Claremont Colleges

Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-1998

Sorting in Parallel

Ran Libeskind-Hadas
Harvey Mudd College

Recommended Citation
R. Libeskind-Hadas, “Sorting in Parallel,” The American Mathematical Monthly, Vol. 105, No. 3, March 1998, pp. 238-245.

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact

scholarship@cuc.claremont.edu.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

Sorting in Parallel

Ran Libeskind-Hadas

INTRODUCTION. In 1842, L. F. Mcnabrea anticipated the benefits of paralie]
computing in an article [4] that appcared in the Swiss Journal Bibliotheque
universelle de Geneve:

When a long series of identical computations is to be performed, such as
those required for the formation of numerical tables, the machine can be
brought into play so as to give several results at the same time, which will
greatly abridge the whole amount of the processes.

Although more than a century passed before Menabrea’s vision became a reality,
today parallel computers with hundreds and cven thousands of processors are used
in a broad range of applications.

One of the great challenges of parallel computing is the design of algorithms
that make efficient use of the large number of processors in the machine. In this
paper we explore parallel algorithms for onc of the most fundamental problems in
computer science: the problem of sorting a list of numbers. Specifically, given a list
a,, a,,...,a, of integers, the sorting problem is that of finding a permutation of
this list, 77, such that a,, < @, < " <y,

Before considering parallel sorting algorithms, we examine a sequential sorting
algorithm; an algorithm for a computer with a single processor. One sequential
algorithm for sorting is known as selection sort. The selection sort algorithm first
examines each of the n integers a,,...,a, to find an integer a; with minimum
value. Elements «, and a; are then exchanged so that the element with minimum
value is now in the first position in the list. Next, the algorithm examines each of
the n — 1 integers 4., ..., a, to find an integer with minimum value in this portion
of the list. This integer is exchanged with a, so that now the second smallest
integer is in the second position in the list. In general, in the k™ iteration the
algorithm examines integers a,, ..., a,, finds a minimum element in this list, and
exchanges it with a,. At the end of n'™ iteration, the list is sorted. Observe that the
first iteration of the algorithm requires # steps to find an element with minimum
value and then some constant additional number of steps, ¢, to exchange this
minimum value with @,. The next iteration requires n — 1 steps to locate a

minimum value in the remaining list and ¢ steps to perform the exchange. In
general, the k™ iteration requires n — k + 1 steps to locate a minimum value in
the remaining list and ¢ steps to perform the exchange. Since there are n
iterations, the total number of steps or running time of the algorithm is

n(n +1 1 2c+1
n-l—(n—-l)+(n-2)+~"+1+cn=~+(-—-—-2———-)—+cn=.2_n2+ ;

n.

Since the dominant term in this expression is n°, we say that the asymptotic running
time of the selection sort algorithm is 7.

238 SORTING IN PARALLEL [March

[OUNISE

“ v e _— P —

et W e e e i ™ e ettt et e ™ PN ¥ Wt

—— T e e o e e Y N
- — e~ - —_—

The selection sort algorithm is known as a comparison algorithm because the
sorted order is determined exclusively by comparisons among the input elements.
Several sequential comparison algorithms are known for sorting whose asymptotic
rupning time is only nlogn [1]. These algorithms are, in fact, asymptotically
optimal; 2 fundamental result states that every sequential comparison algorithm
for sorting n elements must have an asymptotic running time of at least n log n [1].
In the next section we show that a parallel computer employing multiple proces-
sors can sort n integers in substantially lower asymptotic running time.

Sorting in Parallel. Consider a parallel computer comprising 7 processors con-
nected in a linear array, as shown in Figure 1. The leftmost and rightmost
processors of the linear array, labeled p, and p,, respectively, have one neighbor;
all the remaining processors have two neighbors.

|

P, P, P, r, 3

Figure 1. A lincar array with 2 processors.

Each processor is assumed to have a local memory that stores some fixed
amount of data. In addition, the processors have access to a global counter or
“clock” whose initial value is onc and is incremented by one at some fixed
frequency. At each clock step, every processor performs the following tasks:

1. Send some data from local memory to the neighbor processor(s).

2. Receive data from the neighbor processor(s) and store in local memory.
3. Compute some function of the values in local memory.

4. Store result of computation in local memory.

Suppose we are given a sct of n integers distributed among the n processors of
a linear array, p,,..., p,. Our objcctive is to sort this set of integers so that at the
end of the computation the intcger stored at p; is less than or equal to the integer
stored at p,,,, for 1 <i < n. One of the simplest parallel sorting algorithms is
known as odd-even sorting. On odd numbered clock steps, each odd numbered
processor p; is paired with its right neighbor p,, . Each processor sends its integer
to its partner, both processors compare the two integers, and finally the smaller
integer is stored by p; while the larger integer is stored by p;,,. Thus, each of
these pairs of processors effectively compare their integers and swap them if they
are out of order. Similarly, on even numbered clock steps each even numbered
processor compares its integer with the one stored by the processor to its right and
the two numbers are swapped if they are out of order. Somewhat surprisingly, after
n clock steps the numbers are sorted. An example of the odd-even sorting
algorithm for a linear array with four processors is shown in Figure 2. Figure 2(a)
shows the initial configuration and each subsequent row shows the contents of the
array after the next clock step.

