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Abstract 

 This paper conducts an analysis of county level data to determine the effect of fast 

food restaurants on type 2 diabetes rates. Due to endogeneity concerns with respect to the 

location of fast food restaurants, this paper follows the work of Dunn (2010) and uses the 

number of interstate exits in a given county to serve as an instrument for fast food 

restaurants. The strength of the instrument, which is theoretically and empirically tested 

in this paper, imposes some restraints on the interpretation of the findings. Using the 

Two-Stage Least Squares estimation method, I find that the presence of fast food 

restaurants has a positive and statistically significant effect on type 2 diabetes rates at the 

county level.  

 

Introduction 

A national epidemic in healthcare has begun to unfold. According to the Centers 

for Disease Control and Prevention, in the United States today, 30.3 million adults have 

diabetes. 95% of this population suffers from type 2 diabetes, the form that is not purely 

based on genetics and can thus be prevented or mitigated. Though typically developing in 

adulthood, an increasing number of children and young adults are being diagnosed with 

type 2 diabetes, further fueling the moral and economic concerns of the chronic disease.  

Diabetes is the seventh leading cause of death in the U.S. and is the number one 

cause of kidney failure, lower-limb amputations and adult-onset blindness. In the last 20 

years, the number of adults diagnosed with diabetes has more than tripled as the 

American population has aged and become more overweight or obese. Beyond the ethical 

considerations and lifestyle challenges this disease poses, the increasing rate of type 2 
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diabetes has yielded growing economic costs. The Centers for Disease Control and 

Prevention estimated that diabetes costs an annual amount of $245 billion in the United 

States, consisting of both medical costs and costs associated with lost work and wages for 

people with diagnosed diabetes. 

Research and statistics around this national challenge are now prevalent, but work 

to understand the actual drivers, particularly in the field of economics, remains somewhat 

sparse. Understanding the source and cause of type 2 diabetes will enable legislators to 

develop effective policies to halt or slow the rising prevalence of this chronic disease.  

This paper seeks to provide useful research about one potential driver of type 2 

diabetes through an examination of the effect of fast food restaurants on rates of this 

chronic disease. Specifically, this study will attempt to answer the following question: 

Does an increase in the number of fast food restaurants per 10,000 people increase the 

prevalence of type 2 diabetes? To do so, I conduct an econometric analysis using cross-

sectional data at the United States county level and an instrumental variable to account 

for endogeneity in the model. The hypothesis tested in this study is that a rise in the 

presence of fast food restaurants will increase the prevalence of type 2 diabetes at the 

county level. This hypothesis is indeed validated by the statistically significant findings 

in my paper, though the overall strength of the instrument may pose some limitations on 

the interpretation of the results.  

Modeled off of Dunn’s (2010) approach, I will account for the issue of 

endogeneity bias using an instrumental variable and the Two-Stage Least Squares 

method. Endogeneity in the model primarily derives from the fact that a demand for 

unhealthy food may affect 1) the location of fast food restaurants, because restaurants are 
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not placed randomly but rather strategically in a profit-maximizing location, and 2) type 2 

diabetes rates, because a steady consumption of unhealthy food will yield negative long-

term health outcomes. To address “the possibility that unobserved characteristics 

associated with the probability of becoming obese may also affect the location decision 

of restaurant owners,” Dunn employs an instrumental variable – the number of interstate 

exits in a county. Using highway exits, Dunn argues, serves as a valid instrumental 

variable because the location of highway exits is correlated with the number of fast food 

restaurants in an area, but unrelated to someone’s body mass index, which is the 

dependent variable in his study. Given these relationships, using highway exits to 

instrument for the endogenous covariate should remove the issue of endogeneity from the 

model. Because highway exits are correlated with the endogenous variable in this paper 

(fast food restaurants) and unrelated to type 2 diabetes rates, this paper will employ the 

same instrumental variable, following Dunn’s approach. I will discuss the instrument’s 

exact use and validity in more detail in the coming sections.  

Two economic theories, which may work concurrently or separately, provide the 

theoretical underpinnings of this empirical analysis. One theory stems from a supply-

based argument: As the number of fast food restaurants relative to the population of a 

county increases, the presence of this unhealthy food has a crowding out effect on other, 

likely healthier options, namely grocery stores, fast casual restaurants, food trucks, and 

casual dining restaurants. If an individual in a county chooses to eat out, he or she will 

have fewer substitutes for fast food restaurants, which may induce the individual to dine 

at the fast food restaurant.  
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A second theory covering why the increased presence of fast food restaurants has 

a causal and positive impact on type 2 diabetes rates is cost-related and can be understood 

by examining the breakdown of the cost of obtaining a fast food meal. The cost of 

obtaining a meal has two main components – the actual price paid for the meal and the 

opportunity cost of obtaining the food. The opportunity cost of obtaining the food is 

primarily related to the ease of accessibility of the restaurant, namely how much time it 

takes to drive to the restaurant. Jekanowski, Binkley and Eales (2001) provide a useful 

theoretical framework for thinking about this economic understanding of food choice. As 

more fast food restaurants become available to consumers in a given county, the 

“increase in the number of fast food outlets in a market directly increases quantity 

consumed by decreasing the costs of obtaining a fast food meal.” In other words, more 

availability equates to, on average, less time driving to the restaurant and potentially less 

time waiting in line at the restaurant, depending on the demand in the given market. This 

lower opportunity cost will decrease the overall cost per fast food meal. Additionally, as 

more fast food restaurants flood a market, competition is induced and actual menu prices 

will lower as well.  

The implication of these two effects, which may occur independently or 

simultaneously, is a lower overall cost of consuming an unhealthy meal. Because it is 

common knowledge that the food one eats affects one’s health, a rational consumer 

should factor the health consequences of eating a particular meal into his or her overall 

cost equation. However, given a lower overall cost of consuming an unhealthy meal due 

to an increase in fast food restaurants, a discounting effect of the negative health costs 

associated with eating an unhealthy meal will occur.  
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Another interesting nuance to this discussion, presented by Jekanowski, Binkley 

and Eales (2001), is that increased availability and accessibility to fast food restaurants 

will yield greater sensitivity to menu prices because “menu prices will account for a 

larger portion of the ‘full’ price of” a food choice. This means that within the cost 

equation of consuming a fast food meal, the menu price will be of greater consideration 

as opportunity costs of obtaining the meal, due to more availability, will decrease. 

According to this theory, as consumers consider the various price ranges of different 

types of restaurants, the prices offered by fast food restaurants, which tend to be the least 

expensive restaurant option, will be more appealing in comparison to other types of 

restaurants, further perpetuating the increase in consumption of fast food.   

 
Figure 1. Growth in Diabetes Rate and Fast Food Restaurant Revenue in the United 
States, 2002-2015 
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Regardless of the exact drivers, unhealthy eating choices, like those at a fast food 

restaurant, will yield negative health outcomes over the long-term, such as type 2 

diabetes, hypertension and other chronic conditions. As Figure 1 demonstrates, both type 

2 diabetes rates and fast food restaurant industry revenue in the United States are trending 

upward, motivating an analysis to determine the relationship between these two factors. 

