Means of Unitaries, Conjugations, and the Friedrichs Operator
Document Type
Article
Department
Mathematics (Pomona)
Publication Date
2007
Keywords
Complex symmetric operator, Complex symmetric matrix, Conjugation, Extreme point, Unilateral shift, Unitary operator, Hankel matrix, Toeplitz matrix, Bergman space, Bergman kernel, Friedrichs operator, Quadrature domain
Abstract
If C is a conjugation (an isometric, conjugate-linear involution) on a separable complex Hilbert space H, thenT∈B(H) is called C-symmetric if T=CT∗C. In this note we prove that each C-symmetric contraction T is the mean of two C-symmetric unitary operators. We discuss several corollaries and an application to the Friedrichs operator of a planar domain.
Rights Information
© 2007 Elsevier B.V.
Terms of Use & License Information
DOI
10.1016/j.jmaa.2007.01.094
Recommended Citation
Stephan Ramon Garcia, Means of unitaries, conjugations, and the Friedrichs operator, Journal of Mathematical Analysis and Applications, Volume 335, Issue 2, 15 November 2007, Pages 941-947, ISSN 0022-247X, http://dx.doi.org/10.1016/j.jmaa.2007.01.094. (http://www.sciencedirect.com/science/article/pii/S0022247X07001424)