Several techniques can be used to show that the odd-even algorithm correctly
sorts all input sequences. Perhaps the simplest and most elegant proof of this
assertion is based on a clever result due to Donald Knuth. Knuth showed that in
order to prove that an oblivious comparison-exchange sorting algorithm correctly

1998] SORTING IN PARALLEL 239

» processors in asymptotically fewer than 1
steps if an interconnection nctwurkl L')IhCl' than a linf:ar‘array IS .used? We show
that the answer is “yes™ by cxhibiting a parallel sorting algorithm, known
Shearsort. for a two-dimensional array with dimensions yn x yn. For simplicity,
we assume that Vi is a power of two.

A single phase of the Shearsort algorithm consists of sorting all of the rows of
the array and then sorting all of the columns of the array. Odd-indexed rows are

Is it possible to sort n elements on 7

— — —

de— 13— 4 1Y)
EEER Y S I
3t 7 =13 12
gz
o)

P .. i

Figure 3. The phases of the Shearsort algorithm in a 4 X 4 array. (a) Initial configuration. (b) After row
sorting in phase 1. () After column sorting in phase 1. {d) After row sorting in phase 2. (¢) After
column sorting in phase 2. (f) After row sorting in phase 3. (g) After column sorting in phase 3. The
array is now sorted in a snake-like order.

242 SORTING IN PARALLEL [March

sorted in increasing order while even-indexed rows are sorted in reverse order. All
columns, however, are sorted in increasing order. Remarkably, after 1 + élog2 n
phases the n elements are sorted in a snake-like fashion. An example of the phases
of the Shearsort algorithm is shown in Figure 3. In this example, n = 16 and thus 3
phases of the algorithm are performed.

A direct proof showing that Shearsort correctly sorts its input in 1 + log, n
phases is quite involved. However, since Shearsort is an oblivious comparison-
exchange algorithm, we can again appeal to Knuth’s 0-1 Sorting Lemma to prove
the correctness of the algorithm.

Consider an arbitrary input comprising n 0'sand I'son a Vn X Vn array. We
partition the rows of the array into three groups: solid zero rows contain only s,
solid one rows contain only 1's, and mixed rows contain some 0’s and some 1’s.
Since each phase of the algorithm involves sorting the columns in increasing order,
at the end of each phase all solid zero rows must be above all mixed rows. If this
were not the case, then a mixed row would be above some solid zero row and thus
some column would contain a | above a (), contradicting the fact that the columns
have been sorted. A similar argument shows that all mixed rows must be strictly
above all solid one rows at the end of cach phase.

The key to proving the correctness of Shearsort is to show now that each phase
of the algorithm reduces the number of mixed rows by a factor of two or more. To
see this, we examine pairs of adjacent mixed rows (with possibly one unpaired row
left over). A pair of rows may contain morc (s than 1’s, more 1’s than 0s, or an
equal number of 0’s and 1's. Figure 4 depicts these three cases after the rows have
been sorted in alternate increasing and dccreasing order. In each of the cases
depicted in the figure, the rows could be reversed depending on the parities of the
row indices.

000..0111..1 000..0111..1 000...0111..1
[11..0000...0 P11 i11..0 111..1000...0
(a) (b) (©)

Figure 4. The three possible cases for pairs of mixed rows. (a) The pair contains more (s than 1’s, (b)
The pair contains more 1's than s. (¢) The pair contains an equal number of 0’s and 1,

Next, the algorithm sorts each column in increasing order. For the moment,
assume that the columns are sorted using the following peculiar algorithm: First, in
each adjacent pair of mixed rows, if a 1 appears directly above a 0 the two digits
are swapped. The result of this procedure for the cases in Figure 4(a), (b), and (c)
are shown in Figure 5(a), (b), and (c), respectively. Observe that in each of these
cases at least one solid row is created. If a solid zero row is created, as in cases (a)
and (c), that row is moved to the region of solid zero rows at the top of the array.

000..0000...0 000.0111..0
111..0111...1 R R R R P N R

(a) (b) (©)

Figure 5. The result of swapping 1’s and 0s for the three cases of Figure 4. (a) The case of more s
than 1’s. (b) The case of more 1’s than 0’s. (¢) The case of an equal number of O’s and 1%s.

1998] SORTING IN PARALLEL 243

Likewise, if a solid one row is created. as in cases (b) and (¢), that row is mgved to
the region of solid onc rows at the bottom of the array. Once thgse new solid rows
have been moved, we complete the column sorting step by sorting the remaining
0’s and 1’s in each column. By using this peculiar column sorting procedure, each
pair of mixed rows is replaced by at most one mixed row at the end of the phase.

Initially, each of the v rows is considered to be mixed and thus at most log, yn
phases are needed to reduce the array to at most onc mixed row. One additional
phase serves to sort the remaining mixed row. Thus, 1 + 3 log, n phases suffice to
sort the entire array.

