Expected Acceptance Counts for Finite Automata with Almost Uniform Input
Document Type
Conference Proceeding
Department
Mathematics (HMC)
Publication Date
11-2002
Abstract
If a sequence of independent unbiased random bits is fed into a finite automaton, it is straightforward to calculate the expected number of acceptances among the first n prefixes of the sequence. This paper deals with the situation in which the random bits are neither independent nor unbiased, but are nearly so. We show that, under suitable assumptions concerning the automaton, if the the difference between the entropy of the first n bits and n converges to a constant exponentially fast, then the change in the expected number of acceptances also converges to a constant exponentially fast. We illustrate this result with a variety of examples in which numbers follo wing the reciprocal distribution, which governs the significands of floating-point numbers, are recoded in the execution of various multiplication algorithms.
Rights Information
© 2002 Springer
DOI
10.1007/3-540-36136-7_56
Recommended Citation
Pippenger, Nicholas. "Expected Acceptance Counts for Finite Automata with Almost Uniform Input." Proc. International Symp. on Algorithms and Computation, Springer Lecture Notes in Computer Science, 2518 (2002), 636-646.