Document Type
Conference Proceeding
Department
Claremont McKenna College, Mathematics (CMC)
Publication Date
1-2016
Abstract
In this paper, we compare and catalog the performance of various greedy quantized compressed sensing algorithms that reconstruct sparse signals from quantized compressed measurements. We also introduce two new greedy approaches for reconstruction: Quantized Compressed Sampling Matching Pursuit (QCoSaMP) and Adaptive Outlier Pursuit for Quantized Iterative Hard Thresholding (AOP-QIHT). We compare the performance of greedy quantized compressed sensing algorithms for a given bit-depth, sparsity, and noise level.
Rights Information
© 2016 Shi, Case, Gu, Tu, Needell
Recommended Citation
H. M. Shi, M. Case, X. Gu, S. Tu, and D. Needell. “Methods for Quantized Compressed Sensing.” Proc. Information Theory and Applications (ITA), La Jolla CA, Jan. 2016.