Graduation Year


Date of Submission


Document Type

Open Access Senior Thesis

Degree Name

Bachelor of Arts



Second Department

Computer Science

Reader 1

Mark Huber

Terms of Use & License Information

Terms of Use for work posted in Scholarship@Claremont.

Rights Information

© 2020 Harrison D Miller


In this paper I will be breaking down a scholarly article, written by Sameer K. Deshpande and Shane T. Jensen, that proposed a new method to evaluate NBA players. The NBA is the highest level professional basketball league in America and stands for the National Basketball Association. They proposed to build a model that would result in how NBA players impact their teams chances of winning a game, using machine learning and probability concepts. I preface that by diving into these concepts and their mathematical backgrounds. These concepts include building a linear model using ordinary least squares method, the bias variance trade off, regularization and three methods of regularization, Gibbs samplers, and kernel density estimation. Furthermore, I explain how each of these concepts affect the process of building their model. Lastly, I explain the effectiveness of their methodology, as well as its flaws and how I would improve it.