This paper focuses on the rising prevalence of type 2 diabetes, specifically exploring the 

impact that the presence of fast food restaurants has on these increasing rates.  

 

Literature 

Given the multidisciplinary nature of the topic, a relevant literature review spans 

the fields of economics, medicine, public health, psychology, and public policy. The 

topic of my empirical study fills an important gap in the literature: Causal relationships 

affecting the increase in prevalence of type 2 diabetes have not been explored extensively 

in an econometric setting. The majority of health-related studies are focused on what 

people actually eat, without necessarily considering the underlying drivers of those 

decisions. Therefore, more research is needed in the realm of how a built environment, 

especially the various food choices one faces on a daily basis, may impact his or her 

health outcomes.   

The primary model for this study is Dunn’s (2010) analysis of the effect of fast 

food restaurants on obesity. Dunn examines the relationship between the concurrent 

increase in fast food restaurants and obesity rates using cross-sectional, individual-level 

data. Specifically, Dunn explores the effects of fast food restaurant availability on obesity 

rates in the context of gender (male or female) and race (white, black or Hispanic) across 
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three different population density categories (low, medium and high; or rural, suburban 

and urban). Dunn employs the instrumental variable of interstate exits to account for the 

issue of endogeneity, running both Two-Stage Least Squares and Ordinary Least Squares 

regressions and comparing the results. Dunn finds that fast food restaurant availability 

increases the body mass index (BMI) amongst females and non-white racial groups in 

medium-density counties. This implies that the presence of fast food restaurants has a 

causal relationship with higher BMIs, specifically for women and people who identify as 

African American or Hispanic.   

Other economic literature explores the relationship between one’s income and 

one’s choice to purchase fast food, which is relevant as it relates to the theory underlying 

my empirical study. Drewnowski and Darmon (2005) note that low-income consumers 

are more likely to purchase and eat fast food, as opposed to going to a full-service 

restaurant. The hypothesis that poverty and obesity are linked is driven by the fact that 

unhealthy food, like “refined grains, added sugars and added fats have… a low energy 

cost.” Additionally, Drewnowski and Darmon point to low-income consumers living in 

“areas with less physical access to healthier foods,” which further increases the cost of 

healthy food and lowers the cost of unhealthy food. Because options at fast food 

restaurants are less healthy, the logical next step is a less healthy food choice, and 

ultimately a less healthy diet. Additionally, the fact that low-income individuals are more 

likely to live in areas with less physical access to healthy food provides a partial 

explanation for the disproportionate negative health impact of fast food restaurant 

presence on non-white racial groups demonstrated in Dunn’s study. 
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Powell, Han, and Chaloupka (2010) explore the socioeconomic implications of 

adolescent dietary behavior and obesity prevalence. As of 2006, fast food restaurants 

made up 30% of the entire restaurant industry. Given the rising trend of fast food chains’ 

overall representation in the restaurant industry (up from 17% in 1997), their share of the 

overall restaurant market, following this historical upward trend, has likely risen above 

30% today. Interestingly, Powell, Han, and Chaloupka find no significant relationship 

between the availability of fast food and teen BMI. However, they did find that the price 

of fast food had a significant effect on teen BMI, with an estimated price elasticity of –

0.08. Their findings suggest that it is “the low cost of fast food and not its widespread 

availability that affects youth diet and obesity, particularly for youths at risk of becoming 

overweight and those in lower to middle-SES families who are most price sensitive.” 

However, the authors of the study also note a significant association between higher 

income, grocery store availability and access, and lower BMI, suggesting that place and 

choice do have a significant impact on people’s food choices, and consequently their 

health outcomes.  

Other studies that examine the relationship between food choice and income 

support the findings of Powell, Han, and Chaloupka. Powell et al. (2001) reported that 

low-income neighborhoods, when compared with high-income neighborhoods, have 

1.25-1.3 times more fast food restaurants. This study also shows that although restaurants 

of all types are less available in predominantly racial or ethnic minority communities, a 

significantly higher proportion of restaurants in those communities are those classified as 

fast food restaurants. Because income and race are highly correlated in the United States, 
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living in predominately black versus mainly white neighborhoods may contribute to 

racial differences in obesity rates.  

The psychology literature offers useful research on the underlying effects of fast 

food restaurants on rates of type 2 diabetes. Burgoine et al. (2014) found evidence of a 

dose-response association, meaning increased exposure to fast food restaurants drives an 

increase in consumption at those restaurants. According to the study, a greater presence 

of fast food restaurants creates an unhealthy “food environment,” meaning the people 

living in areas of high exposure to fast food are more likely to over consume “energy 

dense, nutrient poor foods” and be overweight or obese. Additionally, studies by Harris, 

Bargh, and Brownell (2009) and Reisch et al. (2013) have demonstrated that exposure to 

unhealthy food advertising will induce people to make worse health choices. Harris, 

Bargh, and Brownell (2009) note that “advertising for food and beverages communicates 

potentially powerful food consumption cues, including images of attractive models 

eating, snacking at non-meal times, and positive emotions linked to food consumption,” 

which in turn drives people to consume more of the typically unhealthy products that are 

advertised in response to these cues. Thus, applying this framework, greater exposure to 

fast food restaurants could have a similar, though more indirect, form of food advertising, 

which could yield an increase in overall consumption of unhealthy food amongst those 

being exposed to the restaurants.  

Public health studies offer additional insight into the question of fast food 

restaurants’ impact on rates of type 2 diabetes. Though health is an inherently complex 

research topic, deconstructing the many factors that yield unhealthy outcomes, and 

understanding their significance, is useful for guiding individual health choices and 
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public policy. A 2015 report published by the California Department of Public Health’s 

Office of Health Equity presented a breakdown of the different factors that account for a 

person’s health status. According to the report, the medical care one receives only 

accounts for 20% of a person’s total health, suggesting that the bigger picture of health 

lies elsewhere. This same estimate suggested that the rest of a person’s health is 

accounted for by the following: 30% by their health behaviors, 40% by social and 

economic factors, and 10% by their physical environment.  

Of these drivers, this paper will primarily focus on the physical or built 

environment in which people live, in particular the local “food environments.” The 

Centers for Disease Control and Prevention define a food environment as the “physical 

presence of food that affects a person’s diet; a person’s proximity to food store locations; 

the distribution of food stores, food service, and any physical entity by which food may 

be obtained; or a connected system that allows access to food.” The term food 

environment is a useful catch-all term relating to the ways in which social and economic 

factors influence how people make choices about food, given their built surroundings and 

options. 

From the public policy and law literature, Freeman (2007) emphasizes the impact 

of fast food restaurants on people’s health through the lens of income and race. She notes 

the “prevalence of fast food in low-income urban neighborhoods across the United States, 

combined with the lack of access to fresh, healthy food” as the primary contributor to the 

“disproportionate incidence of food-related death and disease among African Americans 

and Latinos as compared to whites.” For example, West Oakland, California had one 

supermarket and 36 liquor and convenience stores for their population of 30,000 people, 
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who are primarily African American and Latino. Studies like Freeman’s point to the 

importance of controlling for race and income, given the extent to which these factors 

may have an effect on fast food restaurant location and resulting health outcomes.  

