A Delay Differential Equation Model for Tumor Growth
Document Type
Article
Department
Mathematics (Pomona)
Publication Date
2003
Keywords
Cycle-phase-specific drugs, Delay differential equations, Tumor growth
Abstract
We present a competition model of tumor growth that includes the immune system response and a cycle-phase-specific drug. The model considers three populations: Immune system, population of tumor cells during interphase and population of tumor during mitosis. Delay differential equations are used to model the system to take into account the phases of the cell cycle. We analyze the stability of the system and prove a theorem based on the argument principle to determine the stability of a fixed point and show that the stability may depend on the delay. We show theoretically and through numerical simulations that periodic solutions may arise through Hopf Bifurcations.
Rights Information
© 2003 Springer-Verlag
Terms of Use & License Information
DOI
10.1007/s00285-003-0211-0
Recommended Citation
A.E. Radunskaya and M. Villasana, " A Delay Differential Equation model for Tumor growth", The Journal of Mathematical Biology, V.47, 270-294 (2003). doi: 10.1007/s00285-003-0211-0