In each phase of Shearsort. cach odd-indexed row can be sorted in Vi clock
steps using odd-even sorting and a symmetrical algorithm can be applied to
even-indexed rows. Since all rows can be sorted simultaneously, this takes yn clock
steps. For the columns, we uscd the peculiar sorting algorithm previously de-
scribed. In practice, of course., we would like to use the odd-even sorting algorithm
because we know that its running time is asymptotically optimal. Notice though
that the net effect of the two column-sorting schemes, the peculiar one and
odd-even sorting, is exactly the same. Both algorithms sort the columns! Thus, the
result of applying odd-even sorting to the columns must also reduce the number of
mixed rows by a factor of two or morc. Thus, Shearsort requires a total of
1 + 1log, n phases and cach phase requires 2Vn clock steps, resulting in a total
of 2Vn + Vnlog, n clock steps to sort n numbers. Thus, the running time of
Shearsort is asymptotically Vi log, 1, which is less than the asymptotic running
time of n steps incurred by the odd-even sorting algorithm.

Conclusion and Further Reading. Although Shearsort’s asymptotic running time is
superior to that of the odd-even sorting algorithm, it is possible to do even better.
We observed that n is an asymptotic lower bound on the number of clock steps
required to sort on a linear array. Similarly, in a two-dimensional array with
dimensions Vi X Vn, an asymptotic lower bound is Vi since 2vn — 2 clock steps
are necessary to move an clement at one corner of the array to the opposite corner
of the array. Several algorithms havc been proposed that sort n elements on a
Vn x vn two-dimensional array in Va2 asymptotic running time. Thompson and
Kung [5] describe one such algorithm. These algorithms can be generalized to sort

n elements on a d-dimensional array with dimensions (\!/; X e X% in %
asymptotic running time.

Do there exist sorting algorithms that attain the theoretical lower bound of
log n asymptotic running time for sorting n integers on n processors? While this is
still an open problem, sorting algorithms are known for some topologies that come
very close to this lower bound. For example, a sorting algorithm with asymptotic
running time of log nloglogn is known for hypercubic networks. Moreover,
randomized algorithms are known for hypercubic networks that sort »n elements on
n processors with very high probability in logn asymptotic running time. A
beautifully written book by Leighton [3] describes these and a number of related
results in detail. Leighton’s text also examines parallel algorithms for several
classical problems in addition to sorting.

REFERENCES

1. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-Hill, New
York, 1990.

2. D E.gl;'.;mth, Searching and Sorting, volume 3 of The Art of Computer Programming, Addison-Wes-
ley, 1973.

244 SORTING IN PARALLEL [March

3. F. T. Leighton, Introduction to Paralicl Algorithms and Architectures: Arravs, Trees, Hypercubes,
Morgan Kaufmann, San Mateo, 1992,

4. Ada Lovelace, Sketch of the Analvtical Engine by L. F. Menabrea, Tavior’s Scientific Memoirs, 3
(1843), 352-376 (translation of L. F. Menabrea, Notions sur la machine analytique de M. Charles
Babbage, Bibliotheque universelle de Geneve 41 (1842), 352-376.)

5. C.D. Thompson and H. T. Kung, Sorting on a Mesh-Connccted Parallel Computer, Communica-
tions of the ACM 20 no. 4 (1977), 263-271.

RAN LIBESKIND-HADAS is the Iris and Howard Critchell Assistant Professor in the Department of
Computer Science at Harvey Mudd Coliege. He obtained his Ph.D. in computer science at the
University of Illinois at Urbana-Champaign and his bachelor’s degree in applied mathematics at
Harvard University. His research interests arce in algorithms and parallel computer architecture. His
father, Shlomo Libeskind (professor of mathematics at the University of Oregon), and his doctoral
research advisor, C. L. Liu, have been tremendously influential teachers and mentors,

Harvey Mudd College, Cluremont, €A 91711

hadas@cs.hmce.edu

On the Summation of Squared Integers

An easy computation k- = C(k + 2,3) — C(k, 3), where C(n, m)
=().This equality is more intuitively derived by observing that

n

n
given a (k + 2)-element set with distinct fixed elements u and v,
Clk+ 2,3) — C(k,3) gives the number of 3-element subsets con-
taining at least one of u or vu. Alternatively, this number can be

computed via the Inclusion-Exclusion Principle as

(k+ Dk (k+ 1)k
Clk+1,2)+Clk+1,2) =k = 5 + 5 —k =k,

where C(k + 1, 2) gives the number of 3-element subsets containing
u (respectively, v). Therefore for every positive integer n,

n

k* = Y [Ck +2,3) — C(k,3)] (atelescoping sum)
=1

k k=1

=Cn+23)-Cn+1) (C(2,3) = C(1,3) = 0)

n(n+ 1)(2n + 1)
e :

Hidefumi Katsuura, San Jose State University

1998] SORTING IN PARALLEL 245

	Claremont Colleges
	Scholarship @ Claremont
	1-1-1998

	Sorting in Parallel
	Ran Libeskind-Hadas
	Recommended Citation

	tmp.1391468270.pdf.fuSZ_

