Theory of the Small Amplitude Shape Oscillations of a Helium-II Drop
Document Type
Article
Department
Physics (Pomona)
Publication Date
1999
Keywords
super-fluid helium, two-fluid model, evaporation, condensation, vapor, equilibrium
Abstract
We present an analysis of the small amplitude shape oscillations of a superfluid helium drop surrounded by saturated helium vapor. The equations of the two-fluid model are used to describe the liquid motion within the drop. The calculations are performed for two different sets of boundary conditions at the surface of the drop. The first set corresponds to the physical situation in which no evaporation or condensation of helium takes place during the oscillation (no evaporation model), whereas the second set apply when the liquid at the surface of the drop is always in phase equilibrium with the vapor (equilibrium model). The theoretical results for frequency and damping rate are then compared with experimental data.
Rights Information
© 1999 Plenum Publishing Corporation; © Springer, Part of Springer Science+Business Media
DOI
10.1023/A:1021810422559
Recommended Citation
Whitaker, D.L., et al. "Theory of the Small Amplitude Shape Oscillations of a Helium-II Drop," in the Journal of Low Temperature Physics, Vol. 114, Nos. 5-6 (1999), 523-545. DOI: 10.1023/A:1021810422559