Document Type
Article - preprint
Department
Mathematics (Pomona)
Publication Date
2009
Keywords
Complex symmetric operator, Isometry, Partial isometry
Abstract
An operator $T \in B(\h)$ is complex symmetric if there exists a conjugate-linear, isometric involution $C:\h\to\h$ so that $T = CT^*C$. We provide a concrete description of all complex symmetric partial isometries. In particular, we prove that any partial isometry on a Hilbert space of dimension $\leq 4$ is complex symmetric.
Rights Information
© 2009 Elsevier B.V.
Terms of Use & License Information
DOI
10.1016/j.jfa.2009.04.005
Recommended Citation
Garcia, Stephan Ramon and Wogen, Warren R., "Complex Symmetric Partial Isometries" (2009). Pomona Faculty Publications and Research. 245.
https://scholarship.claremont.edu/pomona_fac_pub/245
Comments
Pre-print from http://arxiv.org/abs/0907.4486
Final publication can be found at:
Stephan Ramon Garcia, Warren R. Wogen, Complex symmetric partial isometries, Journal of Functional Analysis, Volume 257, Issue 4, 15 August 2009, Pages 1251-1260, ISSN 0022-1236, http://dx.doi.org/10.1016/j.jfa.2009.04.005. (http://www.sciencedirect.com/science/article/pii/S0022123609001694)