Graduation Year
2012
Document Type
Open Access Senior Thesis
Degree Name
Bachelor of Science
Department
Mathematics
Reader 1
Francis Edward Su
Reader 2
Ann N. Trenk
Terms of Use & License Information
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Rights Information
© Craig Burkhart
Abstract
Approval voting is an election method in which voters may cast votes for as many candidates as they desire. This can be modeled mathematically by associating to each voter an approval region: a set of potential candidates they approve. In this thesis we add another level of approval somewhere in between complete approval and complete disapproval. More than one level of approval may be a better model for a real-life voter's complex decision making. We provide a new definition for intersection that supports multiple levels of approval. The case of pairwise intersection is studied, and the level of agreement among voters is studied under restrictions on the relative size of each voter's preferences. We derive upper and lower bounds for the percentage of agreement based on the percentage of intersection.
Recommended Citation
Burkhart, Craig, "Approval Voting Theory with Multiple Levels of Approval" (2012). HMC Senior Theses. 26.
https://scholarship.claremont.edu/hmc_theses/26