Document Type

Article

Department

Claremont McKenna College, Mathematics (CMC), Pomona College, Mathematics (Pomona)

Publication Date

2016

Abstract

We consider the set of all linear combinations with integer coefficients of the vectors of a unit tight equiangular (k,n) frame and are interested in the question whether this set is a lattice, that is, a discrete additive subgroup of the k-dimensional Euclidean space. We show that this is not the case if the cosine of the angle of the frame is irrational. We also prove that the set is a lattice for n=k+1 and that there are infinitely many k such that a lattice emerges for n=2k. We dispose of all cases in dimensions k at most 9. In particular, we show that a (7,28) frame generates a strongly eutactic lattice and give an alternative proof of Roland Bacher's recent observation that this lattice is perfect.

Rights Information

© 2016 Elsevier Inc.

Included in

Mathematics Commons

Share

COinS