Fault Tolerance in Cellular Automata at High Fault Rates

Document Type

Article

Department

Mathematics (HMC)

Publication Date

8-2008

Abstract

A commonly used model for fault-tolerant computation is that of cellular automata. The essential difficulty of fault-tolerant computation is present in the special case of simply remembering a bit in the presence of faults, and that is the case we treat in this paper. We are concerned with the degree (the number of neighboring cells on which the state transition function depends) needed to achieve fault tolerance when the fault rate is high (nearly 1/2). We consider both the traditional transient fault model (where faults occur independently in time and space) and a recently introduced combined fault model which also includes manufacturing faults (which occur independently in space, but which affect cells for all time). We also consider both a purely probabilistic fault model (in which the states of cells are perturbed at exactly the fault rate) and an adversarial model (in which the occurrence of a fault gives control of the state to an omniscient adversary). We show that there are cellular automata that can tolerate a fault rate 1/2−ξ (with ξ>0) with degree O((1/ξ2)log(1/ξ)), even with adversarial combined faults. The simplest such automata are based on infinite regular trees, but our results also apply to other structures (such as hyperbolic tessellations) that contain infinite regular trees. We also obtain a lower bound of Ω(1/ξ2), even with only purely probabilistic transient faults.

Rights Information

© 2008 Elsevier Inc.

Terms of Use & License Information

Terms of Use for work posted in Scholarship@Claremont.

Share

COinS