Document Type

Article

Department

Mathematics (HMC)

Publication Date

2004

Abstract

Using the discrepancy metric, we analyze the rate of convergence of a random walk on the circle generated by d rotations, and establish sharp rates that show that badly approximable d-tuples in Rd give rise to walks with the fastest convergence.

Rights Information

© 2004 American Mathematical Society

Terms of Use & License Information

Terms of Use for work posted in Scholarship@Claremont.

Included in

Number Theory Commons

Share

COinS