Inagami et al. (2006) conduct an empirical study to explore their hypothesis that 

people living in lower income neighborhoods have a higher BMI. They report: “The 

better predictor of BMI was not the individual’s specific choice of grocery store but the 

location of where the average resident shopped. This suggests a group-level influence 

that might be related to pressures to conform to local norms.” The theory behind this 

analysis is that people with fewer healthy options will eat less healthily, which is 

propelled by the social environment and expectations of where one should shop for food. 

Given the logic that proximity of grocery stores has an effect on people’s weight, it is 

plausible to examine the effects of proximity of unhealthy food sources, namely fast food 

restaurants, on a longer term health outcome – type 2 diabetes.  

Currie et al. (2010) examine the relationship between the increase in the number 

of local fast food restaurants and obesity, specifically for young teens and pregnant 

women. They found that the “presence of a fast food restaurant within one-tenth of a mile 

of a school is associated with at least a 5.2 percent increase in the obesity rate in that 

school.” For pregnant women, a fast-food restaurant within 0.5 miles of their home yields 

a 1.6 percent increase in the probability of gaining over 20 kilos. Their paper provides a 

useful description of the effects that the proximity of a fast food restaurant may have on 

one’s health choices. One could argue that fast food restaurants in closer proximity 

merely provide the potential for substitution away from unhealthy food prepared at home, 

but does not affect the aggregate amount of unhealthy food consumed. However, a more 
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probable understanding of the relationship between distance and health choices is that 

“proximity to a fast food restaurant could lower the monetary and nonmonetary costs of 

accessing unhealthy food,” thus causing people to make less healthy decisions than they 

would typically. Over time, this effect of fast food restaurant presence on health decisions 

could have an impact on long-term health, which is the relationship examined in this 

paper.   

Jeffery et al. (2006) did not find an association between the proximity of fast food 

restaurants and eating at fast food restaurants or higher BMIs, contrary to the central 

findings of Dunn. Though this may suggest conflicting evidence to the research question 

explored in this article, Jeffery et al. only consider consumption of fast food, not whether 

or not the location may have an effect on long-term health outcomes, like type 2 diabetes. 

Since these rates tend to develop in the long run, and given that food environments 10 

years ago and 20 years ago were vastly different than those today, the hypothesis of this 

paper is that the long-term and more widespread effects of an unhealthy food 

environment are now beginning to reach their full level of impact. Additionally, Jeffery et 

al. acknowledge that their study may have a key methodological fault: the homogeneity 

of their restaurant proximity metric, which may explain their insignificant results of the 

effects a food environment has on one’s likelihood of eating at a fast food restaurant or 

having a higher BMI. Finally, their data is gathered from a survey of 1,033 individuals. 

This format, given that the survey participants were asked questions about their health, 

may face issues of response bias, in that participants would subconsciously think more 

highly of their health when responding to the survey, which could skew the results of the 

study.  
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In order to extend the analysis that Dunn explores (fast food restaurants’ effect on 

obesity) to that which is examined in this paper (fast food restaurants’ impact on type 2 

diabetes rates), it is useful to inspect the medical literature as a means of understanding 

the relationship between obesity and type 2 diabetes. Ginter and Simko (2013) highlight 

the increasing prevalence of type 2 diabetes as a function of rising obesity rates. While 

the link between obesity and type 2 diabetes has been strongly established, the exact 

biochemical relationship is still being explored, though strong hypotheses point to 

biochemical factors such as abnormalities in free fatty acids, adipokines, and leptin. 

Obesity is predicted to be the explanatory factor for 70-90% of individuals in the United 

States and the European Union who suffer from type 2 diabetes. Furthermore, backing up 

Dunn’s findings, Burgoine et al. (2014) report that the more individuals are exposed to 

unhealthy food options, like fast food restaurants, the more likely they are to consume 

marginally more takeout food, have a higher body mass index, and face likelier odds of 

obesity. 

A key innovation of this paper is to employ a different outcome variable, type 2 

diabetes rates rather than BMI (the proxy for obesity rates). Rothman (2008) provides 

evidence of inherent flaws of the BMI metric. The BMI has problems with sensitivity, as 

it does not reflect the physiological body fat and muscle mass changes that naturally 

occur with age, and specificity, in terms of misclassification problems, which, in cross-

sectional studies, can yield misinterpretations of effects related to obesity. Despite its 

shortcomings, the majority of obesity data is measured using BMI, and the literature 

examining the impact of food environments on health has primarily focused on using 

BMI as the key measure for one’s health. Thus, a gap exists in the literature, which can 
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be filled by using a health metric that is not BMI. In the case of this paper, the different 

measure for one’s health is rates of type 2 diabetes.  

Given this medical literature, my extension of Dunn’s analysis, by changing the 

outcome variable from obesity to type 2 diabetes rates, is worth consideration. 

Additionally, the existing literature and focus on the rising prevalence of type 2 diabetes 

presents both a space and motivation for this paper to add to the research surrounding 

food environments’, specifically fast food restaurants’, impact on people’s health.   

 

Data 

The analysis in this paper is conducted using cross-sectional, county-level data 

from four sources: the United States Department of Agriculture’s Food Environment 

Atlas, the Centers for Disease Control and Prevention, Dunn (2010), and the United 

States Census Bureau. While the Food Environment Atlas, Centers for Disease Control 

and Prevention, and United States Census Bureau data sets provide information on 3,142 

counties and county-equivalents – namely parishes, organized boroughs, census areas, 

and independent cities – in the United States, the instrumental variable data set has 1,147 

observations. Thus, the main regressions in this paper are limited to 1,147 counties, but 

this amount of observations still provides a strong sample size and the opportunity for a 

robust analysis. Summary statistics of the variables discussed in this section and 

employed in the analysis for this paper are presented in Table 1.  
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Table 1. Summary Statistics of 2011 County-Level Data from the Food Environment 
Atlas, the Centers for Disease Control and Prevention, the U.S. Census Bureau, and 
Dunn (2010) 

Variable Observations Mean Standard 
Deviation Minimum Maximum 

 

Diabetes 
Percentage 

 

3,138 
 

10.98384 
 

2.311213 
 

3.9 
 

21.6 

Diabetes Number 3,142 7,048.808 20,072.16 
 

9 580,158 
 

Fast Food 
Restaurants 

3,106 69.32357 238.3487 0 
 

7211 
 

Population 3,142 9,8263.02 312,946.4 82 9,818,605 

Population 
Density  

3,141 259.4872 
 

1,724.708 
 

0 
 

69,468.4 
 

Median Income 3,108 43,059.98 10719 20577 119,075 

White 3,142 78.31531 19.85771 2.667918 99.16318 

African 
American 

3,142 8.74928 14.42369 0 85.43878 

Hispanic 3,142 8.282409 13.19277 0 95.74477 

Male 3,142 49.96903 2.200891 43.2 72.1 

Female 3,142 50.03097 2.200891 27.9 56.8 

Poverty Rate 3,133 18.35822 6.747441 2.9 48.1 

Interstate Exits 1,179 10.3503 18.97524 0 229 

Fast Food 
Restaurants per 
10,000 people 

3,106 37.05848 199.4385 0 7,561.375 

      

