Conjugation, the Backward Shift, and Toeplitz Kernels

Document Type

Article

Department

Mathematics (Pomona)

Publication Date

2005

Keywords

conjugation, backward shift, Toeplitz kernels, pseudocontinuations, Darlington synthesis problem, electrical network theory

Abstract

For each outer function $\Omega$ in the Smirnov class and each $p \in (0,\infty)$, we define a subspace $\mathcal{N}_{\Omega}^p$ of $H^p$ that carries an operation analogous to complex conjugation. Using these subspaces, we explicitly describe the invariant subspaces and noncyclic functions for the backward shift operator on $H^p$ for $p \in [1,\infty)$ and $p \in (0,\infty)$, respectively. We also discuss pseudocontinuations, the Darlington synthesis problem from electrical network theory, and the kernels of Toeplitz operators.

Rights Information

© 2005 Theta Foundation

Terms of Use & License Information

Terms of Use for work posted in Scholarship@Claremont.

Share

COinS