Graduation Year
2016
Document Type
Open Access Senior Thesis
Degree Name
Bachelor of Science
Department
Mathematics
Reader 1
Mohamed Omar
Reader 2
Nora Youngs
Terms of Use & License Information
Rights Information
2016 Robert A Jeffs
Abstract
An important task in neuroscience is stimulus reconstruction: given activity in the brain, what stimulus could have caused it? We build on previous literature which uses neural codes to approach this problem mathematically. A neural code is a collection of binary vectors that record concurrent firing of neurons in the brain. We consider neural codes arising from place cells, which are neurons that track an animal's position in space. We examine algebraic objects associated to neural codes, and completely characterize a certain class of maps between these objects. Furthermore, we show that such maps have natural geometric implications related to the receptive fields of place cells. Lastly we describe several purely geometric results related to neural codes.
Recommended Citation
Jeffs, Robert Amzi, "Convexity of Neural Codes" (2016). HMC Senior Theses. 87.
https://scholarship.claremont.edu/hmc_theses/87
Source Fulltext
https://www.math.hmc.edu/~rjeffs/rjeffs-2016-thesis.pdf