When Is C(X)/P a Valuation Ring for Every Prime Ideal P?
Document Type
Article
Department
Mathematics (HMC)
Publication Date
5-22-1992
Abstract
A Tychonoff space X is called an SV-space if for every prime ideal P of the ring C(X) of continuous real-valued functions on X, the ordered integral domain C(X)/P is a valuation ring (i.e., of any two nonzero elements of C(X)/P, one divides the other). It is shown that X is an SV-space iff υX is an SV-space iff βX is an SV-space. If every point of X has a neighborhood that is an F-space, then X is an SV-space. An example is supplied of an infinite compact SV-space such that any point with an F-space neighborhood is isolated. It is shown that the class of SV-spaces includes those Tychonoff spaces that are finite unions of C*-embedded SV-spaces. Some open problems are posed.
Rights Information
© 1992 Elsevier
DOI
10.1016/0166-8641(92)90091-D
Recommended Citation
Henriksen, Melvin and Wilson, Richard. 1991. When is C(X)/P a valuation ring for every prime ideal P? Topology and its Applications. 44(1-3):175-180.