)’s parametrize the angular
2@ _ 4 TS ) =l momenta of the rotating D1-D5 or BTZ hole geometries. The
(1 IstrOstr N subalgebra of concern is then two copies of Mie 2 super-
conformal algebra with twdJ(1) R-symmetry generators
Xs lgy/ Rs |3 J2 r=1%a’R)=] that implement the spectral flow. We re-
|_p|: R_s( l<t/Ostr =L. (154 strict our attention to equal left and right(1) charges.

Converting Eq(120 to DLCQ parameters, we find

%The light-cone scaling was determined[81]; our contribution
S=277(Q5/L)1/2I oM, (1595 is a check that the precise numerical coefficient agrees.

064002-20



BLACK HOLES AND FIVE-BRANE THERMODYNAMICS PHYSICAL REVIEW D60 064002

Consider first the NS sector. The qualitative features ofwhere, in the last step, we have taken the non-relativistic

the density of states about=0 were discussed ifi75]. limit h'>j’; we will see that this is justified. In the relativ-
There are several phases. Consider the regime of sufficientigtic limit the hole approaches extremality; one obtains a
large effective couplin@iﬁzg§k>l; in the present notation, gravitational wave on38with h’ ~j’, thus matching onto the

for ERygs=2h=k one is in the BTZ black hole pha$@5] BPS spectrum of supergravity states. This regime occurs
with?® S~ (kh)¥2. Forkg,?><h=k, there is a phase of (5 near the boundary of the unitarity plot, where the Hagedorn
+1)D Schwarzschild black holes because the horizon localor gas phase takes over the%)D black hole. The local-
izes on §; the entropy is of ordeB~k~h*3, The lower ization on the $will then occur if Sg1,<Sgp at a given
bound is the correspondence point; thus, fgie<h  €nergy, i.e.

<kg.?, there is a Hagedorn phase, wif-hg¢'. Fi- N2 (h|8e
nally, for hsggéfz, the system is in a supergravity gas phase, —<(_ +|— (159
with S~h% At weak coupling ges<1, the (5+1)D k 1k K

Schwarzschild phase and the supergravity gas phase disal‘—)ér h’ <k, i.e., for the horizon size smaller than the size of
pear. P

Consider next the R sectdr.e. j~k/2), and defineh’
=h—1k andj’=]j— 3k as the energy and angular momen-
tum in R sector conventions. We first focus on the regime 12
Oefi>1, i.e. the middle part of the diagram in Fig. 4. For h’<J—_ (160
J.ik=h', we have the black D1-D5 system. For®’ k
=gk, we have the M5W or DO-D4 phase localizedon
Finally, ath’ ~0, the BPS matrix string cuts the diagram at
finite and large entropys~k*2 For g.s<1, we have an
additional phase with entrofy~k for gesk=h’<k squeezed
between the D1-D5 and D0-D4 phases. In the phase diagra
of Fig. 4, this corresponded to the horizontal line segment
S~k. As argued if85], we see that the D1-D5 system with-

the S, we can ignore the last term, and we have the condi-
tion

Note that forj’ near zero, the corresponding localization
condition cannot be mé85]. Forj’~k, however, this equa-
tion can be satisfied: The direct analysis in the NS sector
|/ =1k shows that a localized phase exists at large enough
off - We conclude that the D1-D5 system indeed localizes on
e S at a critical value of the angular momentum. Note that
; our uncertainty in the location of the transition is due to the
out angular momentum does not localize on tfieaBlow ¢ that it is sensitive to the numerical accuracy of the equa-

energies, whereas the sta_tion_ary BTZ hole in the NS Sethﬂons, not just the scalings of the thermodynamic parameters
does undergo such a localizatipfb]. The spectral flow map g

diabaticall | h fh “the di and therefore lies beyond the scope of our geometrical
adiabatically relates the states of these two sectors; the I'nalysis). Continuing to lower conformal weights in the R

fering phase structures obtained at zero charge in the NS a%%ctor, the equation of state of the rotating DO-D4 phase is
R sectorgthe latter flowing to e.gj=k/2 in the NS sector given by[86]

then implies that the spinning D1-D5 system must undergo

localization transition on the 3Sat a critical value of the h'\2/3
angular momentum. We next analyze the possibility for such SP~k —) —j". (161
a transition. 9o

The equation of state of the rotating D1-D5 phase can b

extracted from the corresponding geomdy], and is given fn the NS sector, the rotating BTZ hole localizes oreS the

energy is lowered; the equation of state is roughly @&8)

by Eq.(5) (without the primegs As extremality is approached, the spin-
2 ~kh'—j2. (157) ning black hole reaches the correspondence point and be-

BTz comes a large fundamental string carrying angular momen-

This phase should collapse at a critical valuejbto a (5  tum

+1)D black hole localized and spinning on th& #ngular _un 12

momentum is introduced in this phase by spinning up the Stag~[Gert N1 (162

black hole along an orbit on the equator df\@ith momen- i N )

tum p~j'/Raqs; kinematic relations and the Schwarzschild Below this, there should be a transition where a supergravity

equation of state then imply gas extremizes the free energy. The phase structure about the
NS sectorj ~0 should sew onto the phase structure about the
Sep~k Y3(h'2—j'2)2B k=043 (158 R sectorj~k/2 in some intermediate regime. Most of the

above formulas are not invariant under spectral flow; they
are determined in an analysis about zero angular momentum

2%The standard conventions for the BTZ metric, where length and’el""t've to_th(_e NS or R sectqrs, and_ may be corrected by
time scales are referred to the AdS curvature radius, differ fronfa’9€ gravitational back reaction whgn-k. We leave an
those of the D1-D5 geometry encountered in the R sector, wher@halysis of these effects to future work. _
scales are often referred to the scRle Matching the asymptotics For ger<<1, the picture is slightly differentsee Fig. 6.
of the metrics yields the relatioBiysRaqs~ ErRs~h, whereR%,s ~ There is no (5-1)D black hole or supergravity gas phase in
~Ggk. We write subsequent equations in terms of the invarianithe NS sector. The phase labeled SQM has an entropy which
conformal weighth to avoid confusion. is energy independer8~k. As mentioned above, it corre-
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sponds to the horizontal line &~k in Fig. 4. We again inspired definitions of quantum gravitf.e. using finiteN
defer a detailed analysis to future work. dual nongravitational systemsvhere the dual theory is in

It is a curious fact that, for finit&k, the spectral flow finite volume(e.g. a torug the finite density of states due to
relation between the NS and R sectors implies an IR cutoff irithe IR cutoff in the gauge theory imposes an effective cutoff
the spectrum of particle states in the latter. In the NS sectom@t large radius in the supergravity—even though the classical
the eigenmodes of the free scalar wave equation have a natwave equations in such geometries can have continuous
ral gap in the spectrum of orderR{ys~ (gaka’) "*2 how-  spectra. It would be interesting to understand this phenom-
ever, in the R sector, the free spectrum is continuous. Newvenon bettet(it is not obviously related to the UV-IR corre-
ertheless, in the full quantum theory, spectral flow from onespondence of51]).
sector to the other implies that the finite density of states in
the NS sector gives a finite R sector density of states; in
other words, finitek generates an effective IR cutoff. This
cutoff disappears in the classidab limit, as one sees for We wish to thank J. Harvey, D. Kutasov, F. Larsen, and
example in the fact that the number of BPS states in the RA. Lawrence for helpful discussions. This work was sup-
sector isO(+/k). This feature is a property of all Maldacena- ported by DOE grant DE-FG02-90ER-40560.
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