Document Type
Article - preprint
Department
Mathematics (Pomona)
Publication Date
2011
Keywords
Kloosterman sum, Representation, Magic square, Panmagic square, Ramanujan multigraph, Ramanujan graph, Multigraph, Eigenvalues, Weil bound
Abstract
We consider a certain finite group for which Kloosterman sums appear as character values. This leads us to consider a concrete family of commuting hermitian matrices which have Kloosterman sums as eigenvalues. These matrices satisfy a number of “magical” combinatorial properties and they encode various arithmetic properties of Kloosterman sums. These matrices can also be regarded as adjacency matrices for multigraphs which display Ramanujan-like behavior.
Rights Information
© 2010 Elsevier B.V.
Terms of Use & License Information
DOI
10.1016/j.jnt.2010.10.009
Recommended Citation
Patrick S. Fleming, Stephan Ramon Garcia, Gizem Karaali, Classical Kloosterman sums: Representation theory, magic squares, and Ramanujan multigraphs, Journal of Number Theory, Volume 131, Issue 4, April 2011, Pages 661-680, ISSN 0022-314X, 10.1016/j.jnt.2010.10.009. (http://www.sciencedirect.com/science/article/pii/S0022314X10002684)
Comments
Pre-print from http://arxiv.org/abs/1004.3550
Final publication can be found at:
Fleming, P., Garcia, S.R., Karaali, G., Classical Kloosterman sums: representation theory, magic squares, and Ramanujan multigraphs, J. Number Theory 131 (2011), no. 4, 661–680. MR2753270 (2012a:11114)