The outcome variable of this study is the percentage of people in a county who 

had type 2 diabetes in 2011, which is data obtained from the Centers for Disease Control 

and Prevention. Following the topic of this paper, the independent variable of interest is 
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the number of fast food restaurants in a given county in 2011. This data comes from the 

United States Department of Agriculture’s Food Environment Atlas, an expansive data 

set with county-level information on population, socioeconomic status, stores and 

restaurants, prices and taxes, food insecurity, local food sources, health metrics, 

provisions of federal assistance, and more. For the purpose of scaling the number of fast 

food restaurants to the population of each county for the regressions, I created a new 

variable: fast food restaurants per 10,000 people. I generated this new variable by 

multiplying the number of fast food restaurants by 10,000 and dividing this product by 

the 2011 population.  

The third key variable in this study is the instrumental variable – highway exits in 

each county in 2005. I thank Richard Dunn for kindly providing me with the interstate 

exits data. The definition of the interstate exits data used in Dunn’s study is: “any exit 

from any roadway with an Eisenhower Interstate designation except exits for nonservice 

rest stops, tolls, or private ranch roads.” While the year of the highway exits data is six 

years prior to the rest of the data in this study, the relatively permanent nature of highway 

exits due to limited changes in this type of roadway infrastructure implies that the values 

in 2011 are likely quite similar to those in 2005.  

Given the variation in factors that could influence a long-term health outcome like 

type 2 diabetes, I employ a number of controls to refine the model, including: population 

density per square mile of land (which is data obtained from the Food Environment 

Atlas), race data, specifically the percentage of people who identify as African American 

or Hispanic in each county (which is also from the Food Environment Atlas), and the 

poverty rate (which I acquired through the Census Bureau). Poverty rates from this data 
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set are defined as the percentage of families or individuals in the county whose combined 

pre-tax income is less than their relevant poverty threshold, of which there are 48 

possibilities. The weighted average poverty threshold for a family of four in 2011 was 

$23,021. 

Examining the dependent variable, the type 2 diabetes percentage at the county 

level, reveals significant variation across counties, with the minimum percent in a county 

of 3.6% and a maximum value of 23.5%. Many of the control variables display variation 

as well: The smallest population size is 82 people and the largest is 9,818,605 people. 

Population density, which is a key variable in both this study and Dunn’s paper, ranges 

from zero people per square mile of land to 69,468.4 people per square mile of land, 

reflecting the significant geographical and demographic variation of the United States, 

which demonstrates the usefulness of employing county level data in an econometric 

setting.  

Additionally, the minimum poverty rate is 2.9%, which is a significant contrast to 

the maximum of 48.1%. Racial and gender demographics also have a wide range, with 

some counties having a racial breakdown of 0% African American and/or Hispanic 

population and others consisting of a large majority of the population represented by a 

single racial minority (maximums of 85.43% and 95.74% for African Americans and 

Hispanic/Latino people, respectively). As made evident by the review of the literature in 

the last section, controlling for race and income variation is key given their significant 

impact on fast food restaurant location and resulting health outcomes. 

 

 



Bailey 18 
 

Methods 

The goal of this paper is to establish a causal relationship between fast food 

restaurants and type 2 diabetes rates. The theoretical multiple linear regression model that 

I will estimate using Ordinary Least Squares (OLS) is:  

𝟏  𝑇𝑦𝑝𝑒 2 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑅𝑎𝑡𝑒

=  𝛼 +  𝛽! × 𝐹𝑎𝑠𝑡 𝐹𝑜𝑜𝑑 𝑅𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡 

+ 𝛽! × 𝐿𝑜𝑤 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑚𝑚𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

+ 𝛽! × 𝑀𝑒𝑑𝑖𝑢𝑚 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑚𝑚𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝛽! × 𝑃𝑜𝑣𝑒𝑟𝑡𝑦 𝑅𝑎𝑡𝑒 

+ 𝛽! × % 𝐴𝑓𝑟𝑖𝑐𝑎𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 + 𝛽!× % 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 

+ 𝛽! 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 +  ℰ  

In this equation, the 𝛽s represent the coefficients derived from the regression and 

the 𝛼 is the intercept in the model. The ℰ in Equation (1) is the error term, which captures 

unobservable factors that are not controlled for in the model, or in other words anything 

that is not a covariate. The specific reasons for creating dummy variables to classify 

populations by size will be addressed later on in this section. As is evident in the 

equation, I control for population (both categorically and in terms of population density), 

the poverty rate, and race (both African American and Hispanic population percentages at 

the county level) in this model.  

Given the issue of endogeneity, which I touched upon earlier, this OLS regression 

will not provide sufficient and valid results. Thus, I will employ an instrumental variable 

to account for the issue of endogeneity bias in the model. As touched upon in previous 

sections, endogeneity is a problem in this analysis because what causes a fast food chain 

to open a restaurant in a certain location (i.e. a given county) is partially explained by a 
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demand for unhealthy eating, which the fast food organization may track by observing 

rates of overweight and obese individuals in an area. This same factor, demand for 

unhealthy eating, is also very likely related to higher rates of type 2 diabetes, a plausible 

argument given that type 2 diabetes is a condition largely stemming from a poor diet. 

Given that both the location of fast food restaurants and rates of type 2 diabetes are 

strongly correlated with a demand for unhealthy eating, which is captured in the error 

term of the model, an estimation of the model would produce invalid results. However, 

using an instrumental variable, which is interstate exits in a county in this paper, can 

remove the issue of endogeneity from the model.  

Several conditions, laid out by Wooldridge (2016), must be met to ensure the use of 

a valid instrumental variable. The first requirement is that the instrumental variable must 

be relevant, meaning it is correlated with the independent variable of interest, in this case 

fast food restaurants. To establish this correlation, I regress fast food restaurants per 

10,000 people on the instrument, interstate exits per 10,000 people, and the control 

variables, as shown in Table 2.  

As we see from the results, the instrumental variable of highway exits is indeed 

positively correlated with the explanatory variable of interest, fast food restaurants per 

10,000 people. The coefficient on interstate exits in Table 2 demonstrates a positive 

relationship between the instrument and the endogenous covariate, which is needed to 

satisfy one of the conditions of a valid instrument. However, the p-value of 0.110 is not 

significant at the 5% or 10% level, as expected.  
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Table 2. Fast Food Restaurants per 10,000 People Regressed on Control Variables 
and Instrumental Variable (OLS)  

Variable Coefficient P-value 
 

Interstate Exits per 10,000 People 
 

0.8326046 
 

0.110 

Poverty Rate 0.0328625 0.846 

Hispanic – 0.0285634    0.771 

African American 0.082043 0.355 

Constant 10.64742 0.001 

Number of observations = 1,151 
 

The fact that the relationship between the instrument and the endogenous 

explanatory variable is not of the desired statistical significance (a p-value of 0.05) may 

be explained by several factors. The presence of interstate exits in a county may affect 

other health behaviors, like physical activity, which would in turn impact type 2 diabetes 

rates. For example, areas with more interstate exits, and therefore more traffic and 

pollution, likely make exercising outside more difficult. If this is indeed the case, then 

interstate exits would affect unobserved factors captured in the error term of the model, 

yielding slightly biased results.  

