Graduation Year
2020
Date of Submission
5-2020
Document Type
Open Access Senior Thesis
Degree Name
Bachelor of Arts
Department
Biochemistry
Second Department
Chemistry
Reader 1
Babak Sanii
Reader 2
Mary Hatcher-Skeers
Terms of Use & License Information
Rights Information
2020 Katherine M Snell
Abstract
Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to potential foldamer systems. In order to study folding, we acoustically excite filaments at the air-water interface, while imaging their folding conformations and dynamics. In order to study their use as fiber optics, we confirmed their ability to waveguide light and measured their flexibility. PDMS fiber flexibility relative to their glass and acrylic counterparts makes them attractive in application as biosensors, with a measured Young’s modulus that is three to four orders of magnitude less stiff than glass/acrylic fiber optics. Additionally, the silicone fiber’s transmission may be tuned to be solvent or gas-sensitive, suggesting low-cost applications as both biological and environmental sensors.
Recommended Citation
Snell, Katherine, "Gravity-Drawing Flexible Silicone Filaments as Fiber Optics and Model Foldamers" (2020). CMC Senior Theses. 2372.
https://scholarship.claremont.edu/cmc_theses/2372
Included in
Biochemistry Commons, Bioimaging and Biomedical Optics Commons, Biology and Biomimetic Materials Commons, Biomaterials Commons, Biophysics Commons, Materials Chemistry Commons, Optics Commons, Polymer and Organic Materials Commons, Polymer Chemistry Commons, Polymer Science Commons, Semiconductor and Optical Materials Commons