Document Type

Article

Department

Mathematics (HMC)

Publication Date

1-1999

Abstract

This paper is concerned with the multiplicity of radially symmetric solutions u(x) to the Dirichlet problem

Δu+f(u)=h(x)+cφ(x)

on the unit ball Ω⊂RN with boundary condition u=0 on ∂Ω. Here φ(x) is a positive function and f(u) is a function that is superlinear (but of subcritical growth) for large positive u, while for large negative u we have that f'(u)<μ, where μ is the smallest positive eigenvalue for Δψ+μψ=0 in Ω with ψ=0 on ∂Ω. It is shown that, given any integer k≥0, the value c may be chosen so large that there are 2k+1 solutions with k or less interior nodes. Existence of positive solutions is excluded for large enough values of c.

Comments

First published in Transactions of the American Mathematical Society in Vol 351-5(1999), published by the American Mathematical Society

Rights Information

© 1999 American Mathematical Society

Included in

Mathematics Commons

Share

COinS