There are additional explanations for the empirical results in Table 2 indicating 

that interstate exits serve as a weaker instrument than expected. Dunn cites the fact that 

interstate exits may draw other unhealthy food providers beyond just fast food 

restaurants, such as small local marts that primarily sell junk food. Because unhealthy 

food is a primary cause of type 2 diabetes, not including data from these other places of 

business may misreport the effect of fast food restaurants on type 2 diabetes rates. 
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Additionally, counties with more interstate exits may attract people who have different 

health preferences than those living in areas without interstate exits. If this is the case, 

interstate exits would have an effect on type 2 diabetes rates, through this location 

preference based on health habits. Both of these criticisms are worth noting and provide 

further insight into why the instrument’s correlation with the variable it will instrument 

for, fast food restaurants, is not one of statistical significance.  

Despite these concerns, the fact that the p-value on interstate exits per 10,000 

people is 0.110, relatively close to a p-value representing statistical significance, and the 

coefficient on interstate exits demonstrates that there is a positive relationship between 

highway exits and fast food restaurants per 10,000 people, the use of the instrument is 

still of valid consideration. However, when interpreting the results from the Two-Stage 

Least Squares regressions that employ the instrumental variable in both this study and 

Dunn’s paper, the statistical insignificance of the instrument is an important nuance to 

consider.  

Beyond the first condition, correlation with the independent variable of interest, 

Wooldridge cites two other parameters that an instrumental variable must satisfy in order 

to be considered valid. The second condition that the instrumental variable must meet is 

excludability, which implies that the instrument should not causally affect the outcome 

variable. Though there may be some relationship between interstate exits and type 2 

diabetes rates, as touched upon, a thought experiment would suggest that interstate exits 

alone is not a strong enough factor to have a causal effect on rates of type 2 diabetes. 

According to the third condition laid out by Wooldridge, the instrument must be 

exogenous, implying that interstate exits cannot be correlated with the unobservable 
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factor causing the endogeneity problem, which in the case of this paper is primarily a 

demand for unhealthy eating. While this relationship cannot be proven, as demand for 

unhealthy eating is not a measured variable in the data set, it is theoretically valid to 

presume that the presence of interstate exits and a demand for unhealthy food are likely 

unrelated.  

The instrument of interstate exits has flaws, given that it does not perfectly meet all 

three criteria, particularly only loosely meeting the first condition. However, the fact that 

interstate exits to a certain extent satisfy the three conditions required for a valid 

instrumental variable implies that it is a useful technique to employ the highway exits 

data in the model as a means of accounting for endogeneity bias. Moving forward under 

the assumption that the instrument is considered adequate in addressing the issue of 

endogeneity, I will employ the interstate exits data to conduct Two-Stage Least Squares 

regressions in contrast to the results of the Ordinary Least Squares regression.  

Because county population is implicitly controlled for through the denominator of 

the independent variable – fast food restaurants per 10,000 people in the population – it is 

useful to conduct two different estimations of the model using Two-Stage Least Squares: 

one with only an indirect population control and one with both an indirect and direct 

population control. In this case, the indirect control refers to implicitly controlling for 

county population through the denominator of the fast food restaurants independent 

variable and through county population size categories, but omitting an actual population 

or population density covariate from the model. The more direct method of controlling 

for population size is by both implicitly controlling for county population through the 

denominator of the fast food restaurants variable and controlling for population density. 
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Of the two key regressions with the instrumental variable, this more direct approach will 

be examined first. 

The first multiple linear regression model that employs the instrumental variable 

and is estimated using the Two-Stage Least Squares method is:  

𝟐  𝐒𝐭𝐚𝐠𝐞 𝟏: 𝐹𝑎𝑠𝑡 𝐹𝑜𝑜𝑑 𝑅𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡 (𝒳 )

=  𝛼 + 𝛽! × 𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 𝐸𝑥𝑖𝑡 + 𝛽! × 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 

+ 𝛽! × % 𝐴𝑓𝑟𝑖𝑐𝑎𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 + 𝛽! × % 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 + 𝛽! × 𝑃𝑜𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒

+ ℰ  

𝒳 = 𝑍(𝑍!𝑍)!! 𝑍′𝑋  

𝐒𝐭𝐚𝐠𝐞 𝟐: 𝑇𝑦𝑝𝑒 2 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑅𝑎𝑡𝑒

=  𝛼 + 𝛽! ×  𝒳!"#$ !""# !"#$%&!%'$ + 𝛽! × 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑛𝑖𝑠𝑡𝑦 

+ 𝛽! × % 𝐴𝑓𝑟𝑖𝑐𝑎𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 + 𝛽! × % 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐

+ 𝛽! × 𝑃𝑜𝑣𝑒𝑟𝑡𝑦 𝑅𝑎𝑡𝑒 + ℰ  

As we see in Equation (2), the first model using the instrumental variable of 

interstate exits employs four control variables, the instrumental variable and the 

independent variable of interest, fast food restaurants per 10,000 people. The poverty 

rate, African American population percentage and Hispanic population percentage 

covariates are important to include given the extensive literature demonstrating the effect 

of income and race on health outcomes. Thus, controlling for these factors is essential in 

all regressions examining the influence of any factor on a health outcome. In Equation 

(2), 𝛼 is the intercept, the 𝛽s represent the coefficients derived from each stage, and ℰ is 

the error term. The first stage of the Two-Stage Least Squares estimation is to regress the 

endogenous explanatory variable on the instrumental variable and the other covariates. 
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This regression yields 𝒳, which is the predicted value of X (fast food restaurants) from 

the regression of X on Z, where Z is the predicted values of the instrumental variable and 

the control variables. These predicted values are then used to conduct the second stage 

regression, in which type 2 diabetes rates are regressed on 𝒳 and the other independent 

variables. The results of this second stage will yield the coefficient on fast food 

restaurants per 10,000 people without endogeneity to the extent that the instrument is 

considered valid.  

In order to conduct a regression with a slightly less direct approach to controlling 

for county population size to avoid conflicting with the implicit control of population via 

the fast food restaurants variable, I create three dummy variables based on the population 

distribution of United States counties. Table 3 presents the population distribution.  

 
Table 3. United States County Population Distribution, 2011 
Percentiles Corresponding Values 
 

1% 
 

968 

5% 2,908 

10% 5,208 

25% 11,113 

50% 25,872 

75% 66,861 

90% 197,465 

95% 422,718 

99% 1,202,362 

Number of observations = 3,142 
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The county population dummy variable classifications are as follows: Low 

population counties are counties with populations of 15,000 people or less; medium 

population counties are those with between 15,001 and 70,000 residents; large population 

counties are classified as counties with a population between 70,001 and 9,818,605 

people. Clearly, these population breakdowns appear heavily skewed toward low 

population counties. This category bias toward low population counties may be partially 

explained by the data limitations from having fewer counties to work with, due to the 

more limited number of observations of interstate exits, the instrumental variable. 

