Variational Principles for Symmetric Bilinear Forms
Document Type
Article
Department
Mathematics (Pomona)
Publication Date
2008
Keywords
Symmetric bilinear form, Friedrichs operator, singular values, compact operator, compressed Toeplitz operator, Courant principle, minimax theorem
Abstract
Every compact symmetric bilinear form B on a complex Hilbert space produces, via an antilinear representing operator, a real spectrum consisting of a sequence decreasing to zero. We show that the most natural analog of Courant's minimax principle for B detects only the evenly indexed eigenvalues in this spectrum. We explain this phenomenon, analyze the extremal objects, and apply this general framework to the Friedrichs operator of a planar domain and to Toeplitz operators and their compressions.
Rights Information
© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Terms of Use & License Information
DOI
10.1002/mana.200510641
Recommended Citation
Danciger, J., Garcia, S. R. and Putinar, M. (2008), Variational principles for symmetric bilinear forms. Math. Nachr., 281: 786–802. doi: 10.1002/mana.200510641