On Well-Rounded Sublattices of the Hexagonal Lattice
Document Type
Article
Department
Mathematics (CMC)
Publication Date
12-6-2010
Abstract
We produce an explicit parameterization of well-rounded sublattices of the hexagonal lattice in the plane, splitting them into similarity classes. We use this parameterization to study the number, the greatest minimal norm, and the highest signal-to-noise ratio of well-rounded sublattices of the hexagonal lattice of a fixed index. This investigation parallels earlier work by Bernstein, Sloane, and Wright where similar questions were addressed on the space of all sublattices of the hexagonal lattice. Our restriction is motivated by the importance of well-rounded lattices for discrete optimization problems. Finally, we also discuss the existence of a natural combinatorial structure on the set of similarity classes of well-rounded sublattices of the hexagonal lattice, induced by the action of a certain matrix monoid.
Rights Information
© 2010 Elsevier B.V.
Terms of Use & License Information
DOI
http://dx.doi.org/10.1016/j.disc.2010.07.014
Recommended Citation
Fukshansky, Lenny, Daniel Moore, R. Andrew Ohana, and Whitney Zeldow. "On Well-Rounded Sublattices of the Hexagonal Lattice." Discrete Mathematics 310.23 (2010): 3287-3302. Web.
Comments
This article (in PDF form) can also be found at http://arxiv.org/pdf/1007.2667v2.pdf