However, the more illuminating reason for this seemingly heavy concentration of low 

population counties is that, according to an analysis by Business Insider, half of the 

United States population was clustered in just 146 counties in 2013. This was likely the 

case two years prior, which explains why the 2011 data in this study has this type of 

population distribution. The important takeaway of the statistic is that only a small 

number of counties have extremely large populations, while the large majority of United 

States counties have smaller populations, capturing just a small portion of the other half 

of Americans not living in the 146 densely populated counties. This explanation is further 

validated by an analysis of the data. The counties classified as low population counties 

have 1,032 observations; medium population counties have 1,351 observations; and high 

population counties have just 120 observations.  

Creating dummy variables, as opposed to just controlling via the continuous 

variable of population in 2011, is important because population is already implicitly 

controlled for in the denominator of the fast food restaurants per 10,000 people 

independent variable. Thus, creating categorizations of county population removes the 
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possibility of having two independent variables in the model that directly relate. 

Additionally, using these population categorizations, as opposed to just relying on the 

manipulation of the fast food restaurants dependent variable, is essential to fully account 

for the ways in which population size will affect type 2 diabetes – the most obvious being 

that more people living in a county statistically increases the likelihood of a greater 

incidence of type 2 diabetes. 

For the second Two-Stage Least Squares regression, I control for population size 

via both the denominator of the independent variable of interest and through two dummy 

variables – low population and medium population counties (with the third dummy 

variable, the high population county classification, not included in the regression).  

The second multiple linear regression model with the instrumental variable that is 

estimated using Two-Stage Least Squares is:  

𝟑  𝐒𝐭𝐚𝐠𝐞 𝟏: 𝐹𝑎𝑠𝑡 𝐹𝑜𝑜𝑑 𝑅𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡 𝒳 

=  𝛼 + 𝛽! × 𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑡𝑒 𝐸𝑥𝑖𝑡 + 𝛽! × % 𝐴𝑓𝑟𝑖𝑐𝑎𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 

+ 𝛽! × % 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 + 𝛽! × 𝑃𝑜𝑣𝑒𝑟𝑡𝑦 𝑅𝑎𝑡𝑒

+ 𝛽! × 𝐿𝑜𝑤 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑚𝑚𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

+ 𝛽! × 𝑀𝑒𝑑𝑖𝑢𝑚 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑚𝑚𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + ℰ  

𝒳 = 𝑍(𝑍!𝑍)!! 𝑍′𝑋  

           𝐒𝐭𝐚𝐠𝐞 𝟐: 𝑇𝑦𝑝𝑒 2 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 𝑅𝑎𝑡𝑒

=  𝛼 + 𝛽! ×  𝒳!"#$ !""# !"#$%&!%'$ + 𝛽! × % 𝐴𝑓𝑟𝑖𝑐𝑎𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 

+ 𝛽! × % 𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 + 𝛽! × 𝑃𝑜𝑣𝑒𝑟𝑡𝑦 𝑅𝑎𝑡𝑒

+ 𝛽! × 𝐿𝑜𝑤 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑚𝑚𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

+ 𝛽! × 𝑀𝑒𝑑𝑖𝑢𝑚 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑚𝑚𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + ℰ  
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As we see in Equation (3), the second model using the instrumental variable of 

interstate exits employs three control variables, two dummy variables, the instrument, and 

the explanatory variable of interest (fast food restaurants per 10,000 people). Like 

Equation (2), in this equation, 𝛼 is the intercept, the 𝛽s represent the coefficients derived 

from each stage, ℰ is the error term, and race and income controls are included. 𝒳 is the 

predicted value of X from the regression of X on Z, where Z is the predicted values of the 

instrumental variable and the control variables. These predicted values are then used to 

conduct the second stage regression, in which the type 2 diabetes rates are regressed on 

these variables to yield the key results demonstrating the relationship between fast food 

restaurants and rates of type 2 diabetes.  

The results of the OLS and the Two-Stage Least Squares estimates and analysis of 

the findings are presented in the following section, including a comparison of the findings 

of this paper to Dunn’s results, which will provide useful context for the discussion.  

 

Results 

The empirical analysis in this paper is multi-staged, beginning with an OLS 

regression and building up to two final Two-Stage Least Squares estimations, as 

highlighted in the former section. Before delving into the key regressions used to 

examine the causal relationship between fast food restaurants and type 2 diabetes rates, I 

conduct several simple regressions to empirically justify the theoretical model, 

particularly the control variables. Specifically, I regress the variable measuring type 2 

diabetes rates on all of the controls that will be employed in the various forthcoming OLS 

and Two-Stage Least Squares regressions to confirm the expected correlation and 
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statistical significance. The results from regressing the type 2 diabetes values separately 

on all of the controls are shown in Table 4. As we see, all of the control variables are 

positively correlated with type 2 diabetes. Additionally, each of these relationships is 

statistically significant, at either the 1% level or the 5% level.  

 
Table 4. Simple Regressions of Dependent Variable on Control Variables (OLS) 

Regression (“Y on X”) Coefficient P-value 
 

Diabetes Number on Population Density per Square 
Mile of Land 

 

4.11244  
 

0.000 

Diabetes Number on Number of Fast Food Restaurants 5.609231 0.000  

Diabetes Rate on Physical Inactivity Value 0.3215169 0.000 

Diabetes Rate on Poverty Rate 0.0739191  0.000 

Diabetes Number on Diabetes Screening Value 7287.983 0.020 

Number of observations = 3,142 
  

Upon confirming that the control variables align with the theoretical expectations, 

I conducted more comprehensive regressions. I first estimated the model from Equation 

(1) by conducting an OLS regression. These results are presented in Table 5. 

This regression yields a positive, though small, coefficient for the explanatory 

variable of interest, fast food restaurants per 10,000 people. Despite this positive 

coefficient, the explanatory variable has a high p-value and thus does not prove a 

statistically significant, and therefore causal, relationship between fast food restaurants 

and type 2 diabetes rates. The statistical insignificance on the fast food restaurants per 

10,000 people is further empirical justification for the presence of endogeneity in the 

model that must be addressed to have valid results.   
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Table 5. Effect of Fast Food Restaurants on Type 2 Diabetes Rates (OLS) 

Variable  Coefficient Standard Error P-value 

Fast Food Restaurants per 10,000 People 0.0000433 0.0001667 0.795 

Low Population Dummy Variable 1.364253 0.0911905 0.000 

Medium Population Dummy Variable 1.315634 0.0857393 0.000 

Poverty Rate 0.0363538 0.0049946 0.000 

African American 0.0756322 0.0023554 0.000 

Hispanic – 0.0312302 0.0025265 0.000 

Population Density per Square Mile of 
Land – 0.0000872 0.0000194 0.000 

Constant 8.935008 0.114233 0.000 
Number of observations = 3,106 
 

 The empirical evidence from the OLS regression suggests that an instrumental 

variable is indeed a necessary component to remove the issue of endogeneity and yield a 

useful estimation of the model. Following this need, I examined the relationship between 

the instrument, interstate exits, and the endogenous explanatory variable, fast food 

restaurants. As discussed in the last section, I conduct an OLS regression to explore this 

relationship, regressing fast food restaurants per 10,000 people on the control variables 

and interstate exits per 10,000 people. These results, as discussed and presented in Table 

2 from the last section, yield a positive relationship between fast food restaurants and 

interstate exits, with a coefficient of 0.8326046, but an insignificant p-value of 0.110.   

