Document Type
Technical Report
Department
Mathematics (CMC)
Publication Date
2013
Abstract
Consider the problem of reconstructing a multidimensional signal from partial information, as in the setting of compressed sensing. Without any additional assumptions, this problem is ill-posed. However, for signals such as natural images or movies, the minimal total variation estimate consistent with the measurements often produces a good approximation to the underlying signal, even if the number of measurements is far smaller than the ambient dimensionality. Recently, guarantees for two-dimensional images were established. This paper extends these theoretical results to signals of arbitrary dimension and to both the anisotropic and isotropic total variation problems. To be precise, we show that a multidimensional signal can be reconstructed from a small number of linear measurements using total variation minimization to within a factor of the best approximation of its gradient. The reconstruction guarantees we provide are necessarily optimal up to polynomial factors in the spatial dimension and a logarithmic factor in the signal dimension. The proof relies on bounds in approximation theory concerning the compressibility of wavelet expansions of bounded-variation functions.
Rights Information
© 2014 Deanna Needell and Rachel Ward
Terms of Use & License Information
DOI
10.5642/cmcfacpub/318
Recommended Citation
Needell, Deanna and Ward, Rachel, "Near-optimal compressed sensing guarantees for anisotropic and isotropic total variation minimization" (2013). CMC Faculty Publications and Research. 318.
https://scholarship.claremont.edu/cmc_fac_pub/318
Comments
Previous versions of this paper can be found at arxiv.org/abs/1210.3098