Graduation Year
2018
Date of Submission
4-2018
Document Type
Campus Only Senior Thesis
Degree Name
Bachelor of Arts
Department
Mathematics
Reader 1
Nelson, Sam
Abstract
The goal of this paper is to introduce a new algebraic structure for coloring regions in the planar complement of an oriented virtual knot or link diagram that I will refer to as virtual tribrackets. I will begin with an overview of classical knot theory where I introduce knot diagrams and ways of calculating knot invariants. This paper progresses into virtual knots and links, their geometric interpretations as well as their virtual moves, and some invariant examples for the virtual case. This informations allows me to introduce tribrackets, which is a labeling method used to define counting invariants for classical knots and link diagrams. Finally, this paper properly defines and proves the use of virtual tribackets in defining invariants for virtual knots as well as providing examples from [6] which more precisely show that these invariants can distinguish between certain virtual knots.
Recommended Citation
Pico, Shane, "Virtual Tribrackets" (2018). CMC Senior Theses. 1881.
https://scholarship.claremont.edu/cmc_theses/1881
This thesis is restricted to the Claremont Colleges current faculty, students, and staff.