Graduation Year

2017

Document Type

Open Access Senior Thesis

Degree Name

Bachelor of Arts

Department

Mathematics

Reader 1

Deanna Needell

Reader 2

Winston Ou

Terms of Use & License Information

Terms of Use for work posted in Scholarship@Claremont.

Rights Information

© 2017 Wei Wu

Abstract

The Randomized Gauss-Seidel Method (RGS) is an iterative algorithm that solves overdetermined systems of linear equations Ax = b. This paper studies an update on the RGS method, the Randomized Block Gauss-Seidel Method. At each step, the algorithm greedily minimizes the objective function L(x) = kAx bk2 with respect to a subset of coordinates. This paper describes a Randomized Block Gauss-Seidel Method (RBGS) which uses a randomized control method to choose a subset at each step. This algorithm is the first block RGS method with an expected linear convergence rate which can be described by the properties of the matrix A and its column submatrices. The analysis demonstrates that RBGS improves RGS more when given appropriate column-paving of the matrix, a partition of the columns into well-conditioned blocks. The main result yields a RBGS method that is more e cient than the simple RGS method.

Share

COinS