As previously touched upon, the instrument is not perfect, in that the first 

condition is not met with statistical significance. However, there is indeed a positive 

correlation between the instrument and the key explanatory variable and the other two 
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conditions required for a valid instrument are plausibly satisfied at the theoretical level. 

Therefore, proceeding with the use of the instrument, bearing in mind that it is weaker 

than the theoretical expectation predicted, remains a useful and valid step for the purpose 

of examining the effect of fast food restaurants on type 2 diabetes with the full or partial 

removal of the issue of endogeneity from the estimated model.   

Having established a baseline comparison via an OLS regression, I employ the 

instrumental variable to conduct regressions with results that are both valid, assuming the 

instrument is considered adequate in addressing the issue of endogeneity, and significant. 

As discussed in the Methods section, I conduct two different Two-Stage Least Square 

regressions, one with a more direct approach to controlling for population and another 

with an indirect approach. The direct method, in which population size is controlled both 

implicitly through the denominator of the fast food restaurants variable and directly by 

including population density in the regression, is the first set of results that are presented.  

As we saw in Equation (2), the first model using the instrumental variable of 

interstate exits employs four control variables and the independent variable of interest, 

fast food restaurants per 10,000 people. Results of this regression are presented in Table 

6.  

Hausman (1978) suggested comparing the OLS and Two-Stage Least Squares 

estimations to determine whether or not endogeneity is present in the estimated model. 

According to Hausman, OLS and Two-Stage Least Squares estimations should yield 

consistent results if all variables in the model are exogenous. If the two estimations are 

different in terms of the statistical significance of the explanatory variable of interest, 

then endogeneity is an issue in the model. Thus, the statistical insignificance from the 
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OLS estimation, and the statistical significance from the Two-Stage Least Squares 

regression as seen in Table 6, provide useful empirical backing for the theoretical 

argument laid out as to why an instrumental variable is necessary to account for the issue 

of endogeneity in this model.  

 
Table 6. Effect of Fast Food Restaurants on Type 2 Diabetes Rates (IV, with 
Population Density)  
Variable Coefficient Standard Error P-value 
Fast Food Restaurants per 10,000 
People 0.0947206 0.0288613 0.001 

Population Density per Square Mile 
of Land – 0.0000158 0.0000475 0.739 

African American 0.0575237 0.0096078 0.000 

Hispanic – 0.0429862 0.0103179 0.000 

Poverty Rate 0.0391373 0.0175948 0.026 

Constant 8.456304 0.4856723 0.000 
Instrumental variables (2SLS) regression  
Instrumented: Fast Food Restaurants per 10,000 people 
 

Examining the main results from the first Two-Stage Least Squares estimation 

reveals that the key relationship – fast food restaurants and type 2 diabetes – is positive 

and now statistically significant, which validates the main hypothesis of the study. The 

coefficient of 0.0947 implies that for every one-unit increase in fast food restaurants per 

10,000 people in a given county, the type 2 diabetes rate is expected to increase by 

0.0947%, holding all else equal. A more tangible interpretation is as follows: Given a ten-

unit increase in fast food restaurants per 10,000 people, type 2 diabetes rates would rise 

by 0.947%, or almost 1%.   
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Interestingly, the only statistically insignificant relationship in the first Two-Stage 

Least Squares regression is that between population density per square mile of land and 

the dependent variable, type 2 diabetes rates. As previously discussed, this high p-value 

may be a consequence of an overly direct approach to controlling for population in the 

regression, given the fact that population data already exists within the denominator of 

the fast food restaurants per 10,000 people covariate.  

Thus, for the purpose of comparison to examine how different population controls 

may impact the relationship of interest (fast food restaurants and type 2 diabetes rates), I 

conduct a second Two-Stage Least Squares regression, estimating the model from 

Equation (3). Using the indirect approach to control for population, I include two dummy 

variables representing county population size categories – low population and medium 

population counties – in the regression and omit the third dummy variable, the high 

population county classification. Additionally, like the last regression, population is 

implicitly controlled for through the denominator of the fast food restaurants independent 

variable. The results of this second Two-Stage Least Squares estimation are presented in 

Table 7.  

The key results of this paper, which we see in Table 7, is type 2 diabetes rates 

regressed on fast food restaurants per 10,000 people, which is instrumented with 

interstate exits, and on several controls. The first noticeable difference between the two 

regressions conducted using the instrumental variable of interstate exits is the coefficient 

on fast food restaurants per 10,000 people: In Table 7, we see that this regression yields a 

coefficient of greater magnitude, 0.1161854 rather than 0.0947206, compared to that of 

the first Two-Stage Least Squares regression. Though the main result, the beta coefficient 
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indicating the relationship between fast food restaurants and type 2 diabetes rates, is not 

significant at the 5% level, it is significant at the 10% level, as it yields a p-value of 

0.096.  

 
Table 7. Effect of Fast Food Restaurants on Type 2 Diabetes Rates (IV, with 
Population Categories)  

Variable Coefficient Standard Error P-value 
 

Fast Food Restaurants per 10,000 
People 

 

0.1161854 
 

0.0698947 
 

0.096 

African American 0.0468112 0.0178319 0.009 

Hispanic – 0.0503276 0.0137666 0.000 

Poverty Rate 0.0414499 0.0212078 0.051 

Low Population Dummy Variable – 1.797853 1.688307 0.287 

Medium Population Dummy 
Variable 

– 0.3317857 0.9396232 0.724 

Constant 8.596852 0.504799 0.000 

Instrumental variables (2SLS) regression  
Instrumented: Fast Food Restaurants per 10,000 people 

 

Outcomes from this second Two-Stage Least Squares estimation imply that a one-

unit increase in fast food restaurants per 10,000 people would yield a 0.1162 percentage 

point increase in type 2 diabetes rates, holding all else equal. Similarly, a ten-unit 

increase in fast food restaurants per 10,000 people would yield a 1.162 percentage point 

increase in type 2 diabetes rates. Though the fast food restaurant variable has a higher p-

value in this second regression with the instrumental variable, the larger value of the 

coefficient is noteworthy, as it implies that fast food restaurants have a greater impact, in 

terms of magnitude, on type 2 diabetes rates.   
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For comparison purposes, all three of the key regressions in this paper are 

presented side by side in Table 8, which provides both the coefficient and the p-value for 

each covariate. As touched upon, the significant difference between the p-values from the 

OLS regression and the Two-Stage Least Squares regressions is notable, with the key 

explanatory factor for the difference being the use of the instrumental variable. The 

statistical significance of the fast food restaurants per 10,000 people explanatory variable 

in the regressions using the instrument, as compared to the statistical insignificance from 

the regression without the instrument, provides empirical justification for the need of an 

instrumental variable to account for the issue of endogeneity. The need to account for the 

factor creating the endogeneity problem – demand for unhealthy food – is evident 

theoretically, but the empirical backing through a comparison of the OLS and Two-Stage 

Least Squares regressions is essential to confirm the theoretical expectation and to 

conduct a valid study.  

