Student Co-author

CMC Undergraduate

Document Type

Article

Department

Chemistry (HMC)

Publication Date

2000

Abstract

We combine analysis of measurements by femtosecond optical spectroscopy, computer simulations, and the generalized Mulliken−Hush (GMH) theory in the study of electron-transfer reactions and electron donor−acceptor interactions. Our focus is on ultrafast photoinduced electron-transfer reactions from aromatic amine solvent donors to excited-state acceptors. The experimental results from femtosecond dynamical measurements fall into three categories:  six coumarin acceptors reductively quenched by N,N-dimethylaniline (DMA), eight electron-donating amine solvents reductively quenching coumarin 152 (7-(dimethylamino)-4-(trifluoromethyl)coumarin), and reductive quenching dynamics of two coumarins by DMA as a function of dilution in the nonreactive solvents toluene and chlorobenzene. Applying a combination of molecular dynamics trajectories, semiempirical quantum mechanical calculations (of the relevant adiabatic electronic states), and GMH theory to the C152/DMA photoreaction, we calculate the electron donor/acceptor interaction parameter HDA at various time frames. HDA is strongly modulated by both inner-sphere and outer-sphere nuclear dynamics, leading us to conclude that HDA must be considered as a dynamical variable.

Rights Information

© 2000 American Chemical Society

Included in

Chemistry Commons

Share

COinS