Graduation Year

2012

Date of Submission

2012

Document Type

Open Access Senior Thesis

Degree Name

Bachelor of Arts

Department

W.M. Keck Science Department

Reader 1

Emily A. Wiley

Reader 2

Thomas Davis

Terms of Use & License Information

Terms of Use for work posted in Scholarship@Claremont.

Rights Information

© 2012 Vritti R. Goel

Abstract

The field of stem cell research has been growing more because of the interest in using stem cells to cure diseases and heal injuries. Human embryonic stem cells, because of the controversy surrounding them—and subsequently the difficulties in acquiring samples of the existing aging cell lines—can only be used in limited capacities. While the development of induced pluripotent stem cells in the last decade has allowed the field to progress closer to medical treatments, the low efficiency of reprogramming a somatic cell to a pluripotent state, and the vast molecular and genomic differences between human embryonic stem cells and human induced pluripotent stem cells is still an issue. Therefore, the goal is to discover methods, chemicals, and factors that can reduce these differences and increase the efficiency of inducing pluripotency.

This proposal aims to look at the effects of the protein ECAT1 in inducing pluripotency in human somatic cells. Little is known about ECAT1, otherwise known as Embryonic Stem Cell-Associated Transcript 1, beyond its presence in human embryonic stem cells and oocytes and its absence in differentiated cells. While originally considered by scientists during the development of the reprogramming technique, ECAT1's effects have not been tested in humans. Therefore, a series of experiments will be performed in which ECAT1 will be used in conjunction with OSKM to induce pluripotency in adult human dermal fibroblasts, which will then be differentiated into spinal motor neurons. The three stages of this proposal--inducing pluripotency, comparing pluripotencies in the reprogrammed cells and embryonic stem cells, and differentiating the stem cells--should answer questions about ECAT1 and the reprogramming process. It is predicted that ECAT1 should reduce the genomic and molecular differences between embryonic stem cells and induced pluripotent stem cells. ECAT1's presence should also increase the efficiency of reprogramming as well as successful differentiation to other cell types.

Comments

Thesis completed at Claremont McKenna College.

Share

COinS