Document Type
Article
Department
Chemistry (HMC)
Publication Date
1999
Abstract
The electronic coupling element for electron transfer between a donor and acceptor in water is examined using simulations combining molecular dynamics and semiempirical quantum mechanics. In the first phase of the simulations a model donor and acceptor are solvated in water, using realistic potentials. Following equilbration, molecular dynamics simulations are performed with the donor, acceptor, and water at approximately 300 K, under periodic boundary conditions. In the second phase of the simulation, the electronic coupling element between the donor and acceptor is calculated for a number of time slices, in the presence of the intervening water molecules (those having a nonnegligible effect on the coupling element at the given distance). Finally, a subset of these configurations is used to investigate the donor-acceptor energy dependence of the coupling by varying the model donor and acceptor. It is found, contrarty to a number of previous theoretical results, that water significantly increases the electronic coupling element at a given donor-acceptor separation. The value for, using INDO wave functions is estimated to be 2.0 Åˑ¹ and is found to depend weakly on the identity of the donor and acceptor. Comparison with ab initio results for a subset of the configurations or using idealized solvent gemetries suggests that the ab initio, value would be in the range of 1.5-1.8 Åˑ¹.
Rights Information
© 1999 American Chemical Society
DOI
10.1021/jp983171n
Recommended Citation
Miller, N.E.; Wander, M.C.; Cave, R.J. “A Theoretical Study of the Electronic Coupling Element for Electron Transfer in Water,” J. Phys. Chem. A. 1999, 103, 1084. DOI: 10.1021/jp983171n