Graduation Year
2011
Document Type
Open Access Senior Thesis
Degree Name
Bachelor of Science
Department
Mathematics
Reader 1
Nicholas Pippenger
Reader 2
Michael Orrison
Terms of Use & License Information
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Rights Information
Donald Lee Wiyninger III
Abstract
While the traditional form of continued fractions is well-documented, a new form, designed to approximate real numbers between 1 and 2, is less well-studied. This report first describes prior research into the new form, describing the form and giving an algorithm for generating approximations for a given real number. It then describes a rational function giving the rational number represented by the continued fraction made from a given tuple of integers and shows that no real number has a unique continued fraction. Next, it describes the set of real numbers that are hardest to approximate; that is, given a positive integer $n$, it describes the real number $\alpha$ that maximizes the value $|\alpha - T_n|$, where $T_n$ is the closest continued fraction to $\alpha$ generated from a tuple of length $n$. Finally, it lays out plans for future work.
Recommended Citation
Wiyninger, Donald Lee III, "Continued Fractions: A New Form" (2011). HMC Senior Theses. 14.
https://scholarship.claremont.edu/hmc_theses/14