Another interesting note when comparing these three regressions is the statistical 

significance of the race covariates. Both the Hispanic and African American independent 

variables are statistically significant at the 1% level for the OLS and Two-Stage Least 

Squares regressions. In all three estimations, the positive coefficient on the African 

Americans covariate indicates a positive relationship, on average, between African 

Americans and type 2 diabetes rates at the county level. This finding is expected, as 

studies have demonstrated that racial minorities tend to bear a disproportionate burden of 

chronic diseases. However, the coefficient on the Hispanic covariate across all three 

estimations is negative, indicating that changing the racial makeup of a county through an 

increase in the number of Hispanic individuals in that county would lead to a decrease in 
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rates of type 2 diabetes rates, on average and holding all else equal. This result is 

unexpected, as American Hispanics/Latinos are also a minority in the United States and 

public health research has suggested that this minority group, like African Americans, 

experiences a disproportionate number of cases of type 2 diabetes.   

 
Table 8. Effect of Fast Food Restaurants on Type 2 Diabetes Rates (Two-Stage Least 
Squares and OLS)  

Variable IV  
population categories 

IV 
population density 

OLS 
 

Fast Food 
Restaurants per 
10,000 People 

0.1161854 (0.096) 0.0947206 (0.001) 0.0000433 (0.795) 

Low Population 
Dummy Variable – 1.797853 (0.287)  1.364253 (0.000) 

Medium 
Population 

Dummy Variable 
– 0.3317857 (0.724)  1.315634 (0.000) 

Poverty Rate 0.0414499 (0.051) 0.0391373 (0.026) 0.0363538 (0.000) 

African American 0.0468112 (0.009) 0.0575237 (0.000) 0.0756322 (0.000) 

Hispanic – 0.0503276 (0.000) – 0.0429862 (0.000) – 0.0312302 (0.000) 

Population 
Density per 

Square Mile of 
Land 

 – 0.0000158 (0.739) – 0.0000872 (0.000) 

Constant 8.596852 (0.000) 8.456304 (0.000) 8.935008 (0.000) 

Notes: The results are present in the following format – coefficient (p-value). Some blank spaces appear in 
this table because I did not employ all covariates for all regressions.  
 
 

A useful extension of these results is to analyze them in relation to Dunn’s 

findings. Dunn, who explores fast food restaurants’ effect on obesity via the BMI 

measure, took a similar approach to the second of the two estimations I conducted using 
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Two-Stage Least Squares in that he created three different county categories based on 

low, medium, and high population density. Dunn found that in medium-density counties, 

females, African Americans and Hispanics all displayed a positive and statistically 

significant, at the 5% level, relationship between the number of fast food restaurants and 

BMI. Unlike Dunn, I keep the data aggregated to analyze the overall impact of fast food 

restaurants on type 2 diabetes rates, which I find to be positive and statistically significant 

at the county level. Another key difference is that Dunn combined African American and 

Hispanic individuals into a single group, whereas I kept data on the percentage of African 

American and Hispanic people at the county level separate and included the two as 

separate variables in the regressions in this paper.  

Like the results of this study, Dunn’s results must be examined with some 

skepticism, as he employs the same instrumental variable as I do in this paper and does 

not justify the interstate exit instrumental variable empirically (through the OLS 

regression of fast food restaurants on the instrument and the control variables). Therefore, 

both the results of this paper and Dunn’s must be examined bearing in mind the weaker 

nature of the instrumental variable. Despite this, the results of this paper, which 

demonstrate a statistically significant and positive relationship between fast food 

restaurants and type 2 diabetes rates, may have important implications for policy and 

further economic research.  

 

Conclusion 

This paper provides additional insight into the realm of health economics and 

policy discussions surrounding the exponentially growing rates of type 2 diabetes and 

obesity. The results indicate that fast food restaurants have a positive and statistically 
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significant effect on type 2 diabetes rates, confirming the underlying theory and 

hypothesis. While the findings themselves are intuitive, the model and analysis in this 

paper is distinct from existing literature in that it examines the effect of the mere presence 

of fast food restaurants on rates of type 2 diabetes. Given the fact that the discussion is 

typically centered around the actual consumption of unhealthy food from a place of 

business like a fast food restaurant, exploring other factors that influence long-term 

health outcomes can provide useful insights for policymakers and health professionals.  

The relationship between fast food restaurants and type 2 diabetes rates has been 

and continues to be relevant to policymakers considering the profound economic and 

social costs of the exponentially rising rates of chronic diseases. For example, the New 

York Times reported in 2011 that Los Angeles placed a temporary ban on the opening of 

new fast food restaurant branches in the low-income area of South Los Angeles. The 

action stemmed from the fact that, according to the Los Angeles County Department of 

Public Health, this area of the county has far higher rates of type 2 diabetes. This step is 

not typical for most counties, however, and fast food restaurant prevalence remains a 

persisting issue, as justified by the findings of this paper.  

 While my final results are both robust and statistically significant, there are 

limitations to the interpretation of the findings. There are important theoretical and 

empirical criticisms about the validity of the instrument that are worth considering. The 

strongest of these critiques is the fact that areas with more interstate exits, and thus more 

fast food restaurants, may attract people who have different health preferences than those 

living in areas with fewer interstate exits. Additionally, the fact that the correlation 

between fast food restaurants and the interstate exits was not statistically significant, 
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though close with a p-value of 0.110, imposes a need for skepticism when interpreting the 

results of this paper. Therefore, a useful extension of this study could employ a different 

instrumental variable that is of greater validity and can thus better account for the issue of 

endogeneity in the model.  

 Additional research could examine individual-level data and consider how the 

actual distance of a house to a fast food restaurant may affect rates of type 2 diabetes. A 

study of this sort could be especially interesting in a state like California, which has 

significant variation in terms of population and socioeconomic status, with distinct 

pockets of wealth and poverty. Furthermore, the negative coefficient on the covariate 

capturing the rate of Hispanic people at the county level suggests that further research is 

needed in exploring specific burdens of diseases on racial minorities relative to white 

people in the United States to determine which groups, and to what extent, bear a 

disproportionate share of type 2 diabetes. Lastly, a time series analysis would provide 

useful context to the discussions around type 2 diabetes, as it would explore long-term 

changes to fast food restaurant availability and the corresponding resulting changes in 

rates of type 2 diabetes rates.  
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